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Abstract— In this paper, we propose a novel method for
retargeting human movements including the steps taken by a
humanoid robot. For applications, such as wearable device eval-
uation by a humanoid, it is necessary to reproduce the original
human motions as closely as possible and to generate motions
that can be realized on a real robot without the robot losing
its balance. The proposed method features the optimization
framework that integrates the walking pattern generation based
on the linear inverted pendulum model whose parameters are
optimized to ensure both human likeness and feasibility of the
generated motions. The effectiveness of the retargeting method
is validated by experiments that reproducing the measured
human working motion on the humanoid HRP-4.

I. INTRODUCTION

Along with an increase in workers, we are experiencing
an increasing demand for wearable assistive devices, such
as power-assisted suits for amplifying human strength. To
develop and spread wearable assistive devices, we need a
method for quantitatively evaluating the performance of each
device. As a framework for obtaining quantitative evaluation,
a method using a humanoid robot has been proposed [1]. In
this framework, humanoid robot performs human motions
with and without an assistive device, and the internal load is
measured from the internal sensors. Also, this framework
is expected to solve the problem of motion repeatability
and ethics. Nabeshima et al. have established standards in
Japan for assistive devices that are attached to the waist [2].
However, this evaluation framework has not been realized
for assistive devices that support walking or other motions
that involve taking steps. One reason is that it is difficult to
generate robot motions that mimic dynamic human motions
such as walking, which involve changes in the foot place-
ments. Furthermore, it is necessary to realize the generated
motion under various disturbances and modeling errors.

Some studies have already reported the reproduction of
human motions (measured by motion capture systems) for
life-sized humanoid robots. Nakaoka et al. defined the task
primitives and parameters for lower body movements and
reproduced a measured Japanese dance on HRP-2 [3]. For
HRP-2, Ramos et al. succeeded in reproducing the dance
motion including the leg movements by considering the
consistency of the dynamics [4]. Miura et al. generated
a turning motion for the humanoid HRP-4 by using the
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Fig. 1. Overview of motion reproduction method

measured human motions [5]. Ishiguro et al. realized real-
time motion reproduction as a master–slave system [6].
Although these approaches can generate feasible motions
efficiently, they are not aimed at precise preservation of
motion characteristics such as the angle trajectory of the
specific joint. When converting the captured human motions
into the feasible one for the humanoids, several studies have
been reported such as Dynamics Filter proposed by Yamane
et al[7]. Though the method can generate the motion which
has high reproducibility and dynamically consistent, the lack
of locomotion control leads instability of biped motion of a
real humanoid robot.

In this paper, we propose a novel method of reproducing
the walking motions of humans by a humanoid robot while
considering the stability issue of locomotion toward the
the applications in the real robot. We introduce a retar-
geting framework that integrates optimization and pattern
generation. We constructed a walking pattern generator that
outputs walking motions based on the linear inverted pen-
dulum model (LIPM) [8], whose parameters are optimized
to achieve the target human motions while satisfying both
the reproducibility and feasibility. The pattern generated
according to LIPM is compatible with stabilization control
using LIPM [9]. Therefore, the combination leads the high
performance against disturbances in the real world. Accord-
ing to similar concept, Kondo et al. optimized small gait
parameters by genetic algorithm and reproduced measured
human walking motion by using WABIAN-2 [10]. In our
method, many parameters including the foot-print and waist
pose can be optimized in order to enhance the reproducibility
of original human motion. On the other hand, more than
60 parameters need to be optimized. To solve the nonlinear
problem, the gradient of the cost function need to be com-
puted accurately. Since the function including pattern gen-



erator has complicated structure, we applied the automatic
differentiation (AD) technique. We also built a generator that
can generate the motion algorithmically from the parameters
to apply AD. The motion retargeting method was validated
by an experiment, which reproduced the measured human
working motion on the humanoid HRP-4 [11].

II. RETARGETING USING OPTIMIZATION AND LIPM
BASE PATTERN GENERATION

A. Overview

Figure 1 provides an overview of our retargeting system.
The system takes a measured human motion clip as an input
and outputs the retargeted robot motion pattern which is
dynamically consistent and stable. The system is mainly
composed of a motion morphing part and an optimization
part. The motion morphing part converts the human motion
into a robot motion. The converted motion is used as a
reference in latter part. Then, the optimization part then opti-
mizes the parameters of the pattern generator based on LIPM
to minimize the difference between the generated motion
and the reference. Finally, the overall system generates the
motion pattern with the acquired optimal parameters.

B. Motion morphing for generating reference robot motion

The body structure of a human actor and a humanoid robot
are quite different. We employed the method proposed by
Ayusawa et al. [12] for scaling the body structure; however,
this method only considers the kinematic feasibility. In the
motion optimization part, the robot motion that was morphed
from human motion is set as the reference.

C. Motion optimization using LIPM based pattern genera-
tion

The direct optimization of motions that involve several
footsteps is difficult, especially for following: 1) The floor
contact state is discrete information that is difficult to use in
mathematical formulations. 2) Complex constraints are nec-
essary, for example, for tracking the targeted zero-moment
point (ZMP) trajectory. We address these problems by using
optimization including the walking pattern generation based
on LIPM [8].

When the humanoid robot’s CoM moves in the horizontal
plane and the angular momentum around CoM is zero, its
dynamics can be represented as a linear inverted pendulum
as follows:

ẍ =
g

zc
(x− p) (1)

where x is position of CoM; zc is the vertical height of
CoM; p is position of ZMP; and g is the gravity acceleration.
When a footprint (the floor contact positions and timings) is
given as the input of the generator, it can determine a ZMP
trajectory based on some assumptions. For example, ZMP
is set at the center of the sole during a single supporting
phase, and so on. Then, a CoM trajectory that tracks the
ZMP trajectory is calculated from (1). The walking pattern
is calculated from the foot trajectory determined from the
footprint and the waist and the upper body posture trajectory

that tracks the CoM trajectory [13]. We have extended this
LIPM-based walking pattern generator that can generate
various walking motions.

Let qtarg and qgen be the generalized coordinates of the
robot as follows:

qtarg = [ ptargbase Rtarg
base θtarg ] (2)

qgen = [ pgenbase Rgen
base θgen ] (3)

where ptargbase and pgenbase are the position of baselink, Rtarg
base and

Rgen
base are the rotation of the baselink, and θtarg and θgen

are the joint angle of whole body. At each time instance
t1, t2, · · · , tNT

, let qtarg
t and qgen

t (1 ≤ t ≤ NT ) be the
reference and the generated robot postures, respectively. Let
the generated motion pattern for the humanoid be Qgen(

∆
=

[qgen
1 · · · qgen

NT
]) = PG(ϕ,C), where ϕ is the set of variable

parameters for pattern generation (such as zc in (1)), and C
is the set of constant parameters. Assuming that the pattern
generator has sufficient DoF to reproduce the target motion,
the motion reproduction can be expressed as an optimization
problem of the parameters of PG as follows:

min
ϕ

f(PG(ϕ,C),Qtarg)
(4)

where Qtarg ∆
= [qtarg

1 · · · qtarg
NT

] is the reference motion, and
f is the error function for calculating the difference between
Qgen and Qtarg . In this paper, we used the sum of squared
error of the angles of the hip and the knee joints as objective
function. The equality or inequality constraints are handled
as the penalty terms in the objective function. The nonlinear
optimization problem can be solved by the Quasi-Newton
method or another such method, but a gradient is required.
We employed AD [14] to compute the accurate gradient
of the whole system from motion pattern generation to
motion evaluation. Though AD requires time and effort from
a naive software implementation, it can quickly compute
the derivatives with high accuracy in contrast to numerical
differentiation.

The details of pattern generator improvements will be
described in Section III.

III. PATTERN GENERATOR FOR MOTION OPTIMIZATION
WITH AD

A. Overview

Figure 2 shows a diagram for the implementation of a
pattern generator. The steps in the pattern generator process
are as follows:

1) Determine the reference ZMP trajectory and the
foot motion.

2) Calculate a baselink posture trajectory and generate
the whole-body motion once.

3) Compensate for the ZMP error by modifying the
baselink trajectory and output the motion pattern.
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Fig. 2. Implementation of the pattern generator PG

B. Reference ZMP generation

First, we define CSsup
as a sequence of the support state in

the whole motion. It is a constant parameter and is measured
from the reference motion. Also ϕts

= [ts,1 · · · ts,Nts
] is

defined as the change timings of the support-state sequence.
ϕpRc

= [pRc,1 · · · pRc,NRc
] and ϕpLc

= [pLc,1 · · · pLc,NLc
]

are defined as the positions for each floor contact of each
foot (R indicates right, and L indicates left). Nts , NRc

and NLc are the number of each parameter and is deter-
mined from CSsup

. The reference ZMP trajectory pref
zmp

∆
=

[prefzmp,1 · · · p
ref
zmp,NT

] is generated from these parameters as
follows:

pref
zmp = fref

zmp(CSsup
, ϕts

, ϕpRc
, ϕpLc

) (5)

The trajectory is generated by the interpolation of the via
point determined according to footprint parameters: ϕts

,
ϕpRc

and ϕpLc
. The interpolation of the two adjacent via

points can be formulated as follows:

a = (1− µ)a0 + µa1 (6)
µ = (1− cos(πτ))/2 (7)

where τ is the normalized time between the time instances
corresponding to the two adjacent via points, and a is the
interpolated value from a0 and a1 at τ . This interpolation is
employed through all via points to avoid overshooting and
to set the velocity to zero near the via point. Figure 3 shows
the implementation of (5) for the X-axis (the sagittal axis)
and the Y-axis (the frontal axis);this figure also gives an
example of walking four steps by stepping out with the right
foot. In Figure 3, the red points specify the via points, and
the green line is interpolated as the ZMP trajectory. “D” in
CSsup

indicates the double support phase and “R” and “L”
indicate the single support phase with the right foot or the
left foot. We used the constant transition time of ZMP in

the first swing and the last landing time to/from the adjacent
ZMP reference was experimentally set to tb = 0.1 s.
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Fig. 3. Procedure of reference ZMP trajectory generation.

C. Foot-motion generation

The foot motion is determined in a manner similar
to the ZMP trajectory, as given in the previous sub-
section. Let ϕRRc

= [RRc,1 · · ·RRc,NRc
] and ϕRLc

=
[RLc,1 · · ·RLc,NLc

] be the rotation of the right foot and the
left foot, respectively. The foot-motion generation defined
by the function ffoot, to compute pRf ,pLf ,RRf ,RLf is as
follows:

pRf ,RRf ,pLf ,RLf =

ffoot(ϕSsup , ϕts , ϕp
Rc

, ϕR
Rc

, ϕp
Lc

, ϕR
Lc

, ϕswing)
(8)

where ϕswing is the height of the swing foot during the
walking motion at half of the swing period. Figure 4 shows
the implementation of the foot-motion generation given in



(8) for the X-axis (sagittal axis) and the Z-axis (vertical
axis). Start timing of the swing and the landing timing are
extracted from ϕts

with reference to CSsup so that the timing
of each via point is determined. The trajectory is generated
by the interpolation formula given in (7). The procedure
implemented on the Y-axis (the frontal axis) and the rotation
trajectory were also same as that for the X-axis.
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Fig. 4. Procedure for foot-motion generation.

D. LIPM ZMP tracking

In each sagittal and frontal plane, the CoM trajectory
tracking the ZMP trajectory is obtained from the discretized
LIPM as follows [15]:

xcom = A−1xzmp (9)

A, the NT ×NT matrix, is defined as follows:

A =



a+ b c 0

a b c
. . .
. . .
. . . a b c

0 a b+ c


a = −zc/(g∆t2)

b = −2zc/(g∆t2) + 1

c = −zc/(g∆t2)

zc = ϕzc

In this implementation, the CoM position is assumed to be
close to the position of the waist link (i.e. the baselink). The
trajectory of the baselink is computed as follows:

pbase,x = A−1pref
zmp,x (10)

pbase,y = A−1pref
zmp,y (11)

pbase,z = ϕzc (12)

E. Baselink posture calculation

This component adds additional vertical movement to
pbase as follows:

pbase,z = ϕzc + fspline(ϕpadd
base

) (13)

where the function fspline calculates the trajectory by uni-
form B-spline of order 3, and the argument is the control
point of the spline. Let Rbase, the rotational trajectory of
the baselink, be given as follows:

Rbase = Rrpy(f
rpy
spline(ϕRbase

)) (14)

where frpy
spline calculates three spline trajectories in the same

as (13), and function Rrpy(·) calculates a rotation matrix
with given roll pitch yaw angles.

F. Whole-body motion generation

The joint angles of each leg are calculated from the
baselink posture trajectory and each foot trajectory by using
inverse kinematics (IK). Here, analytical IK is possible
because each leg of HRP-4 has only six DoFs and the
axis of three DoFs on the waist are orthogonal. Let θRleg

and θLleg be the calculated joint angles of each leg from
pRf ,RRf ,pLf ,RLf , pbase and Rbase. When given a po-
sitional relationship between waist and foot that can not be
realized, we clip the norm of foot-baselink and the error is
considered in the optimization process.

In this implementation, the joint angle trajectory of the
upper body is set to the reference motion received as the
parameter Cθupper

. Here, Q
∆
= [q1 · · · qNT

] is defined as
the motion pattern , where q = [ pbase Rbase θ ] and
θ = [ θRleg θLleg θupper ].

After computing the trajectory generalized coordinate,
ZMP can be computed by the whole-body dynamics, where
the generalized velocity and acceleration are computed by the
numerical differentiation of Q. Let pzmp be the computed
ZMP trajectory.

G. ZMP compensation

Because of the assumptions made for LIPM and the use
of CoM as the baselink, the result of pzmp can have an error
from the reference pref

zmp. To compensate for the error, the
baselink trajectory pbase is modified according to the ZMP
error as follows:

∆pzmp = pzmp − pref
zmp (15)

∆pbase,x = A−1∆pzmp,x (16)

∆pbase,y = A−1∆pzmp,y (17)

where A is the same matrix in (9). The modified baselink
position trajectory pgen

base is pgen
base = pbase +∆pbase.

Finally, the output motion pattern Qgen is calculated from
the modified pgen

base by the whole-body motion generator
described in Section III-F.

IV. EXPERIMENTS

This section presents the results of the experiment to verify
the effectiveness of the proposed system.



A. Experiment setup
The left side of Fig.5 shows the human-sized humanoid

robot HRP-4. The geometric parameter designs, such as
link lengths, were based on the average Japanese female;
the height and weight of HRP-4 is almost 155 cm and 40
kg, respectively. The right side of Fig.5 shows the joint
configuration of HRP-4. The total number of DoFs of the
robot is 37. Joints were added to the toes and to the roll axis
of the waist link from the original HRP-4. In this experiment,
the toe joints and the hand joints were fixed and unused.

While executing the motion pattern, the joint position
controller at each joint tracks the joint angle trajectory.
The robot is affected by various disturbances (such as a
deformation of some rubbers for shock absorbing on the
ankle) and some modeling errors; therefore the stabilization
controller is needed. For the stabilization controller, we used
an implementation of the LIPM-based stabilization control
method that was proposed by Kajita et al. [9].

Fig. 5. Overview of HRP-4 (left) and joint configuration (right).

B. Experiment for working motion retargeting
Experiments have been conducted by assuming the case

of tasks requiring devices wearable on the lower body. We
selected the inspection task in a half-sitting posture as the
target motion and measured it by motion capture system
(Motion Analysis). The motion is approximately for 6 s and
involved four steps. Snapshots of the captured motion are
shown at the top of Fig.6. The whole-body motion Qtarg

was generated as described in Section II-B.
One of our goal is to evaluate the assistive device that

performs according to the joint angles of the lower body. In
this paper, we used the error of the angles of the hip joints
and the knee joints as evaluation that to be minimized. The
optimization problem is therefore formulated as follows:

min
ϕ

1

NT

NT∑
t=1

( ||θtarg
hip,t − θgen

hip,t||
2

+ ||θtargknee,t − θgenknee,t||
2

+ ωcom||ϕzc − pcom,z,t||2

+ ωIK||pfoot,t − p∗foot,t||2)

+ ωfck

∑
k

||ϕinit
fc,k − ϕfc,k||2

subject to ϕmin ≤ ϕ ≤ ϕmax

(18)

where θgen
hip,t are the three joint angles of the each hip joint

extracted from θgenRleg,t and θgenLleg,t, and θgenknee,t is the knee
joint angle. In the problem (18), the constraint conditions ex-
cluding the boundary constraint are considered as the penalty
term. Also, pcom = [pcom,1 · · · pcom,NT

] is the CoM trajec-
tory of the generated motion, and p∗foot,t (foot = Rf,Lf)
is the actual foot position calculated by forward kinematics
of the generated motion. The weights ωcom and ωIK in the
cost function in (18) are for the vertical CoM motion and
the IK error, respectively, and are empirically set to 100 and
2000, respectively. ωfc (fc = ts,pRc,pLc,RRc,RLc) is
the weight of the penalty term which constraints the change
of the parameter relating to the foot-print to the adjustment,
and are set to ωfck = 0.4 for ϕts

and ωfck = 4.0 for
other foot-print parameters. The parameters to be optimized
are ϕ = {ϕzc , ϕpadd

base
, ϕRbase

, ϕts
, ϕpRc

, ϕpLc
, ϕRRc

, ϕRLc
},

and ϕRbase
only effects yaw axis rotation. The boundary

constraints are set as follows: 0.5 ≤ ϕzc ≤ 1.0, −0.2 ≤
ϕpadd

base,i
≤ 0.2 [m], and −π/2 ≤ ϕRbase,i

≤ π/2 [rad].
The foot-print parameters ϕts , ϕpRc

, ϕpLc
, ϕRRc

, ϕRLc
are

initialized to the values measured from reference motion
using the method proposed by Miura et al. [5]; and ϕswing

is set to 0.06 m. We used the efficient “L-BFGS-B” method
[16] for optimization.

C. Results and discussion

At first, we analyzed the relationship between the cost
function and the number of control points of the two B-spline
trajectories. Table.I shows the convergence cost values when
the set of the target parameter of optimization is changed, and
numbers in parentheses are the number of control points of
the B-spline trajectory. We confirmed that the error decreased
according to the number of control points. According to

TABLE I
CONVERGENCE ERROR VALUES AND THE SET OF OPTIMIZED

PARAMETERS.

Optimized parameters ϕ Total dims Convergence value

zc,padd
base(5),Rbase(5) 11 7.501× 10−2

zc,padd
base(10),Rbase(10) 21 7.341× 10−2

zc,padd
base(20),Rbase(20) 41 7.190× 10−2

zc,padd
base(20),Rbase(20),

ts,pRc,pLc,RRc,RLc
67 6.868× 10−2

the analysis, the number of control points of each spline
trajectory was finally set to 20, as a result of optimizing the
entire 67 dimensional parameters.

To see whether the optimized solution is globally optimal,
we tested the four initial values including ϕinit = ϕmin,
ϕinit = ϕmax and ϕinit = (ϕmax + ϕmin)/2. The variance
of the final objective function among 4 cases is less than
2× 10−10. This result can be regarded as converging to the
neighborhood of the global minimum.

Snapshots of the motion that realized on HRP-4 are shown
in Fig.6. As can be seen in the figure, the retargeted motion
was performed stably. The optimized CoM trajectory, the
waist trajectory, ϕzc , and CoM trajectory of the target motion



Fig. 6. Original human motion (top) and reproduced motion on HRP-4 (bottom). The motion includes four steps, and the timing of snapshots are the
start and end, and each leg swinging.

are shown in Fig.7. The waist vertical movement reproduced
the motion feature whereas the CoM trajectory tracks ϕzc ,
which validated the effectiveness of the proposed method.
It should be noted that our approach tends to modify CoM
trajectory according to the dynamics of LIPM. Therefore,
the motion with a large perturbation of CoM is difficult
to be retargeted by the proposed method, which will be
investigated in our future work.

0 1 2 3 4 5 6
time [sec]

0.65

0.70

0.75

z [
m

]

optimized zc
optimized CoM
optimized waist
target motion CoM

Fig. 7. CoM trajectory, baselink position trajectory and zc of the generated
motion.

Figure 8 shows the joint angle trajectory of the hip yaw,
hip roll, hip pitch (θhip), and knee joint (θknee) of the
reference motion and generated motion. The hip yaw joint
and the knee joint were reproduced with high accuracy (in
the hip yaw joint, a maximum error is 5◦ or less); however,
there is room for improving the results about other joints.
Assuming that the optimization of the ϕRbase

improved the
hip yaw joint, other joints will also improve by optimizing

the other axis rotation of the baselink.

V. CONCLUSIONS

In this paper, we presented a novel retargeting method
for human motions which included the steps taken by a
humanoid robot to cope with optimization under the con-
straints of the complex dynamics and instability induced by
the changes in foot placements. We addressed this problem
by optimizing the parameters of the LIPM-based walking
pattern generator, and minimizing the difference from the
reference motion. The implemented pattern generator can
generate various motions, and the gradient of all input
parameters for the output motion can be computed by the AD
technique. Thanks to the efficient and accurate gradient cal-
culation, we could optimize many parameters and reproduce
the detailed motion features by determining 67 parameters
including the parameter corresponding to the foot-print and
the baselink posture trajectory.

The effectiveness of our method was verified by a real-
robot experiment supposing a practical inspection task. The
proposed method was applied to the motion of working in a
half-siting posture, and the reproduced motion was realized
by the humanoid HRP-4.

We are also aware of several limitations to our method.
The first limitation is related to the stabilizing controller
on a real robot. We have constructed a method assuming
a stabilizing controller based on the LIPM, but this is a
restriction when considering reproduction that uses a wider
range of motions. It is necessary to simultaneously improve
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Fig. 8. Comparison of the leg joint angle trajectory of the generated motion
with reference motion. In each figure shows the hip yaw joint, hip roll joint,
hip pitch joint, and knee joint in order from the top.

both the stabilization controller and the retargeting method.
The second issue is evaluating the reproducibility of the
proposed retargeting method. In this method, it is possible
to discuss how much the error decreases with respect to
the reference robot motion, but it is still difficult to argue
how close it is to the original human motion as a whole;
it will be needed when applying this method for evaluation
of assistive devices in the future. To deal with this problem,
it is necessary to extend our method for characterizing the
quantitative features of human likeness in terms of different
aspects of kinematics and dynamics, as discussed in [12].
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