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Abstract— Any arbitrary motion generated by a humanoid
robot produces a yaw moment which may exceed the one
created by the friction between its feet and the ground, inducing
a yaw rotation that deviates the robot from its desired path.
This paper describes an on-line compensation scheme for the
yaw moment of a humanoid robot about the Zero Moment
Point (ZMP), formulated as a task of a Quadratic Program
(QP) solving for multiple weighted objectives and constraints.
This allows to use the motion of every single link of the robot
to contribute to the compensation, according to the relative
weight of other primary tasks that it should perform. Within the
proposed approach the yaw moment is partially compensated;
that is, mostly when exceeding a predefined threshold, allowing
to slow down the residual motion of the links triggered by the
compensation.

Index Terms— Yaw Moment Compensation, Angular Mo-
mentum, Quadratic programming, Humanoid robots

I. INTRODUCTION

One of the most important and current trends in the
research of humanoid robots is to allow them to evolve in an
unstructured environment, such that they can be successfully
introduced into the industry. Aiming to this purpose, it is
important that the robot be able to locate itself with respect
to the environment in order to travel to the desired position,
as well as to successfully manipulate the surrounding objects
in order to perform some desired tasks.

To do that, robots can either use vision and rely solely on
Self Localization and Mapping (SLAM) routines, or use a
Laser Range Finder Sensor (or an RGBD camera) generating
a poorly dense and noisy point cloud that needs to be
processed for identification, or used also for SLAM. Either
way, the resulting algorithms are computationally expensive,
preventing their use in real-time [1]; that is, at each controller
cycle. It is then expected that the motion of the robot
be reliable, by experiencing a minimum deviation from its
desired path, either when walking or performing any motion
in situ, such that self-localization algorithms be able to run
with a lower frequency, performing only small corrections.

A common source of deviation of the humanoid robot from
the desired path is a yaw rotation, induced by a generated
yaw moment that exceeds the one created by the friction be-
tween feet and ground (during bipedal locomotion) [2]. Any
arbitrary motion performed by the humanoid robot generates
yaw moment, unless it is adequately compensated [3].
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Humans instinctively and actively control their arm swing
and torso motion to counteract the yaw moment [4] [5],
suggesting that it can be performed in a similar way. In
the literature, it is possible to find several methods for
compensating the yaw moment, which generally fall into one
of the following strategies: (a) arm swinging strategy [6]
[7] [8] [9] [10], (b) yaw-axis waist joint strategy [11] [12]
[2], (c) a combination of the above [13], and (d) swing leg
trajectory strategy [14]. Each of those methods is targeted
to some specific joints, which are assigned the main task of
compensating the yaw moment. However, if the humanoid
robot is expected to use some of those joints for an alternate
task, then the corresponding compensation approach cannot
be used; that is, they don’t provide a general solution for a
multi-task humanoid robot.

A different approach was proposed by us in a previous
paper, that did not specifically use the arm swinging stra-
tegy or the yaw-axis joint strategy, but a general offline
algorithm that allowed a full compensation to be performed
on an arbitrary set of before-hand selected “free” joints
[15]. However, this generally led to an unbounded joint
motion, unfeasible due to the presence of joint limits. This
approach was later improved as an online controller that
didn’t attempt to compensate the yaw moment fully, but
partially, by establishing a threshold value for the measured
yaw moment above which the compensation was done by
accelerating the before-hand selected “free” joints. Then,
once the yaw moment had been taken below the threshold
value, the joints would be able to slow down at a lower
rate, fulfilling the net yaw moment requirement and, at the
same time, keeping the joint values bounded and within the
limits without residual drift, or “net” joint displacement [3].
A drawback of our previous approaches is that the selected
set of “free” joints are dedicated to compensating the yaw
moment.

In this paper, we reformulate and improve the previous
controller as a task of a Quadratic Programming (QP) based
multi-objective motion solver; specifically, the one described
with some detail in [16]. The main advantage of this frame-
work is that the motion of every single link of the robot can
contribute to the yaw moment compensation, in a degree
dictated by the weight of this task relative to the weight of
other tasks that the robot has to perform. Additionally, some
constraints like the joint limits (and others that allow for a
feasible dynamical motion) can be taken into account, which
couldn’t be done within the previous approach.

This paper is organized as follows:



• Section II summarizes the motion solver framework
without entering into details, with the purpose of in-
troducing notation and concepts.

• Section III describes the main idea behind the yaw
moment compensation, its advantage of adding the
corresponding task to the motion solver and its im-
plementation into the new framework. It represents the
main contribution of this paper.

• Section IV presents some dynamic simulation results.
• Section V concludes this paper.

II. MULTI-OBJECTIVE CONTROL

A. Humanoid Robot Dynamics

Let us consider a humanoid robot with n + 6 degrees of
freedom (dof) such that its configuration can be described as
q = (pB,RB, qθ), where pB ∈ R3 is the position of the
floating base (e.g., the waist), RB ∈ SO(3) represents its
orientation and qθ ∈ Rn comprises all the joint angles. The
configuration velocity of the robot, α ∈ Rn+6 is given by

α =
[
vTB ωTB q̇Tθ

]T
. (1)

The time derivative of the configuration velocity, α̇ ∈ Rn+6,
is the configuration acceleration.

The dynamical model of the humanoid robot is written as

M(q)α̇+C(q,α)α+ g(q) = u+ ue, (2)

where M(q) ∈ R(n+6)×(n+6) represents the mass matrix
of the robot, C(q,α) ∈ R(n+6)×(n+6) is a matrix facto-
rization accounting for the Coriolis and centripetal effects
such that Ṁ(q,α) − 2C(q,α) is a skew-symmetric ma-
trix, g(q) ∈ Rn+6 is the vector of gravitational effects,
ue =

∑
JTi (q)Fi corresponds to the vector of external

generalized forces acting through the unilateral contacts with
the environment, Fi ∈ R6 is the i-th external wrench,
Ji(q) ∈ R6×(n+6) is the absolute Jacobian of its point of
application, and u ∈ Rn+6 is a vector of input generalized
forces which includes actuated and unactuated dof (zero
entries), the latter ones corresponding to the position and
orientation of the floating base as we cannot exert directly a
wrench on it [16].

B. Multi-objective motion solver

A humanoid robot can fulfill several tasks simultaneously,
while satisfying kinematic and dynamic constraints. We use
a QP solver to minimize the tracking error for several weig-
hted tasks by computing an optimal reference configuration
acceleration, α̇r, and a feasible reference of external forces
ue,r parameterized by a vector ρr1, while satisfying linear
equality, inequality and bounding constraints; that is, to solve[

α̇r
ρr

]
= arg min

x

1

2
‖W (Aobx− bob)‖2 +

1

2
γ ‖x‖2 ,

s.t. Aeqx = beq, Ax ≤ b, lb ≤ x ≤ ub,
(3)

1ρr is a coordinate vector with respect to a set of bases that span
the volume of admissible forces in world coordinates. These bases are
constructed by directing unit vectors along the edges of a pyramidal
approximation of each contact’s friction cone (see [17]).

where x =
[
α̇Tr ρTr

]T
is the decision variable vec-

tor (the optimized output given by the QP), W =
blkdiag (W1, . . . ,Wk) is a block diagonal matrix made up
of individual diagonal weighting matrices for each task [18]
[17], and γ is a small weight (1E-4) introduced to minimize
α̇r and ρr [19].

The matrices Aob, Aeq, A, and vectors bob, beq, b, lb, ub
are made up by vertically concatenating the corresponding
ones for each task or constraint.

C. Tasks

For the jth task, Aob,j and bob,j are calculated as

Aob,j = Jg,j(q), bob,j = g̈ob,j − J̇g,j(q,α)α, (4)

where, g̈ob,j is an acceleration objective and Jg,j(q),
J̇g,j(q,α) are the jth task Jacobian and its time derivative.

The acceleration objectives can be tracked with a PD and
a feedforward term. For example, the posture task (in joint
space) can be defined as g̈ob = q̈θ,ob, while the position and
orientation tasks of a link (or the position task of the CoM) in
Cartesian space can be defined as g̈ob = v̇ob and g̈ob = ω̇ob,
respectively2, such that

q̈θ,ob = κp (qθ,d − qθ) + κv (q̇θ,d − q̇θ) + q̈θ,d, (5)
v̇ob = κp (pd − p) + κv (vd − v) + v̇d, (6)

ω̇ob = κp(log
{
RdR

T
}

)∨ + κv (ωd − ω) + ω̇d, (7)

where κp and κv are scalar PD gains3, d stands for the
desired value and (·)∨ : R3×3 → R3, such that if S =
−ST ∈ R3×3 we have Sx = (S)

∨ × x, ∀x ∈ R3 [16].

D. Constraints

We can consider 4 basic types of constraints:
1) Underactuation / torque constraint: The underactua-

tion constraint ensures the generation of a feasible motion
for the floating base. The torque constraint ensures that the
required torques are within the limitations of the actuators
(minimum and maximum torques:

¯
τ and τ̄ ).

Let us define a matrix D(q), such that ue,r = D(q)ρr.
Then, according to (2), the underactuation and torque con-
straints can be, respectively, specified as[

MB −DB
]
x = −CBα− gB, (8)

¯
τ −Cjα− gj ≤

[
Mj −Dj

]
x ≤ τ̄ −Cjα− gj ,

(9)

where the subscript B stands for the first 6 rows of the ma-
trices M(q), D(q), C(q,α) and g(q), while the subscript
j stands for the remaining rows.

2) Joint limits constraints: Joint range and speed limits
can be specified as done in [19].

2Notice that we have omitted the j subscript as it is obvious from the
context that each task can be defined in a similar way.

3Actually, it is also possible to use diagonal matrices instead, i.e. Kp

and Kv , if each dof of the task is assigned a different gain.



3) Friction constraint: A set of lumped external forces
is normally used, each one located at one vertex of the
contacting surface (4 per foot). To ensure that the reference
for these external forces be inside of their corresponding
friction cone it is only necessary that 0 ≤ ρ.

4) Surface constraint: To constrain a surface relative to
the environment we can track it down to a desired position
and orientation, in a similar way as the corresponding tasks
were defined. See [16] for more details.

E. Torque control

The dynamically feasible reference configuration accele-
ration (α̇r) produced by the QP at each time step is used
to feed a low-level control, that generates the joint torques
required to follow the given reference. Here, we used the
torque control scheme proposed in [16].

F. Is a yaw moment compensation task required?

This question arises after realizing that the friction con-
straint described earlier already prevents the yaw moment
from exceeding the slipping threshold defined by the friction
cones at the contact points. However, this constraint cannot
be considered as a satisfying solution with regard to slippage
risk. Indeed, due to the nature of the QP optimization
scheme, when this constraint is not active it has no effect on
the resulting accelerations and contact forces; this constraint
is therefore blind to risky motions as long as they do not hit
the constraint. Then, when the constraints activate, they act
as equality constraints which suddenly induce a loss in the
dimension of the search space, and force the solution to slide
on the constraint. This may generate by itself highly dynamic
and dangerous motions, and sometimes leads to an empty
feasible region, making the QP fail, which is a critical fault
that can generally not be recovered from. Another issue with
the constraint is that it relies on a model of the friction which
may be wrong, and taking conservative solutions would only
aggravate the problems mentioned above.

The yaw moment compensation that we present here is a
control aiming at continuously compensating the excessive
yaw moment while interfering the least possible with other
tasks of the robot, thus avoiding the corresponding friction
constraints which would be active only as a last resort.

III. YAW MOMENT COMPENSATION

A. Main idea

The humanoid robot performing an arbitrary motion has
some linear and angular momenta, l ∈ R3 and k0 ∈ R3 re-
spectively, with respect to the origin, which are related to the
forces and moments (wrenches) exerted on the environment
through their derivative with respect to time, l̇ and k̇0.

Let us consider that the only contacts with the environment
are exerted through the feet (as in bipedal locomotion), and
denote by τp the vertical net moment of the reaction force
f acting on the ZMP, whose position is denoted by pzmp.
The moment of f about the origin of the world frame, τ0,
is calculated as

τ0 = pzmp × f + τp, (10)

such that

l̇ = m̃g + f , (11)

k̇0 = pcom × m̃g + τ0, (12)

where g =
[

0 0 −g
]T

is the gravity vector and g is
the acceleration due to gravity, whereas m̃ stands for the
total mass of the robot and pcom, for the position of the
center of mass (CoM) of the robot in world coordinates. By
substituting (10) and (11) into (12) and solving with respect
to τp, we get [20]

τp = k̇0 − pcom × m̃g − pzmp ×
(
l̇− m̃g

)
, (13)

whose vertical component, the yaw moment, is given by

τp,z = k̇0,z − pzmp,x l̇y + pzmp,y l̇x. (14)

As it can be seen, there is a close relationship between the
yaw moment and the time derivative of both components of
the momenta about the origin.

On the other hand, let us consider the angular momentum
with respect to another point: the ZMP. To do that, we use
the following relation:

k0 = pzmp × l+ kp, (15)

which when differentiated and substituted into (13), leads to
the following alternative expression for τp:

τp = k̇p + ṗzmp × l+ rp/c × m̃g, (16)

where rp/c = pzmp−pcom, and does not depend on l̇, but l.
However, knowing that the x and y components of τp are

zero (by definition), the last expression is equivalent to

τp = k̇p + ṗzmp × l. (17)

Following the idea of [3], let us establish a target admis-
sible value for the yaw moment, τ∗

p , low enough (and even
conservative) such that it can be easily compensated by the
static frictional moment between feet and ground. Achieving
τ∗
p requires to realize the corresponding target rate of change

of the angular momentum k̇∗p and the corresponding target
linear momentum l∗, according to

τ∗
p = k̇∗p + ṗzmp × l∗. (18)

Subtracting (17) from (18) and defining ∆τp = τ∗
p − τp,

∆k̇p = k̇∗p − k̇p and ∆l = l∗ − l, we get

∆τp = ∆k̇p + ṗzmp ×∆l. (19)

Given that it is not desirable to modify the trajectory of
the CoM by means of the yaw moment compensation, it is
reasonable to assume ∆l ≈ 0, such that

∆τp,z ≈ ∆k̇p,z; (20)

that is, adding angular momentum with respect to the ZMP
can directly compensate the yaw moment.



B. Momentum Equations

In order to generate angular momentum using the frame-
work described in Section II, it is necessary to understand
the relationship between the momenta rate of change and the
configuration velocity and acceleration of the robot, α and
α̇ respectively. This represents an important difference with
respect to the velocity-based control framework used in [3].

As for the centroidal momenta rate of change (with respect
to the CoM), widely used in whole-body control frameworks
[17] [21], the above-mentioned relationship is written as

ḣc =

[
l̇

k̇c

]
= Ac(q)α̇+ Ȧc(q,α)α, (21)

where Ac(q) ∈ R6×(n+6) is the centroidal momentum ma-
trix [22] [23] and Ȧc(q,α) ∈ R6×(n+6), its time derivative.

On the other hand, and in accordance with the finding
expressed at the end of Section III-A, let us calculate the
momenta rate of change of the robot with respect to the
ZMP instead, by finding an expression equivalent to (21):

ḣp =

[
l̇

k̇p

]
= Ap(q)α̇+ Ȧp(q,α)α, (22)

where Ap(q) ∈ R6×(n+6) is the ZMP momentum matrix
and Ȧp(q,α) ∈ R6×(n+6), its time derivative.

While it is possible to construct Ap in a similar way as in
[3] and estimate its derivative Ȧp by using finite differences,
it is better to compute both analytically by realizing that both
matrices can be calculated directly from the mass matrix M
and the Coriolis factorization matrix C, already calculated
for the underactuation constraint of the motion solver.

The structure of M can be partitioned as

M =
[
MT
v MT

ω MT
j

]T
(23)

where Mv ∈ R3×(n+6), Mω ∈ R3×(n+6) and Mθ ∈
Rn×(n+6). The first six lines of M actually correspond to
the linear and angular components of the momentum matrix
with respect to the position of the floating base, AB,v and
AB,ω , respectively; that is,

AB =

[
AB,v
AB,ω

]
=

[
Mv,
Mω

]
. (24)

In order to obtain the momentum matrix with respect to
any other point (like the ZMP) it is necessary to obtain first
the centroidal momentum matrix [24], as

Ac =

[
Ac,v
Ac,ω

]
=

[
Mv,

Mω −
(
r̂c/B

)
Mv

]
, (25)

where (̂·) : R3 → R3×3 maps a vector into a skew-symmetric
matrix, rc/B = pcom − pB and pcom is the CoM position.

Then, with respect to the ZMP, we have

Ap =

[
Ap,v
Ap,ω

]
=

[
Ac,v,

Ac,ω + r̂c/pAc,v

]
=

[
Mv,

Mω +
(
r̂c/p − r̂c/B

)
Mv

]
,

(26)

where rc/p = pcom − pzmp.
Once this relation is obtained, Ȧp is calculated as

Ȧp =

[
Ṁv

Ṁω +
(
r̂c/p − r̂c/B

)
Ṁv +

(
˙̂rc/p − ˙̂rc/B

)
Mv

]
,

(27)
where Ṁv and Ṁω correspond to the first six lines of Ṁ ,
which can be calculated analytically as

Ṁ = C +CT , (28)

and that can be verified to be a direct consequence of
the skew-symmetric property of the Coriolis and centripetal
matrix factorization.

C. Task Implementation
Let us implement the yaw moment compensation task in

such a way that it generates additional angular momentum
according to the current exceeding yaw moment; that is, by
setting

Jg = Ap,ω,z, J̇g = Ȧp,ω,z, g̈ob = ∆k̇p,z,ob,
(29)

in reference to (4), where the subscript z stands for the third
row (or element) of the corresponding matrices (or vector).

A straightforward application of (20) would imply to
simply set ∆k̇p,z,ob = ∆τp,z; however, there are some
technical issues introducing modeling errors that must be
considered:

1) The nature of the ZMP: The ZMP can be computed
from the force/moment sensors placed at the feet of the robot,
but the signal is noisy. Filtering it can diminish the problem
within a velocity-based control approach, as only Ap,ω,z
is required, as done in [3]. However, within the current
approach Ȧp,ω,z is also required, and this one depends on
the velocity of the ZMP, estimated by finite differences.

A better solution is to use the desired trajectory of the
ZMP instead of the measured signal, but this introduces
modeling error.

2) The nature of the yaw moment: In the same way as
the ZMP, the yaw moment can also be computed from the
force/moment sensors, such that it is a direct sum of the z-
th component of the moment at each foot; that is, τp,z =
τr,p,z + τl,p,z . However, this signal is also noisy.

A cleaner signal can be obtained by using the yaw moment
computed from the optimized reference of external forces
given by the QP (ue,r), but there is a delay of one time step,
leading to a late control action that is unable of compensating
the yaw moment. One solution to this issue is to consider
an additional term proportional to the time derivative of the
yaw moment compensation, ∆τ̇p,z , which can be computed
by finite differences. This requires an even cleaner signal of
the yaw moment, obtained by using a simple low-pass filter.

3) Partial yaw moment compensation: In [3], the target
value for the yaw moment (τ∗p,z) was obtained by saturating
the actual yaw moment with a threshold value, τ thp,z; that is,

τ∗p,z =


τ thp,z if τ rp,z > τ thp,z
τp,z if −τ thp,z ≤ τ rp,z ≤ τ thp,z
−τ thp,z if τ rp,z < −τ thp,z

, (30)



but this solution has some disadvantages:
• It produces a discontinuous ∆τ̇p,z , leading to a discon-

tinuity in the task and in the reference signals outputted
by the QP, including the reference of external forces.

• It produces a compensation signal only after the yaw
moment has crossed the threshold.

A solution that overcomes both of these issues is to use a
sigmoid function instead:

τ∗p,z = τ thp,z · tanh
(
τp,z
τ thp,z

)
. (31)

As it is a smooth approximation of the saturation function,
∆τp,z = τ∗p,z − τp,z will produce values increasing in
magnitude as τp,z approaches to τ∗p,z .

4) Modification of the dynamics of the generated angular
momentum: Due to the nature of the velocity-based control
proposed in [3], and in the absence of competing tasks
and constraints, a compensation action produced a rapid
increment (or decrement) of the added angular momentum,
which remained constant after the compensation. A constant
angular momentum is produced by joints moving with a
constant velocity, leading to drift. The solution found in
that paper was to modify the dynamics of the generated
angular momentum, to slowly take it to zero by means of
two integral actions, such that the yaw moment produced by
that modification was below of the threshold value. In this
way, the motion of the joints would also stop and the net
joint displacement would be zero.

Within the current framework the task does not compen-
sate the yaw moment when

∆k̇p,z,ob − Ȧp,ω,zα = 0, (32)

as seen from (4); that is, if the generated angular momentum
is constant (even if it is not zero) and if α ∈ ker(Ȧp,ω,z).
This means that there could be a residual motion due to the
latter term even if it is not drifting, unless another task in
the QP provides some damping, aimed to take α to zero.

Based on the above discussion, it must be clear that ∆k̇p,z
should be defined as a control signal, proposed here as

∆k̇p,z,ob = κp∆τp,z+κv∆τ̇p,z−κi∆kp,z,ob−κii
∫

∆kp,z,ob,

(33)
where we have included the modification of the dynamics
of the generated angular momentum by means of the two
integral actions (tuned with κi, κii) to verify our claims.

A simplified diagram summarizing the above discussion
and focusing only on the yaw moment compensation task
is shown in Fig. 1. For a diagram focusing on the motion
solver and the low level control see [16].

IV. SIMULATION RESULTS

A. Simulation Environment

To test the yaw moment compensation scheme, let us
consider a simple humanoid robot with a two legs, of 6 DoF
each, and two arms, with 7 DoF each, as shown in Fig. 2a.

Fig. 1: Simplified diagram focusing on the yaw moment
compensation task.

The height of this fictitious humanoid robot is 1.8 m
when the legs are fully extended, and its weight is 77 kg.
The mass for this robot is distributed in a realistic way on
every link, even if they are modeled with approximate zero
length (modeled as point masses). The tensors of inertia
are calculated from the modeled shape of the link: torso,
foots and hands are modeled as boxes, while other links are
modeled as tubes with radius of 0.001 m, such that under
these conditions the mass matrix is always non-degenerate.

This humanoid robot was modeled in Matlab Simscape
MultibodyTM. The links of the robot were defined according
to the above stated guidelines, whereas the joints were
implemented as driven by geared servomotors considering
an additional rotor inertia. The input to these servos is
the joint torque, scaled by the corresponding gear ratio.
Electromechanical effects were not considered.

The contact model between the foot and the ground was
implemented by using the free Simscape Multibody Contact
Forces Library [25]. This one considers that each vertex
of the foot is attached to a tiny fictitious sphere, such that
the wrench resulting from the contact of each sphere with
the ground is calculated by using a penalty method for
the normal component, and a Stick-Slip continuous friction
model for the tangential component. This allows to simulate
collision and sliding motion.

The controller is implemented in discrete time with a
step size of T = 0.005 s by using common blocks of
SimulinkTM and the QP Solver (quadprog) provided by
Matlab’s Optimization ToolboxTM. The feedback received by
the controller is a set of signals given as an output by the
Simscape model and reflecting the real ones for q; that is, the
controller is also fully aware of the position and orientation
of the body, which in reality can only be estimated but not
measured. As for q̇θ, it was estimated using finite differences.

To run the simulations, MatlabTM was allowed to automa-
tically choose a variable step solver, as well as most of the
parameters (maximum and minimum step size and absolute
tolerance). The only parameter specified was the relative
tolerance, for which a value of 1E-3 was given.



TABLE I: Contact parameters between feet and ground.

Parameter Value
Contact Stiffness 1E7 N/m
Contact Damping 1E3 N/(m/s)
Static & Kinetic Friction Coefficients 0.4 & 0.3
Velocity Threshold 0.001 m/s

B. Motion Configuration

In order to show the performance of the yaw moment
compensation scheme let us simulate a kicking motion,
performed in a typical slippery floor, simulated by setting
the contact parameters between feet and floor as shown in
Table I.

The robot is commanded first to go from an initial confi-
guration (all joint angles at 0 deg) to a half-sitting pose (by
bending its knees and moving its hands to a predetermined
pose) in 0.5 s. Then, the robot performs a kicking motion
by shifting the CoM over its left foot in 1 s, taking the right
foot 0.35 m behind its waist and rising it 0.15 m from the
floor in 0.5 s. The kicking motion starts at t = 2 s, by
moving the foot forward to 0.35 m in front of the waist.
This motion is commanded by a desired trajectory following
a straight horizontal path, configured to arrive to the final
position within 0.25 s (a very fast motion). At t = 3 s, the
right foot is commanded to go back to the floor at its initial
position and then, the robot is taken back to half-sitting pose.
All these desired trajectories were constructed using a Linear
Segments with Parabolic Blends (LSPB) profile, and used to
feed the desired values of the tasks in the QP.

This motion is accomplished by using the following tasks:
(a) a low-weight constant posture task (q) set to half-
sitting with the purpose of dealing with the initial singularity
and bend the knees correctly, as well as adding regulation
and damping, (b) a horizontal position task for the CoM
(com) working together with (c) a vertical position and full
orientation task for the floating Base (poseB), (d) a pose
task for the Right and Left Hands (poseRH, poseLH) used
to maintain them in a given configuration while there is
no yaw moment to compensate, as well as to provide the
necessary damping to bring them to rest, (e) a pose task for
the Right Foot (poseRF), active only during single support
phase and used for performing the kicking motion, and (f) the
yaw moment compensation (YMC) task described in this
paper. The gains and weights used for the tasks are shown
in Table II, where W = diag(W mask) × W val. When a
value of 0 is used within the mask, the corresponding dof
is not controlled. The gains for YMC are not shown as they
will vary on each experiment.

In order to successfully execute this motion, it is necessary
to consider the following constraints too: (a) the underac-
tuation constraint, to account for a feasible motion, (b) the
torque constraint, (c) the joint range limits constraint, (d) the
friction constraint, and (e) surface constraints for the Right
and Left Feet Soles (RFSole, LFSole) used to hold the
contacts with the ground, being the former one active only
while the robot is in double support phase, and the latter
active through the entire motion.

TABLE II: Default task parameter values.

Task Parameter Value Task Parameter Value

q

active entire motion poseRH active entire motion
W val 10 W val 100

W mask ones(1, n) & W mask [1 1 1 1 1 1]
kp 100 poseLH kp 100
kv 20 kv 300

com

active entire motion

poseRF

active single support
W val 300 W val 500

W mask [1 1 0] W mask [1 1 1 1 1 1]
kp 500 kp 100
kv 100 kv 20

poseB

active entire motion

YMC

active entire motion
kp 100 W val 500
kv 20 W mask 1

W val 200
W mask [0 0 5 2 2 2]

TABLE III: Default constraint parameter values.

Constraint Parameter Value
RFSole & Kp diag([0 0 0 1 1 0]) * 100

LFSole Kv diag([1 1 1 1 1 1]) * 200

The joint velocity limits constraint was not considered on
purpose in order to achieve a faster kicking motion. As for
the friction constraint, the controller assumes a coefficient of
friction (µ = 0.6) larger than the ones used to configure the
contact in Matlab Simscape MultibodyTM (see Table I). This
is done with the purpose of preventing the friction constraint
to be activated, allowing for yaw rotations to easily happen,
assessing the validity of our method. The default PD gain
matrices for the constraints used by both simulations are
shown in Table III.

C. Experiments and Results

Let us compare the above described kicking motion in
three conditions: (a) without yaw moment compensation
(noComp), (b) with yaw moment compensation but without
modifying the dynamics of the generated yaw angular mo-
mentum (simpleComp), and (c) with yaw moment com-
pensation while modifying the dynamics of the generated
yaw angular momentum (fullComp). In every case, a first-
order low-pass digital filter with parameter a was used to
get a clean τp,z signal. This parameter represents the level of
attenuation at the digital frequency of 1

2π. All the parameters
of the YMC task, for every condition in which it is active, are
listed in Table IV.

Some snapshots of the resulting motion when considering
the fullComp case are shown in Fig. 2. Other cases are
not displayed because the differences are subtle.

The resulting yaw moment, computed by the QP and
exerted due to the motion of the robot, is shown in Fig. 3,
whereas the generated yaw angular momentum is shown in
Fig. 4. Notice that without compensation, the yaw moment
achieves a peak value of 60 N m. On the other hand, the YMC
task successfully constrained this yaw moment between −1
and 1 N m (in both cases), as dictated by the threshold.
Notice that the fullComp achieves a slightly bigger yaw
moment than simpComp. This is a direct consequence of
bringing back the generated yaw angular momentum to zero,
as it was the purpose of the modification of its dynamics.



TABLE IV: Yaw moment compensation task parameters.

Parameter simpleComp fullComp
a (LP Filter) 0.3 0.3

τth
p,z 1 N m 1 N m
kp 25 25
kv 0.05 0.05
ki 0 20
kii 0 50

(a) 0.50 s (b) 2.00 s (c) 3.00 s (d) 5.50 s

Fig. 2: Kicking motion (using fullComp).

The yaw angle of the support foot is shown in Fig. 5
together with its excursion, calculated as the integral of the
absolute value of its derivative. Notice that while the total
excursion of the yaw angle without compensation is 13 deg,
simpComp and fullComp achieved values of 2 deg.

The plot for the x component of the swing foot is shown
in Fig. 6. There, it can be seen that the foot could not follow
the fast desired trajectory in any case, and that there is a point
where there is an abrupt slow down, caused by the solution
of the QP sliding on the friction constraint. Actually, at this
moment the heels slightly separate from the floor, and this
is because the method investigated in this paper prevents a
yaw slippery rotation but not a translational slippery.

Fig. 3: Resulting yaw moment (τp,z) (given by the QP).

Fig. 4: Generated angular momentum (∆kp,z,ob) (control
signal).

Fig. 5: Left foot yaw (ψLF ) and its excursion (
∫ ∣∣∣ψ̇LF ∣∣∣ dt)

(measured).

The plot for the x component of the right hand is shown
in Fig. 7. There, it can be seen that the hand also moves
when the yaw moment is not compensated, but in a different
way as a consequence of the CoM task. Notice that both,
simpComp and fullComp, achieved no residual final
motion thanks to the damping of the pose task for the
hands. However, the evolution is different. In the case of
fullComp, the residual final motion is eliminated mainly by
the yaw moment compensation task, whereas in the case of
simpComp it is done by all the other tasks and constraints.

Finally, the plot for the yaw angle of the body is shown in
Fig. 8, where we can also see the effect of the compensation.
Using the approach explained in [3], this compensating
motion could not have been generated, as there is no yaw-
axis waist joint. This implies that the trajectories of the leg
joints, which cannot be “free” using that approach, were also
modified.



Fig. 6: Right foot x-position (pRF,x) (measured).

Fig. 7: Right hand x-position (pRH,x) (measured).

V. CONCLUSIONS

This paper presents an on-line yaw moment compensation
framework that uses a complete whole-body control to com-
pensate for the current exceeding yaw moment, such that
every single joint can contribute to the compensation, not
only a selected dedicated set. At the same time, the controller
achieved a yaw moment that was successfully bounded by
the desired threshold values. This was achieved by using
in the control signal not only the yaw moment exerted at
the previous time step, but also its derivative, as well as by
considering additional tasks and constraints.

As a future work we want to extend this framework to
counteract possible falls, considering multiple contacts.
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