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Abstract—Autonomous driving of vehicles and robots requires
highly accurate position information, and RTK-GNSS is expected
to be utilized for this purpose. In this paper, we propose a
robust and real-time operation method by introducing graph
optimization into the integrated RTK-GNSS/IMU method. The
proposed method is an extension of a method using vehicle
trajectories that can estimate positions with lane-level accuracy
even in urban areas. The position is estimated by removing
GNSS multipaths from the shape of a vehicle trajectory of
several hundred meters and averaging the remaining GNSS
results. This method does not take into account the errors in the
vehicle trajectory and cannot fully benefit from the high accuracy
positioning solution of RTK-GNSS. To solve this problem, we
introduce graph optimization to the base method, which treats
the error state as a probabilistic model. However, general graph
optimization methods have problems with processing time and
outlier elimination. The proposed method solves these problems
by restricting the time series data to be optimized and using
a two-step optimization structure. Evaluations show that the
proposed method is effective because it satisfies the requirements
for real-time operation and improves accuracy compared to
conventional methods.

Index Terms—RTK-GNSS/IMU, Graph Optimization, multi-
path, Localization , outlier removal

I. INTRODUCTION

Research and development of automatic driving for mo-
bility, including vehicles and mobile robots, has been ac-
tive. One of the necessary elements for automatic driving is
the recognition of the ego-vehicle localization [1]–[3]. High
positioning accuracy is required for automatic driving [4]–
[6]. In particular, taking vehicles as an example, the required
positioning accuracy is about 0.3 m [6]. Various position
estimation methods have been proposed to achieve the required

accuracy [7]–[10]. Some of them are camera-based methods
[7], [8] and LiDAR-based methods [9], [10]. RTK-GNSS is
a high-precision positioning method that outputs centimeter-
accurate positioning solutions. We think that RTK-GNSS has
the potential to be useful for automatic driving [11], [12]. In
this study, we aim to improve the accuracy by combining RTK-
GNSS and IMU.

Various methods for combining GNSS and IMU have been
proposed [13]–[15]. The traditional method is to use Kalman
filter fusion. The Kalman filter performs best when the noise
can be modeled as white Gaussian noise. However, low-cost
IMUs have large bias error variations that contribute to the
cumulative error of the IMU. Accurate estimation is difficult
if the bias error variability cannot be modeled. Furthermore, in
urban areas, GNSS suffers from multipath, which causes large
position errors. GNSS error due to multipath is known to be
non-normally distributed [16]. For these reasons, a method to
reduce the effects of IMU bias and GNSS multipath is needed
in urban areas.

We focus on a method [17] that achieves lane-level accurate
position estimation even in urban areas. The method [17]
is characterized by statistical processing of time-series data
ranging from a few seconds to several hundred seconds.
The method [17] estimates vehicle motion based on GNSS
Doppler. The estimation of vehicle motion is useful for IMU
bias estimation and vehicle trajectory generation. The method
[17] can use vehicle trajectories to remove multipath-induced
outliers. This is because the shape of the vehicle trajectory
generated over several hundred meters, and the shape of the
trajectory, allows GNSS solutions that do not match previous
paths to be determined as being multipath. Finally, the re-



maining GNSS is integrated with the vehicle trajectory by the
least-squares method to obtain the position. It is shown that
the method [17] improves robustness to multipath.

On the other hand, the method [17] assumes that there is
no error in the vehicle trajectory. The accuracy of the vehicle
trajectory is much higher than that of the GNSS positioning so-
lution. Therefore, the error of the vehicle trajectory is assumed
to be negligibly small. However, when centimeter-accurate
positioning solutions such as RTK-GNSS are available, the
error in the vehicle trajectory becomes non-negligible. As a
result, the benefits of RTK-GNSS are not sufficient to improve
performance.

In this study, we focus on extensibility to graph optimization
by treating errors in vehicle trajectories with a probabilistic
model. Graph optimization has been proposed as an approach
to solve the SLAM problem as a typical example [18]–[20]. An
example of graph-based SLAM is the pose graph optimization
method, which uses a probabilistic model to optimize the
robot’s position and pose. The pose graph optimization method
improves accuracy by modifying the shape of the entire map
to minimize the accumulated errors in map construction. We
expect that the same effect can be obtained by probabilistically
treating vehicle trajectories in the same way.

However, the general usage of graph optimization is mainly
for batch processing, and there is little research on real-time
operation. Complex graphical models with outlier removal also
require more processing time. The proposed method enables
real-time operation by simplifying the graph structure and
limiting the time-series data to be optimized. In this study, we
attempt to develop an integrated method that takes into account
errors in vehicle trajectories and fully exploits the performance
of RTK-GNSS by applying the proposed method.

II. RELATED WORK

Various methods of position estimation using graph op-
timization have been proposed in the past [21]–[23]. This
chapter describes in detail a method that has an outlier removal
function in graph optimization [24]–[27].

The combined GNSS/IMU method can be roughly divided
into loose coupling and tight coupling [28], [29]. Loose
coupling is a method that integrates the GNSS positioning
calculation results with each sensor. In contrast, the tight
coupling method uses pseudorange, Doppler shift, and other
observables from GNSS receivers for sensor integration. In
[25], both methods are implemented and compared with a
traditional method, the extended Kalman filter. The evaluation
shows that the graph optimization method performs better than
the EKF method, and the tight coupling method performs
better. The [25] tight coupling method also has a multipath
decision for each satellite. It is reported that the longer the
time-series data used for graph optimization, the smaller the
effect of multipath GNSS. However, it has been confirmed that
the more time-series data to be optimized, the more processing
time required for optimization. Therefore, the method [25] is
not suitable for real-time applications in automated driving.

Fig. 1. Overview of the proposed method

Method [26], [27], which applies graph optimization to
GNSS positioning algorithms, introduces a switch variable that
represents the reliability of the GNSS observation. The switch
variable is used for the pseudo-distance of each satellite in
Method [26] and for detecting the cycle-slip of the carrier
wave in Method [27]. The switch variable is designed to be
less reliable in the case of multipath or loss of GNSS signal.
Low-reliability GNSS observations are given less weight in
positioning calculations or are not used at all. This method
suppresses the degradation of position estimation performance.
However, the addition of switch variables to the state variables
tends to increase the complexity of the graphical model.
Similar to method [25], method [26], [27] is expected to
require more processing time due to the large number of
optimization variables. Therefore, these methods are assumed
to be batch processing.

III. PROPOSED METHOD

A. Overview of the proposed method

By introducing graph optimization, we aim to improve the
accuracy of position estimation by considering errors in the
vehicle trajectory of the method [17]. Fig. 1 shows an overview
of the proposed method. The proposed method has three main
structures. First, the vehicle motion is estimated by the method
[17]. At the same time, the errors of the IMU and wheel speed
sensors are estimated. Next, a graph is constructed using each
sensor data and the estimated sensor errors. Finally, the graph
is optimized to obtain position estimation results.

The challenges of the proposed method are to operate in
real-time and to improve its robustness against GNSS multi-
path. As described in section II, increasing the complexity of
the graph structure, such as tight coupling and the introduction
of switch variables, increases the processing time. The pro-
posed method uses a loose coupling method, which is a light
processing method. Outlier removal is not performed during
graph optimization, which is a time-consuming process, but is
performed in the previous step. Furthermore, the processing
time is maximally reduced by limiting the range of graph
optimization.

This paper focuses on the similarities between the methods
[17] and general graph optimization. Therefore, the optimiza-
tion models of each method are described in sections III-B–
III-C. Next, based on the similarities shown in sections III-D,



we describe extensions of Method [17] to graph optimization.
Next, we explain the key points of the proposed method:
outlier removal and limitation of the optimization range.

B. Methodology of method [17] optimization

The method [17] does not optimize the position and orien-
tation simultaneously, but rather separately. This is to ensure
highly accurate estimation of sensor errors in the IMU and
wheel speedometer. The method [17] uses only compatible
sensor data for the composite. The vehicle trajectory estimated
by this method can be generated with an accuracy of about
0.5m error per 100m.

This section describes in detail the optimization model for
position and heading angle estimation in the method [17].
First, heading angle estimation is explained. For heading angle
estimation, the GNSS Doppler and IMU yaw rate are estimated
using the least-squares method. The optimization model used
for estimation is shown in (1) and (2).

θimut = θimu0 +

∫ t

0

θ̇dt (1)

θestt = argmin
θimu0

t∑
i=o

{θimui − θgnssi}2 (2)

θimut
is the heading angle based on yaw-rate integration,

θimu0
is the initial value of yaw-rate integration, θ̇ is the

yaw-rate, and (1) represents the yaw-rate integration model.
θgnsst is the heading angle calculated from GNSS Doppler.
By estimating the initial value θimu0

that minimizes the sum
of squares of the residuals from θimut

and θgnsst , the final
heading angle estimate E can be obtained. In other words,
formula (2) represents an optimization model using the least-
squares method to find a plausible heading angle.

As with the heading angle, the position is estimated by
the least-squares method. The optimization model used for
estimation is shown in (3)∼(5).

Txt = Txo +

∫ t

0

Vt · cosθtdt (3)

Tyt
= Tyo

+

∫ t

0

Vt · sinθtdt (4)

Tt = argmin
T0

t∑
i=o

{Ti − Pgnssi}2 (5)

Where Tt(Txt
, Tyt

) is the vehicle trajectory, T0 is the initial
value of the vehicle trajectory, V is the vehicle speed, and
Pgnsst(Pxt

, Pyt
) is the GNSS positioning solution. As with

the heading angle, formula (3) and (4) are the models for
generating the vehicle trajectory, and formula (5) is the opti-
mization model for finding a plausible position. In this way, the
method [17] estimates position and heading angle separately.
Another feature of the method is that the optimization handles
time series data for tens of seconds for heading estimation and
hundreds of meters for position estimation.

If the GNSS contains multipath, the estimation performance
will deteriorate. The method [17] detects multipath when

Fig. 2. GNSS Outlier Removal Chart

calculating the residuals in (2) and (5). Fig. 2 shows a
flowchart of multipath detection, and Fig. 3 shows outlier
removal, using a vehicle trajectory as an example. As shown
in (6), if the residual is greater than a threshold value, the
detection is considered to be an outlier of the GNSS posi-
tioning solution subject to multipath. The GNSS positioning
solution determined to be an outlier is removed from the least-
squares calculation to improve robustness. As shown in Fig. 2,
outliers are eliminated in the order of the residuals in (6).
If all remaining GNSS positioning solutions are within the
threshold, multipath removal is considered complete and the
final position and heading angle are output. Lane-level position
estimation is achieved using this method.

Resi =

{θimui
− θgnssi}2

or

{Ti − Pgnssi}2
=

{
0 for Resi > Th

Resi for Resi < Th
(6)

However, this method relies heavily on the accuracy of the
yaw-rate integration and the vehicle trajectory. The optimiza-
tion in (2) and (5) estimates only plausible initial values,
respectively. Errors that occur in the process of integration
from the initial values are not taken into account. In other
words, the yaw-rate integration value and the vehicle trajectory
are treated as if they were ”rigid bodies that are not allowed
to deform”. As shown in Fig. 3, the initial values of the
vehicle trajectory were shifted in parallel so that the evaluation
function in (5) becomes smaller. At the time of integration,
if a highly accurate positioning solution such as RTK-GNSS
is left, the error in the vehicle trajectory directly becomes a
position estimation error. Therefore, an integration method that
takes vehicle trajectory errors into account is necessary to take
advantage of the performance of RTK-GNSS.

C. Methodology of general graph optimization

We discuss SLAM as an example of general graph optimiza-
tion. One of the problems with SLAM is that the cumulative
map error becomes large due to errors included when updating



Fig. 3. Overview and issues of optimization in method [17]

the map. One solution is to introduce graph optimization.
Graph optimization improves map construction accuracy by
deforming the map to minimize the cumulative error. This
paper describes graph optimization in detail.

Graph optimization is a method for finding the maximum
posterior probability of a moving robot in state x0:t and map
m, given a time series of observations z1:t. In particular, the
method that optimizes the state x0:t and the map m separately
is called pose graph optimization. First, the state x0:t of the
robot is optimized. Then, a map is constructed based on the
optimized states.

According to [19], the model of pose graph optimization is
in (7).

x0:t = argmax
x0:t

t∏
i=0

p(xi|xi−1)

t∏
j=1

p(zj |xj) (7)

Where p(xt|xt−1) is the state transition probability and
p(zt|xt is the observation probability. If these probabilities
are assumed to be normally distributed, they can be expressed
as Equation (8), (9).

x0:t = argmin
x0:t

F (x0:t) (8)

F (x0:t) =

t∑
i=0

∥ xi − gi(xi−1) ∥2Σgi

+

t∑
j=1

∥ zj − hj(xj) ∥2Σhj

(9)

In (8) and (9), gt(·) and ht(·) are the state transition function
and the observation function, respectively, Σgt and Σht

are
the covariance, and ∥ · ∥2Σ is the Mahalanobis distance. H is
called the error function. In other words, the problem is to
solve a nonlinear least-squares method to minimize the error

function. Solving this problem yields an optimal solution and
thus a plausible robot state.

D. Graph optimization of the proposed method

The similarities between Method [17] and graph optimiza-
tion and graph optimization in the proposed method are ex-
plained. In Method [17], several relationships become apparent
when the states x and observables y are defined as follows.

x = [x, y, θ]T (10)

y = [xgnss, ygnss, θgnss]
T (11)

In the state, x, y is the position and θ the heading angle.
Focusing on the error function F (x) in (9), the second term
calculates the residual between the observed quantity and the
state. This part corresponds to the calculation of the residuals
in (2) and (5) in the method [17]. Comparing the states to
be optimized, the method [17] uses only the initial values,
while the graph optimization uses from the initial values to
the current time. In other words, the method [17] was an
optimization model under the constraint that the first term of
the error function is not considered in the graph optimization
and that only the initial values are optimized.

The proposed method extends the optimization model of
Method [17] by adding residuals in state transitions and by
setting the optimization variable from the initial value to the
current time. The residuals of the state transitions indicate
the relationship between the previous and next states. This
corresponds to (1), (3), and (4) in the method [17]. In other
words, by adding the residuals of the state transitions to the
error function, errors in the vehicle trajectory can be taken
into account. Finally, the vehicle trajectory is integrated with
the shape of the trajectory deformed, which is expected to
improve position estimation performance.

For graph optimization of the proposed method, the state
transition function and the observation function are shown in
(12) and (13).

gt(xt−1) =



xt−1 +

∫ t

t−1

Vt · cosθtdt

yt−1 +

∫ t

t−1

Vt · sinθtdt

θt−1 +

∫ t

t−1

θ̇tdt


(12)

ht(xt) =

xt

yt

θt

 (13)

The state-space model defined by (10)∼(13) is optimized
according to (9). The optimization is performed using g2o [30],
a library for solving nonlinear least-squares methods.

In general graph optimization, the variables to be optimized
increase as time passes. The more variables to optimize, the
longer the processing time increases. To avoid this problem,
the proposed method places a limit on the variables to be
optimized. Specifically, the proposed method optimizes only



Fig. 4. Optimization algorithm of the proposed method

the data for several hundred meters from the current time. This
method solves the problem of processing time increase as time
passes.

In addition, to ensure real-time operation, the optimization
timing is at GNSS reception. In graph optimization, the state
is adjusted more significantly during observation updates than
during state transitions. In other words, the observation update
by GNSS causes a large change in the state. In addition, GNSS
has a longer sensor frequency than IMUs, etc., which allows a
margin of time until the time deadline for the next step. These
efforts enable the proposed method to operate in real-time.

However, the current graph optimization cannot handle
GNSS outliers due to multipath. Graph optimization using
(8) assumes that all probabilities are normally distributed.
GNSS multipath errors that occur in urban areas are non-
normally distributed. Therefore, direct application of general
graph optimization may cause performance degradation. In
particular, unlike the method [17], the optimization solution
may be attracted to GNSS outliers because they deform
the vehicle trajectory. Also, increasing the number of vari-
ables to be optimized for outlier removal, as in conventional
methods, increases processing time. The proposed method
aims to achieve both outlier removal and real-time operation.
Therefore, the outlier removal method of [17] is employed
before graph optimization, as shown in Fig. 4. This method
allows outlier removal without increasing the processing time
of graph optimization. It has been confirmed that the outlier
removal method in [17] works in real-time. Therefore, real-
time operation is possible as long as the graph optimization
process is completed by the scheduled time. Whether real-time
operation is possible or not will be verified in the evaluation.

Fig. 5. Evaluation course

Fig. 6. GNSS Positioning Distribution

IV. EVALUATE EXPERIMENT

A. Experiment Overview

The proposed method is evaluated using real data. The
evaluation uses the open-dataset [31] published by Meijo
University. Fig. 5 shows the evaluation course. The test envi-
ronment is Odaiba, Tokyo, where multipaths occur frequently.
The proposed method is validated with a low-cost sensor.
The GNSS receiver is the Ublox F9P and the IMU is the
Analog Devices ADIS16475-2. Wheel speed is obtained from
the vehicle’s CAN-BUS. POSLV220 post-processing results
are used for the reference.

The evaluation compares the position estimation perfor-
mance of the proposed method with that of general graph
optimization and the method [17]. Two types of GNSS po-
sitioning methods are used. One is single point positioning,
which is susceptible to multipath. The other is a receiver-based
FIX solution of RTK-GNSS. For comparative evaluation, the
cumulative distribution of errors is used. The horizontal axis
shows the 2D-error, and the vertical axis shows the cumulative
frequencies converted into percentages.

B. GNSS positioning evaluation

Before evaluating the proposed method, we evaluate the
GNSS positioning results. Fig. 5 shows the GNSS positioning
distribution and Table I shows the GNSS positioning error. The
results of the single point positioning show that the positioning
solution deviates from the course significantly. The maximum
error of the solution was 917 meters. This result shows that
the single point positioning is strongly affected by multipath.



TABLE I
EVALUATION RESULTS OF EACH GNSS POSITIONING METHOD

Error Mean
[m]

Error
Standard Deviation

[m]
Single Point Positioning 4.3 16.4

RTK-GNSS FIX 0.07 0.29

Fig. 7. Position evaluation results using single point positioning

Even in locations where the multipath effect is small, offset
errors due to the ionosphere, troposphere, and other factors
are included. The accuracy of the single point positioning is
low because it includes these errors.

The RTK-GNSS results are very accurate compared to the
single point positioning. The error average is 0.07 m, and
this result shows that RTK-GNSS is a centimeter-accurate
positioning method. On the other hand, unlike the single point
positioning, there are some areas where there is no positioning
solution. The RTK-GNSS FIX solution was obtained for
55.5% of the GNSS reception epochs. This is because the
FIX solution cannot be output until the carrier ambiguity
is determined. In an environment with large multipath, the
accuracy of ambiguity determination is reduced, and thus the
positioning solution cannot be obtained.

C. Position estimation evaluation

Fig. 7 shows the cumulative distribution using the single
point positioning solution as the GNSS positioning method.
And Fig. 8 9 shows the position estimation results for each
method. Since the single positioning method is less suscep-
tible to multipath, GNSS outliers are noticeable. According
to Fig. 7, the results for general graph optimization are
inaccurate. This is because general graph optimization is not
equipped with outlier removal functions. The inability to
reduce the effect of GNSS multipath degrades the accuracy
of position estimation. Fig. 8 also shows that general graph
optimization results in position estimation that is affected by
GNSS outliers.

Fig. 8. Position estimation results for each method (many multipaths)

Fig. 9. Position estimation results for each method (less multipaths)

On the other hand, the proposed method is more accurate
than general graph optimization. The proposed method with
the outlier removal function can suppress GNSS multipath
errors. This result indicates that the proposed method is
effective in removing outliers. The performance of the pro-
posed method is comparable to that of the method [17].
As shown in Fig. 9, the proposed method tends to perform
better in environments with fewer multipaths in single point
positioning. When the accuracy of the single point positioning
solution is higher than that of the vehicle trajectory, the method
[17] degrades the accuracy of position estimation due to errors
in the trajectory shape. In contrast, the proposed method and
general graph optimization produce position results closer to
the reference. Therefore, it can be seen that under high GNSS
accuracy, graph optimization can provide position estimation
with reduced vehicle trajectory errors.

Fig. 10 also shows the cumulative distribution of FIX



Fig. 10. Position evaluation results using FIX of RTK-GNSS

solutions for RTK-GNSS as input. In the RTK-GNSS eval-
uation, because there are no significant outliers in the FIX
solution, the results of the general graph optimization and the
proposed method are exactly the same. Therefore, the results
of the general graph optimization are not shown in Fig. 10.
Fig. 10 shows that the proposed method is more accurate than
the method [17]. Focusing on the accumulation of position
estimates within an error of 0.3 m, the performance improved
from 32.8% to 60.5%. This result indicates that the benefits
of RTK-GNSS are utilized enough by considering vehicle
trajectory errors and integrating them, which is the objective
of this study. As with single point positioning, the proposed
method is expected to be able to remove outliers even if they
are included in the RTK-GNSS.

These results indicate that the proposed method can con-
tribute to improving the accuracy of position estimation by
extending the method [17]. Moreover, we confirmed that the
proposed method is effective in suppressing the degradation of
position estimation performance in urban environments even
when GNSS outliers due to multipath are included in the
estimation. Therefore, the proposed method is effective in
improving the robustness against multipath and the position
estimation performance.

D. Processing time evaluation

Verify whether the proposed method is capable of real-
time operation. Since the proposed method is intended to be
applied to automatic driving, real-time operation is required.
The proposed method is implemented in ROS and parallel
processing is assumed. The real-time operation of the proposed
method has been verified for the parts that are common to
the methods [17]. Therefore, it is necessary to investigate the
processing time required for the outlier removal function and
optimization computation in the proposed method.

Table II shows the measured processing time of the pro-
posed method for outlier removal and graph optimization. The
optimization of the proposed method is executed at the time
of GNSS reception. In this evaluation, the GNSS runs at 5

Hz, so the processing should be completed within 200 msec.
Table II shows that each function and the total time required
for each function is within the required time. The time margin
is more than 10 times. Therefore, the proposed method can
operate in real-time.

V. CONCLUSION

Accurate self-positioning is important for automatic driving
of vehicles and mobile robots. In this study, we aimed to
propose a highly accurate position estimation method by
combining RTK-GNSS and IMU. The use of RTK-GNSS
is essential to improve the accuracy of position estimation.
The method [17] can remove outliers of multipath GNSS
positioning solutions using vehicle trajectories. However, the
method [17] did not improve the accuracy when combined
with RTK-GNSS because it did not consider the error of the
vehicle trajectory.

In this study, we focused on the possibility of extending the
method [17] to graph optimization by redefining the vehicle
trajectory error in a probabilistic model. Graph optimization
enables integration that takes into account errors in vehicle tra-
jectories. However, graph optimization in general is based on
batch processing, and real-time operation is difficult. Methods
with outlier elimination also increase the processing time due
to the complexity of the graph structure. The proposed method
simplifies the graph structure and divides the optimization
into two stages, enabling outlier removal without increasing
processing time. In addition, optimization range is limited and
optimization calculations are executed at the time of GNSS
reception, which enables real-time operation.

To validate the proposed method, it is evaluated in an urban
area where multipath occurs frequently. The validation of the
proposed method is compared using single point positioning
(which is vulnerable to multipath) and RTK-GNSS as input
to the GNSS. The results of the single point positioning show
that the proposed method, which can remove GNSS outliers,
performs well compared to general graph optimization. In the
evaluation using RTK-GNSS, it is confirmed that the proposed
method achieves more accurate position estimation than the
method [17] as originally intended. The evaluation results
show the effectiveness of the proposed method as a graph
optimization method that can operate in real-time and has the
ability to remove outliers in GNSS positioning solutions due
to multipath.

Currently, as with Pose Graph optimization, the state is
composed of position and pose. Graph optimization is not
introduced in the vehicle trajectories generated by the method
[17]. The accuracy of the vehicle trajectory is improved
by estimating the error of each sensor. Further performance
improvement is expected by introducing graph optimization
to the estimation of the error amount for each sensor. In the
future, we will consider a method that can operate in real-time
by extending the sensor error to the state of graph optimization.



TABLE II
PROCESSING TIME EVALUATION FOR OPTIMIZATION

Outlier removal Optimization Total Real Time
Max Mean Max Mean Max Mean Require

[msec] [msec] [msec] [msec] [msec] [msec] [msec]
Single Point Positioning 4.74 1.01 14.42 8.35 18.28 9.35 <200

RTK-GNSS FIX 1.21 0.46 15.36 7.64 16.26 8.11 <200
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[4] Karl Rehrl and Simon Gröchenig. Evaluating localization accuracy of
automated driving systems. Sensors, 21(17), 2021.

[5] Kelvin Wong, Ehsan Javanmardi, Mahdi Javanmardi, and Shunsuke
Kamijo. Estimating autonomous vehicle localization error using 2d ge-
ographic information. ISPRS International Journal of Geo-Information,
8(6), 2019.

[6] Tyler GR Reid, Sarah E Houts, Robert Cammarata, Graham Mills,
Siddharth Agarwal, Ankit Vora, and Gaurav Pandey. Localization re-
quirements for autonomous vehicles. arXiv preprint arXiv:1906.01061,
2019.

[7] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton,
Frank Michel, Stefan Gumhold, and Carsten Rother. Dsac-differentiable
ransac for camera localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6684–6692, 2017.

[8] Henning Lategahn, Markus Schreiber, Julius Ziegler, and Christoph
Stiller. Urban localization with camera and inertial measurement unit. In
2013 IEEE Intelligent Vehicles Symposium (IV), pages 719–724. IEEE,
2013.

[9] Keisuke Yoneda, Hossein Tehrani, Takashi Ogawa, Naohisa Hukuyama,
and Seiichi Mita. Lidar scan feature for localization with highly precise
3-d map. In 2014 IEEE Intelligent Vehicles Symposium Proceedings,
pages 1345–1350. IEEE, 2014.

[10] Yuan Xu, Yuriy S Shmaliy, Yueyang Li, Xiyuan Chen, and Hang Guo.
Indoor ins/lidar-based robot localization with improved robustness using
cascaded fir filter. IEEE Access, 7:34189–34197, 2019.

[11] Markus Dorn, Julian O Filwarny, and Manfred Wieser. Inertially-aided
rtk based on tightly-coupled integration using low-cost gnss receivers.
In 2017 European Navigation Conference (ENC), pages 186–197. IEEE,
2017.

[12] Joong-hee Han, Chi-ho Park, Young-Jin Park, and Jay Hyoun Kwon.
Preliminary results of the development of a single-frequency gnss rtk-
based autonomous driving system for a speed sprayer. Journal of
Sensors, 2019:1–9, 2019.

[13] Jinsil Lee, Minchan Kim, Jiyun Lee, and Sam Pullen. Integrity assurance
of kalman-filter based gnss/imu integrated systems against imu faults
for uav applications. In Proceedings of the 31st International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2018), pages 2484–2500, 2018.

[14] Siavash Hosseinyalamdary. Deep kalman filter: Simultaneous multi-
sensor integration and modelling; a gnss/imu case study. Sensors,
18(5):1316, 2018.

[15] Peihui Yan, Jinguang Jiang, Fangning Zhang, Dongpeng Xie, Jiaji Wu,
Chao Zhang, Yanan Tang, and Jingnan Liu. An improved adaptive
kalman filter for a single frequency gnss/mems-imu/odometer integrated
navigation module. Remote Sensing, 13(21):4317, 2021.

[16] Vincent Havyarimana, Zhu Xiao, Pierre Claver Bizimana, Damien
Hanyurwimfura, and Hongbo Jiang. Toward accurate intervehicle po-
sitioning based on gnss pseudorange measurements under non-gaussian
generalized errors. IEEE Transactions on Instrumentation and Measure-
ment, 70:1–12, 2020.

[17] Aoki Takanose, Yuki Kitsukawa, Junichi Megruo, Eijiro Takeuchi,
Alexander Carballo, and Kazuya Takeda. Eagleye: A lane-level lo-
calization using low-cost gnss/imu. In 2021 IEEE Intelligent Vehicles
Symposium Workshops (IV Workshops), pages 319–326, 2021.

[18] Niko Sünderhauf and Peter Protzel. Towards a robust back-end for pose
graph slam. In 2012 IEEE International Conference on Robotics and
Automation, pages 1254–1261, 2012.

[19] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
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