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Interact with me: an Exploratory Study on
Interaction Factors for Active Physical

Human-Robot Interaction
Yue Hu1, Mehdi Benallegue1, Gentiane Venture1,2, Eiichi Yoshida1

Abstract—In future robotic applications in environments such
as nursing houses, construction sites, private homes, etc, robots
might need to take unpredicted physical actions according to the
state of the users to overcome possible human errors. Referring to
these actions as active physical human-robot interactions (active
pHRI), in this paper, the goal is to verify the possibility of identi-
fying measurable interaction factors that could be used in future
active pHRI controllers, by exploring and analyzing the state of
the users during active pHRI. We hypothesize that active physical
robot actions can cause measurable alterations in the physical
and physiological data of the users, and that these measurements
could be interpreted with users’ personality and perceptions. We
design an experiment where the participant uses the robot to play
a visual puzzle game, during which, the robot takes unanticipated
physical actions. We collect physiological and physical data, as
well as outcomes of two state-of-the-art questionnaires on the
perceptions of robots, CH-33 and Godspeed Series Questionnaires
(GSQ), and a pre-experiment personality questionnaire, to relate
the collected data with the users’ perceptions and personality.
The experiment outcomes show that we can extract a few factors
related to personality, perception, physiological, and physical
measurements. Even though we could not draw very clear
correlations, these outcomes give fundamental insights for the
design of novel pHRI experiments.

Index Terms—Physical Human-Robot Interaction, Human Fac-
tors and Human-in-the-Loop, Human-Centered Robotics

I. INTRODUCTION

PHYSICAL contact is an inevitable feature of many future
robotics applications, where often, the interaction actions

cannot be planned beforehand due to unpredicted events.
Examples of environments and situations in which this may
occur daily are nursing houses, construction sites, packaging
lines, cooking help, and personal care.

When using robots in direct physical contact with humans,
safety is one of the most important concerns. In 2016, the
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Fig. 1: Two possible scenarios for active pHRI: a robot helping in a nursing
house and in a construction environment. In both cases, possible unpredictable
events may occur and autonomous physical actions might be necessary.

safety standards for collaborative robots ISO/TS 15066 [1]
was introduced to ensure the physical safety of the users [2],
[3]. However, physical safety should not be the only concern
in human-robot interaction (HRI). As well known, humans
give importance to emotions and perceptions, which are fun-
damental in human-human interactions, therefore perceptions
and mental safety should also be considered in HRI [4].

In examples shown in Fig. 1, a collaborative manipulator
could be used in nursing houses to help people in daily tasks
such as wearing shoes, where the user could be uncooperative
or need special care due to, e.g. mood swings, distraction,
loss of stability, etc. In a construction site, robots could help
the workers lifting and positioning pieces, where unpredicted
events caused by wrong evaluations may occur. In both envi-
ronments, people may be unaware of surrounding risks, make
wrong decisions, and feel uncomfortable for being handled
in certain ways. In our opinion, the robot should take actions
that are corrective, taking into account the physical and mental
states of the person, while still achieving the original task. As
these could be unpredicted physical actions, the robot should
also take into account the state of the users by “observing”
their reactions to such probing actions.

The current safety standard imposes strict constraints on the
performance of robots, inducing the robots to become rather
“passive” and “slow” during interactions, moreover, it does
not take into account users’ mental state. We believe that new
factors should be taken into account to boost the efficiency of
human-robot interactions from both the robot and the human
side. This means that the robot should become more active,
i.e. with a controller that allows active interactions not only
depending on users’ physical state, but also perceptions and



2

mental state.
In the context of HRI, robot controllers and human percep-

tions have been mostly treated in two main research directions,
i.e. physical (pHRI) and social (sHRI), which have been
evolving mostly in parallel without much intersections. In
order to achieve our goals, we think it is necessary to combine
tools from both sides.

In pHRI, it is implied that direct or indirect contacts
between human users and robots may occur. Current state-
of-the-art pHRI features topics such as co-manipulation [5],
[6], collaborative object carrying [7], [8], the development of
controllers with human-in-the-loop [9], [10], [11]. In most
of these works, the main focus is given to the robot, i.e.
the development of control frameworks in which the human
is treated either as an external noise, an external force, or
another “robot”. Or, in the case of therapy and rehabilitation
robotics [12], [13], focused on specific rehabilitation goals for
the patient.

In contrast, sHRI focuses mainly on the human counterparts,
trying to analyze their mental state, comfort, sense of safety,
sociability, and in general users’ perceptions. These are often
studied via specially designed experiments involving little or
no physical interactions with the robot, and a popular evalua-
tion method is to use post-experiment questionnaires [14],
[15], [16], [17]. Physiological measurements also proved to
give useful insights, e.g. galvanic skin response (GSR) and
electrocardiography [18], [19], [20] have been investigated to
evaluate factors such as stress and anxiety, and eye gazing has
been analyzed for engagement and proactiveness [21], [22].
Similar signals have also been used in Affective Computing
to understand human emotions [23] and endowing machines
with emotional intelligence.

A few works involved both physical and social interactions:
evaluation of touch in a nursing situation [24], responses
to hugging [25], rhythmic activities for teamwork [26]. The
main focus of these works remains the evaluation of social
perceptions, where the robot is designed as “social”. In our
case, we are interested in using tools from sHRI to evaluate the
social aspects of people using also robots which have not been
specially designed as “social”, e.g. industrial manipulators,
where the robot does not have to necessarily display social
behaviors or emotional intelligence.

A. Hypotheses and contributions

We define active physical human-robot interaction (active
pHRI) as an interaction during which robots may take physical
actions on the human without prior notifications. Until now,
in HRI there has been generally little or no expectation that
the robot may take unpredicted physical actions, so the first
step is to address the impact of such active actions on the
user. For the robot to take the proper actions, the physical and
mental state of the user needs to be measurable, i.e. a set of
identifiable and quantitative interaction factors. For example,
in a nursing house, if we were able to quantify and measure in
real-time the anxiety of the user related to their perception of
the robot actions, the robot could tune the motions to achieve
different types of contact (softer, closer, stronger, etc), while

maintaining the objective of achieving a specific task (e.g.
helping to stand up).

The goal of this paper is to identify a first possible set of
interaction factors by means of an active pHRI experiment.
Our target is not the assessment of single perceptions (e.g.
fear, satisfaction) or specific objectives (e.g. workload asses-
sment, energy consumption). Rather, inspired by behavioral
psychology, we hypothesize that it is possible to break down
a more comprehensive human state into measurable factors,
and that we can find relationships between the physical and
physiological data and the perceptions and possibly the per-
sonality [27]. We formulate the following hypotheses:

H1 Unpredicted robot actions cause measurable altera-
tions in the users’ physical and physiological data;

H2 Measurable physical and physiological data could be
explained with users’ personality and perceptions of
the robot.

To easily isolate possible factors, we designed an active pHRI
experiment in which the user uses the robot to play a visual
puzzle game. During the game, the robot takes active physical
actions on the user similar to simple disturbances, of which the
user is not informed beforehand, such that a natural reaction
can be assessed. For the analysis, we collect physical and
physiological data, personality, and post-experiment question-
naire outcomes related to the users’ perceptions.

To avoid cultural dependencies, the experiments have been
carried out only with Japanese nationals born and raised in
Japan. We collected data from 23 participants (among which
17 were retained in this paper), then, we extracted a series of
factors by post-processing the data. The major contributions
and outcomes of this paper are:

• To the best of our knowledge, the first experiment ad-
dressing the analysis of the human state during active
pHRI;

• First insights on measurable factors, despite the outcomes
showing just a few relevant correlations between person-
ality and user perceptions with physical and physiological
data;

• Important insights for active pHRI scenarios and experi-
ments analysis and design.

B. Paper organization
This paper is organized as follows: in section II we describe

the details of the experiment, including the design choices,
the control of the robot, the description of the setup, and the
experiment protocol; in section III we illustrate the performed
experiments, the factor extraction, and relevant factors; in
section IV we analyze and discuss the obtained results; in
section V we summarize the outcomes and give an outlook of
our next steps.

II. EXPERIMENT DESCRIPTION

The experiment has been designed to allow the users to have
an intuitive direct physical interaction with the robot, and at
the same time, allowing them to feel the action of the robot
on the users. In the following subsections, we will illustrate
the design choices, the control of the robot, the hardware
equipment, and the experimental protocol.
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Fig. 2: The user uses the robot as a joystick to play the visual puzzle game.

A. Design and tools choices
Active pHRI scenarios could involve a high variety of

factors, so we designed the first experiment to be a simple
one, to allow for a straightforward identification of possible
factors. As shown in Fig. 2, during the experiment, the user
has to use the robot as a joystick to play a visual puzzle game,
shown on a screen. The user has to match the pieces by moving
the end-effector (EE) of the robot in space, coming into an
intuitive direct physical contact with the robot. During the
interaction, the robot performs actions on the user by pushing
or pulling with an active force. The game and the action can
be seen in the video attachment. The visual game approach is
similar to rehabilitation robots [12], where patients often play
visual games using a robot arm with direct physical contact.
However, in these cases, the interaction is guided and the
objective is to perform specific rehabilitation programs via the
game, with little focus on social perceptions and mental state.

As stated in the hypotheses, we aim at measuring the
physical and physiological data of the users. Among the
available physiological measurements, we decided to adopt
GSR, Photoplethysmography (PPG), and eye-tracking. GSR
is a well-known indicator of arousal, its variations allow us
to measure the intensity of arousal to stimuli [28], [29]. The
PPG measurement is used as an alternative to the Heart Rate
Variation (HRV), which is another popular indicator. From the
PPG signal, it is possible to extract the Pulse Rate Variability
(PRV) [30], which is related to mental stress, where higher
PRV (with respect to the baseline conditions) indicates higher
mental stress [31], [32]. Eye blinking frequency (EBR) and
eye blinking duration (EBD) have been related to mental load,
where higher EBR and shorter EBD correspond to higher
mental load [33], [34]. From a standard eye tracker, it is
also possible to obtain the gazing direction, which is another
important indicator [21], [22].

For the physical data, we collect motion data, ground
reaction forces, and interaction forces with the robot. From
these data, it is possible to extract a series of information
regarding the overall behavior of the user towards the robot
(e.g. distances, forces exerted).

One of the most common tools used in sHRI to evaluate
the post-experiment perceptions of the users towards the
robot is questionnaire. Among the questionnaires available in
the literature, we decided to adopt CH-33, which has been
established as a measurement of psychological safety towards
robots [4], and the Godspeed Series Questionnaire (GSQ) [35],

which is one of the most popular questionnaires in HRI [36].
As personality has been shown to be relevant in HRI [27], [37],
we decided to adopt a simplified version of the Big Five, one of
the most commonly used personality traits questionnaire [38].
All the questionnaires are available at https://github.com/hu-
yue/HU RAL2020 questionnaires.

B. Robot control

To play the game using the robot, the user has to come into
contact with its EE. The users are free to move the robot in
any direction, and the 3D Cartesian space motion of the robot
EE is projected into the 2D movement of the target piece. The
rotation of the piece is a direct mapping of the joint angle of
the last joint before the EE. If the robot is released, it stops
all the motions.

We assume the robot to be torque-controlled when the user
is in contact, and in position control otherwise. We implement
a controller that runs at a frequency of 100 Hz, implemented
using a Quadratic-Programming (QP) [39] formulation which
allows us to take into account joint limits, joint velocity limits,
and joint torque limits. During the game, the robot takes a
timed action on the user, i.e. every ∆T , an active force fa is
applied. The direction of fa is opposite to the estimated EE
velocity direction at the instant the active force starts to be
applied. The magnitude is proportional to the force exerted
by the user on the EE, bounded in specified minimum and
maximum, to ensure that the force is perceived yet at the same
time safe for the user.

The active force is applied only when the user is interacting,
therefore when the robot is in torque control. The time interval
∆T is counted only over the time during which the cuff is
pressed, i.e. for the user, the interval between each active force
is unknown. The active force is not applied instantaneously,
but over a duration of ∆Ta � ∆T .

C. Equipment and sensors

The robot we use for the experiment is a Sawyer col-
laborative robot (Rethink Robotics), which has 7 degrees of
freedom. It is torque-controlled and equipped with Series
Elastic Actuators, and it complies with the safety standards
ISO/TS 15066. The robot can avoid self-collisions, it has joint
torque sensors in all the joints, which are also used to estimate
the external wrench at the EE. With Sawyer, to trigger the
torque control mode, the user has to press the cuff button
located at the EE, as shown in Fig. 2.

To measure the user’s state during the experiment, we use
the following equipment and sensors:

• GSR and PPG sensor, Shimmer3 GSR+ Unit (Shimmer
Sensing), a wireless sensor with Bluetooth that records
GSR and PPG data locally on an SD card. The GSR is
recorded via two single-use gel-type electrodes, while the
PPG via an earlobe clip optical sensor;

• Eye tracker, Pupil Core (from Pupil Labs), which is an
open-source eye-tracking platform connected via USB-C.
We use a single eye tracker on the right eye;

• Camera-based motion capture system from Motion Analy-
sis, with 11 cameras;
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Fig. 3: Motion capture markers (23 in total), Pupil Core eye tracker, and
Shimmer3 GSR+ Unit for GSR and PPG.

• 4 Bertec force plates, synchronized with the motion
capture system.

Typical locations for the electrodes of the GSR are the
palm of the hands, however, given the interactive nature of
our experiment, the electrodes have been positioned at the
back of the neck (see Fig. 3), which also provides reliable
measurements [29].

For the motion capture, we use a set of 23 markers: three
on the head, one on each hand and two on each elbow, two
on the front of the torso, four on the back and one on each
shoulder, and three on each foot. All the markers are pre-
positioned on wearables: gloves, shirt, cap, and socks that can
be worn on top of the users’ clothes, such that the users can
feel more comfortable without the need of changing clothes.
The positioning of all the sensors and markers is shown in
Fig. 3. All the data are synchronized via the Cortex software
(Motion Analysis) and sampled at 100 Hz, except for the eye
tracker which is sampled at 125 Hz and the force plates at
500 Hz.

D. Experiment protocol

Every experiment follows strictly the same protocol. Before
the experiment, the participants read the experiment protocol
which explains the setup and the procedure by themselves, to
minimize the interaction with the instructor. The participants
are then asked to watch a pre-recorded video with audio and
subtitles in Japanese, explaining how to interact with the robot
and how to play the game. The participants are not informed
about the possibility of the robot to perform independent ac-
tions, as we are interested in the natural reaction to unexpected
actions by the robot on the user. The protocol is provided at
https://github.com/hu-yue/HU RAL2020 questionnaires.

Then the experiment proceeds as follows:
1) The participant completes the simplified version of the

Big Five personality traits questionnaire consisting of 15
questions.

2) The participant is equipped with sensors and markers.
3) The participant rests for about 10 minutes during which

the GSR and PPG baselines are recorded.

4) The participant performs two trial sessions, during
which the robot is completely passive, i.e. no active force
is applied. These sessions serve the user to get used to
the robot.

5) The active session, involving the active force, is per-
formed three times consecutively. The number of ses-
sions has been chosen as a trade-off between making the
users used to the experiment and keeping them motivated
to play the game.

6) At the end of all sessions, the two questionnaires about
robot perception are asked to be completed, CH-33 [4],
and GSQ [35], one after the other, with the questions of
each presented in a randomized order.

During each session, the record of the data starts about 10
seconds before the participants start the interaction with the
robot, and ends about 10 seconds after the last interaction.
This is to ensure that signals such as GSR and PPG are at
their baseline levels before and after each session.

The total of 5 sessions lasts about 20 minutes, where a
single session (trial or active) lasts about 2-3 minutes, during
which the participants play the game that consists of 3 rounds,
lasting 30 seconds each. The game can be restarted and
the participants are asked to keep playing until instructed
otherwise. Since the game is a task for the participants to
interact with the robot, the winning and/or losing is not the
goal of the experiment. In this paper, we set ∆Ta = 1
and ∆T = 5, so during each session, about 5-15 active
forces may occur. Each experiment is video-recorded from
two perspectives, from the front and the back.

All our experiments have been approved by the local ethics
committee at the National Institute of Advanced Industrial
Science and Technology (AIST) in Tsukuba, Japan. Before
the experiment, participants have received proper information
and given informed consent to participate in the study.

III. METHOD AND RESULTS

We performed the experiment with a total of 23 participants,
of which only the data of 17 participants were usable due
to technical issues, e.g. sensors not recording, unexpected
external interferences. Of these 17 participants, 6 are females
and 11 are males, with ages between 20 and 33 years old. All
the participants are Japanese, born and raised in Japan. From a
pre-experiment questionnaire (see additional material), all the
participants have no or very little prior experience with robots
in general.

A. Data collection and post-process

We collected data from the questionnaires presented in
section II-A and all the sensors listed in section II-C, following
the protocol detailed in section II-D.

Motion capture data have been processed with Cortex
software (Motion Analysis) first, then post-processed with
DhaibaWorks [40]. In DhaibaWorks we use a human model
that is scaled according to the height, weight, and gender
of each participant, and the Sawyer model that is the same
used in the robot controller. The human model motions are
obtained via inverse kinematics by mapping recorded marker
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(a) Close (b) Far

Fig. 4: Two participants with different behaviors.

positions to virtual markers, while the robot motions by using
the recorded joint angles. From DhaibaWorks we extracted the
poses of the participants, including specific body parts such
as head, hands, and feet, from which we computed distances
between the participant and the robot. We are interested in
these data as participants showed overall different attitudes
to the robot. Fig. 4 shows two examples. The participant in
Fig. 4a keeps the EE very close to the face during part of the
experiment, prefers to stand facing the screen, and uses one
hand on the cuff and one hand to hold the arm of the robot.
On the contrary, the participant in Fig. 4b keeps a far distance
from the robot by putting both hands on the EE, and prefers
to face the robot looking at the screen by turning the head.
This can be seen better in the video attachment.

From the eye tracker, we can extract data such as gaze
direction, EBR, and EBD. The gaze direction is used to
determine where the participants are looking at, i.e. at the
robot, at the screen, or elsewhere. Specifically, we use collision
detection [41] to categorize the gaze location, by modeling the
gaze as a cone directed as the gaze direction with an angle
of 10◦. We compute the total gazing time to each location
only during three time intervals: the play of the game, before
starting, and after ending the interaction, given that for the
rest of the session, the user may be looking at the robot due
to the necessity of using the buttons to restart/reset the game,
and this is not relevant for our analysis.

From the Shimmer3 sensor, we obtained the GSR and
PPG data, the latter being post-processed to obtain the PRV.
Differently from the rest of the data, for GSR and PPG we
have a pre-experiment record of the baseline that is used to
evaluate the changes that occurred during the experiment.

B. Factor extraction

From the above-mentioned data, we extracted a series
of factors, mainly based on statistical analysis, including
percentage differences between stimuli (i.e. active force appli-
cation) and the average of each session or the baseline (GSR,
PRV). Given H1, we considered the active force application
by considering a window of 3 seconds from the start of
the stimuli, to which we will refer as action window. For
the analysis, only the second trial session and the 3 active
sessions (4 out of the 5 sessions) have been considered, the
first trial session has not been considered due to the high

amount of other external stimuli that affected the experiment,
e.g. frequent help from the instructor.

A list of factors is shown in Table I. The factors in Group
1 are computed for all sessions (considering each session in-
dependently), while the factors of Group 2 are computed only
for the active sessions, as they refer to percentage differences
between the action window and the average during the ses-
sion. The participants’ gender, personality, and questionnaire
outcomes are also included as part of the factors (not shown
in Table I). The post-experiment questionnaire CH-33 consists
of 33 questions rated on a 7 points Likert scale and projected
onto 6 factors, as shown in Fig. 5a, while GSQ is a series of 5
questionnaires rated on a 5 points semantic differential scale,
resulting in 5 factors as shown in Fig. 5b. The personality
test projects into 5 factors on a scale of 0-100, as shown in
Fig. 5c. For the details of these factors, please refer to [4], [35],
and [38], respectively. From Fig. 5 we can observe that there
is no specific trend of the questionnaire outcomes, indicating
that the participants had overall different perceptions of the
robot. This confirms that it might be interesting to analyze
the correlation between the factors to identify relationships
between perceptions, personality, and measurements, as per
H2.

C. Relevant correlations

As most of the collected data are not Gaussian, we used
Spearman’s correlation for non-parametric data. In particular,
the following correlations have been carried out to test our
hypotheses:

• Personality and gender with the questionnaire outcomes;
• Personality, gender, and questionnaire outcomes with all

the extracted factors for all the sessions;
• Personality, gender, and questionnaire outcomes with the

percentage difference between the average of each factor
over the active sessions and the trial session (ED factors).

We considered as relevant those that scored correlation coef-
ficient |r| > 0.6 and p-value p < 0.05, and that show
interesting trends over the sessions (e.g. present in more than
one session). These factors are reported in Table II. We ran
the T-test for repeated samples on the factors of Group 1,
for each active session with respect to the trial session, in
order to verify possible significant changes when the active
force is exerted. From the tests, most of the factors did not
show significant differences, mostly with p > 0.5. A few
factors showed significant difference with only one session
with p < 0.1, while we verified that GSR diff showed p < 0.1
for all three active sessions.

From Table II we can see that the correlation between
Extraversion and CoP is consistent over all the sessions with
negative correlation factors, indicating that extrovert partici-
pants approached the robot closer compared to the introvert
ones. Anthropomorphism and Animacy from GSQ also show
relevant correlation with GSR diff, with positive correlation
indicating that the more the participants perceived the robot as
anthropomorphic and animated, the lower their GSR level was
during the sessions with respect to the baseline. However, the
correlation weakens as the participants go through the sessions,
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Factor Explanation
Group 1: average over each session including the trial session

CoP Center of pressure distance between the participant and
the robot base

Walking Amount of walking as total number of steps/time
Head dist Distance between head and robot EE
Head ort Orientation of the head
Feet dist Distance between the feet and robot base
Feet ort Orientation of the feet

Hand ext Extension of the arms as sum of distances from each
hand to the torso, normalized by height

LHand loc Location of the left hand, i.e. robot arm, wrist, or EE
Cuff frq Frequency of pressing the interaction cuff

Gaze time diff game Difference between gazing time at the robot and the
screen during the game

Gaze time diff before Difference between gazing time at the robot and the
screen before starting the interaction

Gaze time diff after Difference between gazing time at the robot and the
screen after ending the interaction

GSR diff Difference of GSR between the baseline and the session
PRV diff Difference of PRV between the baseline and the session

Group 2: percentage difference between action window and the rest of the
session, for each active session

EBR diff AF Eye blinking rate
EBD diff AF Eye blinking duration
Pupil diff AF Pupil dimension

EE force diff AF Forces measured at the robot EE
GRF force diff AF Ground reaction forces, normalized with body weight

TABLE I: All factors excluding personality, gender, and questionnaires. Factors in
Group 1 are computed for all the sessions, while those in Group 2 excluding the
trial session. In the table, “diff” means percentage difference, while “AF” refers to
the average during the action windows.

Factor 1 Factor 2 Correlation coeff
Trial session

Extraversion CoP -0.74 **
Anthropomorphism GSR diff 0.71 *

Animacy GSR diff 0.69 *
Active Session 1

Extraversion CoP -0.73 *
Anthropomorphism GSR diff 0.66 *

Animacy GSR diff 0.72 **
Active Session 2

Extraversion CoP -0.73 **
Animacy GSR diff 0.65 *

Active Session 3
Extraversion CoP -0.81 **

Difference between average of active and trial session
Extraversion Hand Ext ED 0.61
Performance Walking ED 0.71 *
Acceptance Walking ED 0.67 *
Toughness Walking ED 0.65 *
Toughness Feet Ort ED 0.65 *
Likeability Walking ED 0.64
Animacy PRV Diff ED -0.67 *

Personality and questionnaires
Openness Toughness -0.64
Openness Agency 0.77 **
Openness Likeability -0.68 *

Agreeableness Agency 0.67 *

TABLE II: Extracted relevant factors with correlation coefficient
> 0.6 and p-value < 0.05. Those with * indicate p-value
< 0.005, and ** indicates p-value < 0.001. “ED” refers to
the percentage difference between the average of the three active
sessions and the trial session.

(a) CH-33 (b) GSQ (c) Personality

Fig. 5: Results of the questionnaires CH-33 (a) on a scale of 1-7, GSQ (b) on a scale of 1-5, and personality (c) on a scale of 0-100, for the 17 participants
considered in this study, the error bar shows the mean and standard deviations of the factor for all the participants.

with Anthropomorphism scoring |r| < 0.6 for active sessions
2 and 3, and Animacy for active session 3. This trend indicates
that the participants had variations in the GSR level over the
sessions that were not strongly related to their perception of
the robot.

In Table II we can also observe a few correlations with
the ED factors. In particular, more extrovert participants
tend to have a wider extension of their arms during the
active sessions with respect to the trial session. This may

indicate that extroverts tend to impose on the robot more
with their body with respect to introverts. Participants who
perceived the robot as tougher (less likely to break down),
more performant, acceptable, and likable, walked more during
the active sessions. Also, those who perceived the robot as
tougher, had feet more oriented towards the screen during the
active sessions. High scores in these factors indicate overall a
higher confidence on the robot capabilities as well as comfort
they felt during the interaction with the robot, therefore,
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these correlations may indicate that the participants who felt
overall more comfortable and confident in the robot, felt more
comfortable to walk around while manipulating the robot (e.g.
the second participant shown in the video attachment) and/or
also preferred to be more oriented towards the screen rather
than the robot (e.g. the first participant shown in the video
attachment), which may also indicate higher trust in the robot.

We also obtained relevant correlations between participants’
personality and the way they perceive the robot. Specifically,
the more open the participants, the less they perceived the
robot as tough and likable, and the more they perceived the
robot as an agent. The more the participants are agreeable, the
more they perceived the robot as an agent.

IV. DISCUSSION

H1 states that the active force can cause measurable
alterations in the participants’ data. However, from the T-
test, only the GSR diff showed significant changes, implying
that possible alterations are not measurable via the other
factors presented in Table I. This also may mean that the ED
factors should be interpreted with caution. H2 states that the
measurable data can be related to the questionnaire outcomes.
However, only two of the factors in Table I showed relevant
correlations, namely the CoP and GSR diff. The former
indicates that extroverted people seem to be approaching the
robot from a closer distance, and the latter that the people who
perceive the robot as anthropomorphic and animated could be
more stressed/anxious when interacting with the robot with
respect to resting conditions.

Even if we could not find an adequate number of factors
satisfying our hypotheses, we cannot neglect the relevance of
the obtained results. The outcomes give important insights into
active pHRI experiments. We adopted a game-style task and
a simple disturbance-style action in order to have a smaller
number of variables for which the isolation of factors could
have been less affected by random noise. However, this might
have been the main limitation of our experiment, as the action
seems to have not been strongly perceived by the participants.
Therefore, in the design of active pHRI experiments, it could
be advisable to use different types of “actions”, for example,
a collaborative one or one that has different objectives. We
also tried to break down the different participants’ attitudes
observed in section III-A, however, these did not show up
significantly in the resulting relevant factors, therefore, a
different way of quantifying such attitudes may be advisable.
GSQ was chosen due to its popularity in HRI, however,
Animacy and Anthropomorphism showed high correlation, and
as a matter of fact, it has been shown that there are some
flaws in the GSQ [42]. We think this may affect the overall
outcome of the questionnaire, so it may not be well suited for
active pHRI. Personality appears to give interesting insights
into the way participants approach and behave with the robot.
As a matter of fact, the relationship between personality and
personal spatial zones have been studied in literature [27],
and the correlations between Extraversion and CoP and hand
extension, both go in the direction of a possible relationship
between the two. Therefore, we consider the investigation of
personality and distances to be important.

It is also worth noting that none of the factors showed rel-
evant correlations with gender, indicating that in active pHRI
experiments, gender may not be influential. The restriction on
cultural background has been introduced to avoid cultural de-
pendencies, however, it also represents a limitation for which
the outcomes may not be generalizable for different cultural
backgrounds. Last but not least, the participants have been
recruited via open calls, many of them seemed to have little
interest in the content of the experiment itself, and many had
several experiences with other types of laboratory experiments
as well. We think that this has effects on the outcomes that
are not negligible, therefore, we deem it important to consider
also the participants’ habituation levels and mindsets towards
laboratory experiments.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this study, we were interested in analyzing the perceptions
and state of humans with respect to an active physical interac-
tion with a robot. We hypothesized that this action can cause
alterations in measurable physical and physiological data, and
that these data can be related to personality, gender, as well
as the perception of the users. However, results did not show
many correlations with the extracted factors.

This study was an exploratory study meant as a first attempt
to verify the possibility of identifying measurable interaction
factors that could be useful for the development of active pHRI
controllers, by combining tools from both pHRI and sHRI.
Despite only a few factors having been uncovered, we obtained
insightful observations and advice for the design of active
pHRI, based on the advantages and pitfalls of our experiment.
We consider these findings useful for researchers who may
be interested in developing active pHRI experiments, while
with future more consistent findings on interaction factors,
we believe it will be fundamental for those who develop
controllers for pHRI applications, as measurable quantities
are necessary as inputs for controllers. Assuming that the
interactions have specific objectives (e.g. helping to stand up or
to lift pieces), the interaction factors could be used as weighted
objectives to modify the motions of the robot according to
the users’ state. However, the inclusion of these factors in a
control framework is out of the scope of this paper and will
be considered for future work.

The findings of this paper will be taken into account in
our next experiment. We will also target a higher number
of participants to collect more consistent data, including
qualitative data that were not considered in this study, which
could help understanding better the results. To be able to
identify as many factors as possible, we deemed necessary,
for the time being, to use many sensors and equipment.
However, to target real-world scenarios, less invasive setups
will also be considered. From the future experiments, we
expect to be able to extract further factors that can relate the
human physiological, physical, and mental state with respect
to different robot actions. Furthermore, Affective Computing
methodologies, classification and/or factor analysis on the data
may lead to interesting outcomes and will be considered for
further studies.
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A. Fernández-Caballero, “Estimation of mental distress from photo-
plethysmography,” Applied Sciences, vol. 8, no. 1, p. 69, 2018.

[33] S. Benedetto, M. Pedrotti, L. Minin, T. Baccino, A. Re, and R. Monta-
nari, “Driver workload and eye blink duration,” Transportation research
part F: traffic psychology and behaviour, vol. 14, no. 3, pp. 199–208,
2011.

[34] J. Oh, S. Y. Jeong, and J. Jeong, “The timing and temporal patterns of
eye blinking are dynamically modulated by attention,” Human Movement
Science, vol. 31, no. 6, pp. 1353–1365, 2012.
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