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Abstract— This paper describes a generalized approach for
compensating just the required yaw moment of a humanoid
robot about the Zero Moment Point (ZMP) while performing
an arbitrary motion, in order to prevent unwanted / unexpected
yaw rotations. This is done by modifying the motion of any set
of joints with low priority tasks that can be arbitrarily selected
before-hand. Finally, some simulation results are provided,
which intend to show the validity of this approach.

I. INTRODUCTION

Humanoid robots’ most important characteristic is their
bipedal locomotion. However, in order for it to be efficiently
performed, not only the generation of dynamically stable
movements is important but also the avoidance of unexpected
motion due to slippage, as the performance of these ones
strongly rely on the friction between the feet and the floor.
For example, walking on a curved path or performing a
kicking motion can cause unexpected yaw rotation, due to
the inherent generation of yaw moment.

In order to compensate this yaw moment several attempts
have been made, which mainly use the upper body motion;
that is, the joints that are not directly related with the
locomotion task, which is a high priority one in most of the
cases. In this way, some researchers have proposed to use
the motion of the arms only, simultaneously rotated through
opposite directions [1] [2] [3]. However, if the humanoid
robot is expected to use them for manipulation, then this
strategy results impractical [4]. Some others have proposed
to rotate the trunk of the robot to achieve this compensa-
tion, by changing the orientation of the waist (which may
compromise the locomotion pattern) or by rotating the trunk
independently if it is provided with the corresponding yaw-
axis joint [5] [6] [4]. However, this strategy may influence the
inertial sensory system, and if the humanoid robot’s head is
supposed to maintain its gaze then the neck must be provided
with an additional joint to compensate the trunk’s rotation.

That is, depending on the tasks aside from the locomotion
that the robot has to accomplish, to use one set of joints
or another is preferable according to the priority of their
motions. All the joints (or some of them) with a low priority
motion may be chosen to compensate the corresponding yaw
moment.
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We have previously proposed a compensation approach at-
tained via the control of the angular momentum with respect
to the moving ZMP [7], by using the concept of Resolved
Momentum Control [8] to relate this angular momentum with
the motion of the joints. This approach was able to fully
compensate (at least theoretically) the yaw moment by means
of controlling the rate of change of the angular momentum
with the corresponding acceleration of the selected joints.
However, this generally led to an unbounded joint motion,
unfeasible due to the presence of joint limits.

In this paper we propose a novel control method for
whole-body yaw moment compensation that does not cause
undesired residual motion. Instead of taking the net yaw
moment to zero we establish a threshold value (kept below
the frictional yaw moment given between the floor and the
soles of the robot to prevent unwanted / unexpected yaw
rotations), so that only the yaw moment that exceeds this
value is compensated by means of the acceleraton of the
selected joints. Then, once the yaw moment has been taken
to the desired limit range the joints can slow down at a lower
rate, fulfilling the net yaw moment requirement and, at the
same time, keeping the joint values bounded and within the
limits without residual drift, and this is our main contribution
in contrast with our previous work.

II. PROBLEM STATEMENT

Let us consider a humanoid robot which has to perform
a high priority task. This task may be the locomotion itself
and/or any other motion, not restricted to the lower part of
the robot. For example, the robot may be required to grasp an
object by using one hand (or two). In addition, it is necessary
for the robot to keep its balance. This can be achieved by
controlling the position of the Zero Moment Point (ZMP) to
remain inside of the support polygon of the robot, maybe
by moving its waist horizontally as described in [9]. In this
way, several joints of the robot will be given a required
high priority motion, while the remaining ones may be given
constant values, or any low priority motion.

Then, once all these motions are defined (or proposed)
and specifically their velocity profiles, the total linear and
angular momenta of the robot with respect to some reference
point (as it is the origin of the world frame 0), P0 and L0

respectively, will also be inherently given.
Let us denote by τp the net moment of the vertical ground

reaction force fp about the ZMP, whose position is denoted
by rp/0 as it is taken from the origin of the world frame,
0 (see Fig. 1). The moment of fp about the origin of the
world coordinate frame, τ0, can be calculated as

τ0 = rp/0 × fp + τp. (1)
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Fig. 1. Definition of variables [7]

In addition, we know that the following relationships hold:

Ṗ0 = m̃g + fp, (2)

L̇0 = rc/0 × m̃g + τ0, (3)

where g =
[

0 0 −g
]T

is the gravity vector and g is the
acceleration due to gravity, whereas m̃ stands for the total
mass of the robot and rc/0, for the position of the center of
mass (CoM) of the robot with respect to the origin of the
world coordinate frame. By substituting (1) and (2) into (3)
and solving with respect to τp, we get [10]

τp = L̇0 − rc/0 × m̃g − rp/0 ×
(
Ṗ0 − m̃g

)
. (4)

By definition of the ZMP the x and y components of τp
are zero, while the vertical one (z) is calculated as [7]

τp,z = L̇0,z − rp/0,xṖ0,y + rp/0,yṖ0,x; (5)

that is, the vertical component of τp depends on the deriva-
tive (the rate of change) of the linear and angular momenta.
This moment may be compensated with the one created by
the horizontal frictional forces between the robot’s feet and
the ground if the static frictional moment is not exceeded.
Otherwise, slippage will occur and the robot will suffer an
undesired yaw rotation.

It is our objective to avoid this yaw rotation by means
of yaw moment compensation, modifying Ṗ0 and L̇0 with
an appropiate adjustment of the motion of the joints related
to low priority tasks, referred from now on as “free” joints
(as their value is not completely determined), θf . On the
other hand, the joints related with high priority tasks will be
referred as “high priority” joints, θh.

However, as the linear and angular momenta are directly
related to the joint velocities, modifying their derivative
implies the acceleration of the “free” joints. This fact has an
inherent implication: unless the overall motion of the robot
is completely symmetrical (in terms of joint displacement
and time), there will be a residual joint velocity causing
the “free” joints to continuously increment/decrement their
value, overpassing the joint limits of the robot. Therefore, the
robot should be provided with joints capable of continuous
rotation for this approach to be feasible.

Then, instead of fully compensating the yaw moment as
proposed in [7], we newly introduce a partial compensation
scheme, in order to maintain it below a threshold value given
by the static frictional moment, in such a way that we can
still prevent the undesired yaw rotation. In this way, we
can eliminate the drift in the motion caused by the joint
accelerations by slowing them down at a lower rate, as
long as the small moment caused by this process meets the
requirement imposed by the threshold.

III. MOMENTUM EQUATIONS

Let us represent the humanoid robot as a mechanism
whose root is a free-flying base link (its waist), with ref-
erence point b, whose linear and angular velocities are given
by vb and ωb. In addition, we define a joint velocity vector
θ̇ ∈ Rn, where n is the total number of joints. The linear
and angular momenta about the CoM are given by

Pc = m̃vb + m̃r̂Tc/bωb +Mcθ̇, (6)

Lc = Ĩcωb +Hcθ̇, (7)

where ·̂ : R3 → R3×3 maps a vector into a skew-symmetric
matrix, rc/b is a vector defined from b to the CoM of the
robot and Ĩc stands for the total inertia matrix of the robot
with respect to the CoM. The matrices Mc,Hc ∈ R3×n can
be regarded as inertia matrices which indicate how the joint
speeds affect the linear and angular momenta, respectively,
as defined by Kajita et al [8].

Let us calculate the angular momentum for the robot with
respect to the ZMP by using the expressions given in (6) and
(7), in addition with rc/p, a vector defined from the ZMP
to the CoM of the robot [7]:

Lp = rc/p × Pc +Lc

= m̃r̂c/pvb +
(
m̃r̂c/pr̂c/b + Ĩc

)
ωb

+
(
r̂c/pMc +Hc

)
θ̇.

(8)

By defining
Hp = r̂c/pMc +Hc, (9)

we can express (8) as

Lp =
(
m̃r̂c/p

)
vb +

(
m̃r̂c/pr̂c/b + Ĩc

)
ωb +Hpθ̇.

(10)

A. Inertia Matrices

As seen in (6) and (10), the role of the inertia matricesMc

and Hp is of great importance as they dictaminate how the
linear and angular momenta change according to the motion
of the joints. The calculation of these ones is explained in
detail in [8], but can be summarized as follows:

Let us assume that the humanoid robot with n joints has
a tree structure whose root corresponds to its base link and
that all of its joints are rotational. The joint j directly drives
the link j. The position of joint j with respect to the origin
of the world coordinate frame can be described by r〈j〉/0,
while its axis orientation by the unit vector aj and its joint
variable by θj .
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The link j has a mass distribution characterized by the
mass mj , the position of its center of mass described by
rc〈j〉/0 and the tensor of inercia with respect to this point
(and described in the world frame 0) Ic,j . Additionally, the
joint j also drives all the link structure connected to the
link j. Let us denote as m̃j , r̃c〈j〉/0 and Ĩc,j the mass, the
position of the center of mass and the inertia tensor of all
this link structure driven by the joint j. See Fig. 2.

Then, the additional linear and angular momenta with
respect to the origin of the world coordinate frame for the
robot which are yielded by θ̇j (Pj,0 and Lj,0 respectively)
can be calculated as

Pj,0 = m̃jaj θ̇j ×
(
r̃c〈j〉/0 − r〈j〉/0

)
= Mj,0θ̇j , (11)

Lj,0 =
(
r̃c〈j〉/0 ×Mj,0 + Ĩc,jaj

)
θ̇j = Hj,0θ̇j . (12)

Such that,

M0 =
[
M1,0 M2,0 · · · Mn,0

]
, (13)

H0 =
[
H1,0 H2,0 · · · Hn,0

]
, (14)

Hc = H0 − r̂c/0M0. (15)

Finally, let us consider (9) and substitute (15) into it in
order to get a final expression for Hp [7]:

Hp = r̂c/pMc +
(
H0 − r̂c/0M0

)
= H0 − r̂p/0M0,

(16)

given that M0 = Mc as Pj,0 = Pj,c.

IV. PARTIAL YAW MOMENT COMPENSATION

Once an arbitrary motion is defined for a humanoid robot,
there will be a resulting moment (produced by the uncom-
pensated motion) whose vertical component, the resulting
yaw moment τ rp,z , may exceed the static frictional moment
between the robot’s feet and the ground, τfrp,z . Let us define
a threshold value τ thp,z such that τ thp,z < τfrp,z , and generate
a desired yaw moment (the expected result of the partial
compensation), τ∗p,z , by means of saturating (or clipping) the
signal τ rp,z; that is,

τ∗p,z =


τ thp,z if τ rp,z > τ thp,z
τ rp,z if −τ thp,z ≤ τ rp,z ≤ τ thp,z
−τ thp,z if τ rp,z < −τ thp,z

, (17)

while τ∗p,x = τ rp,x and τ∗p,y = τ rp,y .

Fig. 2. Link configuration of the robot

In addition, let us consider the relationship between the
angular momentum with respect to the ZMP and the one
with respect to the origin of the world coordinate:

L0 = rp/0 × P0 +Lp. (18)

By differentiating (18) with respect to time we get

L̇0 = rp/0 × Ṗ0 + ṙp/0 × P0 + L̇p, (19)

which can be substituted into (4) to get

τp = L̇p + ṙp/0 × P0 + rp/c × m̃g. (20)

Let us write the last equation for both, the resulting
and the desired yaw moment (without and with partial
compensation), τ r

p and τ∗p , such that

τ r
p = L̇r

p + ṙp/0 × P r
0 + rp/c × m̃g, (21)

τ∗p = L̇∗p + ṙp/0 × P ∗0 + rp/c × m̃g. (22)

This means that clipping the yaw moment requires the
modification of both, the derivative of the resulting angular
momentum and the resulting linear one (not its derivative),
L̇r

p and P r
0 , such that (22) holds. The modified signals

are marked as L̇∗p and P ∗0 . Notice that the dependance on
the derivative of the linear momentum was suppresed by
considering the ZMP as a point of reference. Instead, the
expression now depends on the velocity of the desired ZMP.

In order to calculate the amount of modification let us
subtract (21) from (22) to have

τ∗p − τ
r
p = L̇∗p − L̇

r
p + ṙp/0 ×

(
P ∗0 − P

r
0

)
∆τp = ∆L̇p + ṙp/0 ×∆P0.

(23)

Intuitively, the compensation should be done mainly thorugh
the manipulation of the derivative of the angular momentum,
by modifying the motion of the joints. However, this also
modifies the linear momentum, but slightly as the center of
mass of the robot is supposed to follow a path as a result of
the predefined motion. Remember that P r

0 = m̃ṙc/0 also.
This means that, in practical terms, P ∗0 ≈ P r

0 , such that

∆L̇p ≈∆τp. (24)

Now, let us consider (10) and break down the joint speed
vector into two parts: one composed by the nh “high priority”
joints, θ̇h ∈ Rnh , and another one composed by the nf
“free” joints, θ̇f ∈ Rnf (nf = n− nh). Then,

Hpθ̇ = Hh,pθ̇h +Hf,pθ̇f , (25)

where Hh,p ∈ R3×nh and Hf,p ∈ R3×nf . Furthermore, we
can consider that θ̇f = θ̇reff + ∆θ̇f ; that is, a predefined
motion according to a low priority task plus a correction term
that will partially compensate the yaw moment. Therefore
(10) can be written as

Hf,p∆θ̇f = L∗p −
(
m̃r̂c/p

)
vb −

(
m̃r̂c/pr̂c/b + Ĩc

)
ωb

−Hh,pθ̇h −Hf,pθ̇
ref
f ,

(26)
where we have used L∗p, the desired moment.
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Identifying that the rest of the terms at the right calculate
the momentum resulting from the predifined motion Lr

p (by
using θ̇d and θ̇reff ), then we can write (26) as

Hf,p∆θ̇f = L∗p −L
r
p = ∆Lp, (27)

by using the term calculated from the numerical integration
of (24). Then, it is possible to find a solution for ∆θ̇f in
(27) by using the least squares method; that is,

∆θ̇f = H†f,p∆Lp, (28)

where H†f,p is the Moore-Penrose pseudo-inverse of Hf,p.
In fact, taking into account that the only non-zero compo-

nent of ∆Lp is the vertical one, ∆Lp,z , we can consider to
use only the third row ofHf,p, denoted byHf,p,z ∈ R1×nf ,
so that its pseudo-inverse be a column vector that distributes
the “compensation factor” ∆Lp,z to the respective joints
according to their influence in the overall momentum. Then,
(28) may be written as

∆θ̇f = H†f,p,z∆Lp,z. (29)

This last equation can be numerically integrated to get
∆θf , the term that added to θreff gives us the modified
trajectories for the “free” joints. See Fig. 3.

It is worth considering that as (24) is just an approxi-
mation, there will be some compensation error, specifically
when the ZMP moves with higher velocity; that is, when
ṙp/0 is significant. This causes some overshoot over our
stablished threshold. However, if we run this process several
times by taking as the input τ rp,z the moment generated as
a result of the compesation in the previous iteration, we can
reduce this overshoot until it becomes sufficiently small. That
is, for every iteration the overshoot will become the input for
the calculation of the compensation term ∆Lp,z , proportional
to ∆θ̇f , so that if the magnitude of the overshoot decreases,
the compensation for the joints also does.

V. PRELIMINARY RESULTS:
NUMERICAL COMPUTATION FOR A KICKING MOTION

Let us evaluate the performance of our approach until this
point by introducing the case study of a humanoid robot that
is required to approach a ball by following a curved trajectory
and then perform a kicking motion on it.

Fig. 3. Preliminary partial yaw moment compensation algorithm

(a) Real robot (b) Configuration

Fig. 4. HRP-2 Humanoid Robot

For this case study we will consider the HRP-2 humanoid
robot [11]. This humanoid is 1.54 m height and weights 58
kg (Fig. 4(a)). It possesses 30 degrees of freedom (dof): 6 at
each leg, 6 at each arm, 1 at each hand, 2 at the waist and
2 at the neck, arranged according to the kinematic structure
shown in Fig. 4(b).

The proposed high priority tasks for this robot is described
as follows: starting from the position (−1, 1) m the robot has
to approach a ball positioned at (0, 0) m by following the
footsteps specified in Fig. 5, which also includes the kicking
phase. The desired trajectory for the ZMP is also shown in
Fig. 5, as well as the one for the projection of the waist
position that stabilizes the robot. Both, the kicking motion
and the stabilization process, are calculated as explained in
[9]. Also, as a part of the high priority tasks it was decided
for the robot to use the yaw-axis joint of its neck to look
towards to the position of the ball.

This means that the joints corresponding to the trunk
(chest) and the arms can be given any low priority motion, as
they are not related with the high priority tasks. For example,
their value can be initially proposed to remain constant.

Fig. 5. Planned motion for the robot showing its footsteps

332



Fig. 6. τrp,z , τ∗p,z , ∆Lp,z at 1st iteration for the preliminar compensation

Let us perform the corresponding numerical computation
on Matlab by implementing the controller shown in Fig. 3
and taking into account the humanoid dynamics. Also, let
us establish a threshold value of τ∗p = 2.5 Nm. The yaw
moment resulting from the prescribed motion (τ rp,z) as well
as the clipped one (τ∗p,z) during the first iteration are shown
in the upper graph of Fig. 6. The yaw component of the
angular momentum required for compensation (∆Lp,z) is
shown in the lower graph. As can be seen, every time that
a compensation is required, τ rp,z 6= τ∗p,z , ∆Lp,z is modified
and remains constant when that is not the case. However,
when the latter happens the constant values are non-zero,
and because Lp,z is directly related with the velocity of the
joints, these ones increment their value continuously. As an
example, the final motion for the chest joints (computed after
8 iterations) is shown in Fig. 7.

This wouldn’t matter so much if it were not for the joint
limits. For example, for the yaw-rotation joint on the chest
the joint limit is ±0.7854rad, which is clearly exceeded as
it reaches more than 6rad at the end of the simulation (and
continues growing).

VI. DRIFT COMPENSATION

It would be desirable to modify ∆Lp,z so that it preserve
the high frequency changes required for the compensation
and, at the same time, asymptotically approach to zero (as it
represents the joint velocities); that is, to have a final value
of 0 for ∆Lp,z after the compensation.

Fig. 7. Computed chest joint trajectories for the preliminar compensation

One way to do that is to subtract from this signal a drift
compensation factor proportional to the accumulated “error”
of the compensation (the area under its curve): an integral
compensation term. Let us propose a control signal Lctrl

p,z

calculated by

Lctrl
p,z (t) = kp∆Lp,z (t)− ki

∫ t−∆t

t0

Lctrl
p,z (τ) dτ, (30)

where kp a proportional gain, ki is the integral one, t0 is the
initial time, t is the current time and ∆t is a delay required
by its implementation. Such that (29) shall be rewritten as

∆θ̇f = H†f,p,zL
ctrl
p,z . (31)

By doing this and properly tune the gain ki we should
achieve a final zero velocity compensation, but we are not
sure that the net displacement of the compensation angle for
joints will be zero; that is, if for the “free” joints an initial
constant value is proposed, we would like that at the end
of the motion the joint angles would return to their initial
values. This can be done by modifying (30) as

Lctrl
p,z (t) = kp∆Lp,z (t)− ki

∫ t−∆t

t0

Lctrl
p,z (τ) dτ

− kii
∫ t−∆t

t0

∫ t−∆t

t0

Lctrl
p,z (τ) d2τ,

(32)

where kii is the double integral gain. The reasoning behind
this choice is explained as follows: if the angular moment is
directly related to the joint velocities, its integral is directly
related the joint displacements caused by the compensation,
which we want to make zero. This can be done by substract-
ing again its accumulated “error”, represented by the second
integral.

The final version of the algorithm including the drift
compensation can be depicted as shown in Fig. 8.

Fig. 8. Partial yaw moment compensation algorithm without drift
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VII. NUMERICAL COMPUTATION WITH DRIFT
COMPENSATION

Let us revisit the case study considered in Section V by
including the drift compensation just discussed. First, let us
show the effect of considering only the integral gain ki by
comparing it with ∆Lp,z . These values are shown in Fig. 9
with a dashed line and a solid gray one, respectively, where
the values kp = 1 and ki = 3 were used.

As can be seen, the high frequency variations are preserved
while the signal asymptotically approaches to zero, as it
was desired. This control leads to the chest joint trajectories
shown in Fig. 10, which are effectively bounded (and within
the joint limits); that is, they finish with zero joint velocity.
However, the yaw-axis joint finished its motion with a
different value with respect to the proposed constant one
(the initial one).

Next, let us show the effect of considering both gains, ki
and kii. The corresponding signal is also shown in Fig. 9
with a solid black line and compared to the previous ones,
where the values kp = 1, ki = 3 and kii = 4 were used.

As can be seen, both drift compensation schemes take the
control signal asymptotically to zero and are very similar,
being the main difference that the net area between the black
solid curve and the time axis is zero. This final version of the
control leads to the joint trajectories shown in Fig. 11, which
are not only bounded but all of them finish their motion with
the same initial value; that is, with a zero net displacement
for the joints with respect to the proposed constant value.

Finally, we show that the yaw moment achieved by means
of this version of the algorithm (after 8 iterations) could be
effectively maintained below 2.5 Nm, as shown in Fig. 14
where it is compared to the one calculated when no com-
pensation is performed and to the one calculated when there
is no drift compensation.

VIII. SIMULATION RESULTS

In order to assess the validity of our approach the full al-
gorithm described in this paper was implemented as a closed-
loop compensator for the virtual model of the HRP-2 on the
dynamic integrated simulation platform OpenHRP3 [12], by
taking as inputs the readings of the force/moment sensors
placed at its feet, calculating the current yaw moment,
filtering it with the aid of a first order digital filter and
generating the appropriate joint motion compensation.

Fig. 9. Comparison between the original ∆Lp (dashed), the control signal
Lp,z considering only ki (solid gray) and the one considering both ki and
kii (solid black), during the first interation for the final algorithm

Fig. 10. Computed chest joint trajectories by using the compensation that
considers only the gain ki

The snapshots shown in Fig. 12 depict the behavior of
the robot while performing the task described in Section V
on a very slippery floor (with coefficient of static friction
µs = 0.075) without applying the algorithm presented on
this paper. As can be seen, the robot suffers unplanned yaw
rotations which result on its fall.

On the other hand, the snapshots shown in Fig. 13 depict
the robot’s behavior under the same low friction circum-
stances when applying our algorithm by using the following
parameters: τ thp,z = 1 Nm, kp = 4, ki = 4 and kii = 3.
For this case, the robot is not only able to execute the task
without falling but it also exhibits a low yaw rotation.

The yaw moment measured by the force/moment sensors
during the simulation (and filtered because of the noise),
when no compensation is performed and when it is, are
shown in Fig. 15. For this case a coefficient of static friction
µs = 0.4 was considered to prevent the robot from falling in
any case and get a clear comparison. This time τ thp,z = 2 Nm,
a threshold that is almost maintained as desired, except for
some overshoot.

IX. CONCLUSIONS

In this paper we presented a method to partially com-
pensate the yaw moment for a humanoid robot as it is
not possible to fully compensate it for an arbitrary motion
without experiencing an unwanted drift of the joints.

Fig. 11. Computed “Free” joint trajectories by using the compensation
that considers both gains ki and kii
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(a) 5.000 s (b) 6.500 s (c) 8.000 s (d) 9.500 s (e) 11.000 s

Fig. 12. Kicking motion without yaw moment compensation

(a) 5.000 s (b) 6.500 s (c) 8.000 s (d) 9.500 s (e) 11.000 s

(f) 11.500 s (g) 12.500 s (h) 14.000 s (i) 15.500 s (j) 20.000 s

Fig. 13. Kicking motion with yaw moment compensation

Fig. 14. Numerical computation of the yaw moment: without compensation
(dashed) vs yaw moment compensation with drift (solid gray) vs yaw
moment and drift compensation (solid black)

Fig. 15. Simulation results: yaw moment without compensation (dashed)
vs with compensation and no drift (solid)

This is because any drift compensation generates a mo-
ment in the opposite direction of the yaw compensation
motion. However, if its magnitude is lower than the frictional
moment between the feet and the ground there is no practical
consequence. Remember that some friction is unavoidable.

This approach let us select any arbitrary set of joints,
depending on alternate tasks required by the robot. This is
a clear advantage over the classical methods that work on a
specific set of joints for the compensation.

We have demonstrated in our analysis and simulation the
effectivity of the method, whose practical limitation relies on
the accuracy of the sensors and the processing speed of the
controller. As a future work we would like to improve the
performance of the compensator, and test it on the real robot.
Also, instead of pre-selecting the “free” joints, we would
like to achieve the compensation by using the null space of
the high priority motion as a generalization of our work,
as well as discuss the stability of the controller in order to
appropriately choose the value for the corresponding gains.
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