
  

 

Abstract— In this paper, we propose Eagleye, an open-source 

software, that  performs lane level localization in an urban 

environment. A low-cost GNSS receiver, IMU, and velocity 

sensor are used for position estimation. The feature of this 

method is that it is optimized to take full advantage of the 

averaging effect using time series data longer than a few tens of 

seconds. This optimization improves the estimation performance 

by reducing the GNSS multipath in urban areas. In order to 

verify the effectiveness of the system, we conducted accuracy 

evaluation of the proposed method and performance 

comparison tests with expensive position estimation systems. As 

a result of the test, we confirmed that the proposed method can 

estimate the relative position results with an accuracy of 0.5 m 

per 100m and the absolute position performance with an 

accuracy of 1.5 m. In addition, it was confirmed that the 

performance of the proposed method was equivalent to that of 

an expensive system. Therefore, it is considered that the 

proposed method can effectively estimate the location even in an 

urban environment. 

 

I. INTRODUCTION 

Autonomous vehicles and advanced driver assistance 

applications require vehicle position information. Accurate 

and robust position estimation techniques are required for 

vehicle navigation and control in complex road environments 

involving vehicles and pedestrians. These position estimation 

technologies will be used not only for automated vehicles [1-

3], but also for transportation robots such as AGVs 

(Automated guided vehicle) [4,5] mapping systems such as 

SLAM (Simultaneous Localization and Mapping) technology 

[6,7], and driver assistance systems [8]. In particular, for 

automatic driving, we believe that a position estimation 

performance with an error of at least 0.3m or less is required, 

referring to the references [9]. 

Among the efforts on robot and vehicle position estimation, 

the mainstream methods are related to SLAM using 2D and 

3D LiDAR [10].  As an example, the 3D Normal Distributions 

Transform [11,12] converts the input map into 3D normal 

distributions and the input scan is matched against the normal 

distributions, achieving low positioning errors and cost to 

performance trade-off, and is currently in use in self-driving 

vehicles as the main localization algorithm in Autoware open 

source self-driving software [13,14]. However, there are some 

situations where LiDAR localization is not good and may fail 

(e.g. low feature environments). In addition, high precision 

localization of scan matching based solutions comes at a cost: 

3D LiDARs are expensive and high precision 3D pointcloud 

maps may be even more expensive to obtain.  
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Figure 1 The Eagleye algorithm is a lane-level position 

estimation system. It can estimate the position within a lane as 

shown in the figure. 

 

 

These problems can be solved by GNSS (Global 

Navigation Satellite System) and IMU (Inertial Measurement 

Unit). By utilizing the position results estimated by 

GNSS/IMU, the failure of LiDAR localization can be 

interpolated. In order to do so, the GNSS/IMU system needs 

to have at least lane level accuracy. Conventionally, a high 

accuracy GNSS/IMU system would cost tens of thousands of 

dollars or more. Considering the widespread use of this 

system, we expect that lowering the cost of this system will 

enable its application to general vehicles. 

Therefore, in this paper, we propose a low-cost, accurate, 

and robust location estimation algorithm. We call this 

algorithm Eagleye, and have made it available as open source 

[15]. Eagleye is implemented in ROS, and it is an algorithm 

based on [16,17]. The Eagleye algorithm uses a low-cost 

GNSS receiver, a three-axis MEMS-IMU, and a vehicle speed 

sensor connected via a CAN (Controller Area Network) bus, 

thus reducing the total cost to a few hundred dollars. The 

Eagleye algorithm has the following features:  

 

 Sensor error estimation based on GNSS doppler. 

 Vehicle motion estimation based on GNSS doppler. 

 Rejection of Multipath Positioning Results 

Considering Vehicle Motion. 

 

The algorithm achieves a relative position error of 0.5 m 

per 100 m and an absolute position error of 1.5 m, which is 

lane level accuracy (Figure1).  
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In this paper, we evaluate the performance of the Eagleye 

algorithm to verify its performance and also compare its 

performance with that of POSLV[18], an expensive position 

estimation system. 

II. RELATED WORKS 

Applications using GNSS are becoming more and more 

diverse. In recent years, multi-GNSS has become available 

due to the increase of satellite systems [19-21]. The main 

types of multi-GNSS are Global Positioning System (GPS) of 

the United States, Galileo of the European Union, Global 

Navigation Satellite System (GLONASS) of Russia, and 

BeiDou Navigation Satellite System (BDS) of China. Multi-

GNSS solves the problem of decreasing the number of 

observation satellites and improves the utilization rate. As a 

result, the RTK-GNSS method can provide cm-class position 

estimation in a favorable environment, but it requires 

continuous network communication with a reference station. 

Therefore, there is a method called PPP (Precise Point 

Positioning) that can provide high-precision position 

estimation without requiring communication with a reference 

station [22]. PPP improves performance by using highly 

accurate orbital information broadcast from satellites, but it 

requires meticulous initialization to ensure accurate 

positioning.In addition, the biggest challenge for RTK-GNSS 

and PPP is multipath in urban environments. Multipath occurs 

when satellite signals are reflected or diffracted by 

obstructions such as elevated tracks and tall buildings in urban 

areas.The multipath of satellite signals causes a significant 

degradation in the accuracy of GNSS position estimation. 

In order to improve the robustness of GNSS, a method of 

integrating GNSS with various sensors has been proposed. 

GNSS is not capable of positioning in tunnels or under 

elevated structures where satellite signals cannot be received. 

By integrating GNSS and IMU, it is possible to estimate the 

position continuously even when satellite signals cannot be 

received. There are two main types of integration between 

GNSS and IMU: tight coupling [23,24], which integrates the 

raw values of the sensors, and loose coupling [25,26], which 

integrates the results of each sensor. For the integration of 

GNSS and IMU, Kalman filter is commonly used because it 

assumes that the error noise is normally distributed. However, 

it is known that the error noise of GNSS positioning results 

and satellite signal information is non-normally distributed 

when multipath occurs. In addition, when the satellite signal 

is blocked for a long time, the IMU needs to estimate the 

position by long-term integration. However, low-cost IMUs, 

such as MEMS IMUs, are prone to accumulation errors, 

which reduces the accuracy of position estimation. Therefore, 

the accuracy of position estimation in such a system is highly 

dependent on the accuracy of each individual sensor. As a 

countermeasure, there are methods to increase the 

performance of individual sensors by using expensive sensors. 

For this reason, most autonomous vehicles and mapping 

systems are equipped with expensive sensors. 

III. SYSTEM OVERVIEW 

A. Summary of the Eagleye Algorithm  

The Eagleye algorithm aims to achieve lane level position 

estimation in an urban environment. Figure 2 shows an 

overview of the Eagleye algorithm. The Eagleye algorithm is 

one of the methods to integrate GNSS and IMU as described 

in Section II. Eagleye has two major features that are different 

from conventional methods. The first is that Eagleye does not 

estimate the parameters sequentially like the Kalman filter, but 

by accumulating time series data of tens of seconds or more. 

This is because the Kalman filter-based method is likely to fail 

in urban environments where multipath is more frequent, as 

described in Section II. The second is that each parameter is 

estimated individually while removing multipath using time 

series data of tens of seconds or more. Instead of 

simultaneously estimating the position, attitude, and velocity 

of the vehicle, we carefully integrate them one by one in a 

compatible combination. By adopting these methods, we have 

improved the performance of Eagleye. This paper describes in 

detail the wheel speedometer error estimation, heading angle 

estimation, sideslip angle estimation, and position estimation 

employed in the Eagleye algorithm. 

 

 
Figure 2 Block diagram of the Eagleye algorithm 

B. Wheel speedometer error estimation 

Generally, wheel speedometers attached to vehicles 

calculate wheel speed from the number of revolutions of the 

drive shaft and the diameter of the tire. The wheel speed is 

calculated using the vehicle specific reference value for tire 

diameter.  However,  due to changes in tire pressure and other 

factors, the actual tire diameter may differ from the reference 

value (Figure 3). The Eagleye algorithm assumes that there 

will be an error due to the ratio of the actual tire diameter to 

the reference value. This ratio is corrected as the scale factor 

SF of the measured wheel speed. The actual speed V̅ to the 

measured wheel speed Vwheel is related by equation (1). 
 

 
Figure 3 Diagram of how tire width changes 
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V̅ = Vwheel ∙ SF (1) 
 

The Eagleye algorithm uses GNSS Doppler to estimate the 

SF. The GNSS Doppler can estimate the velocity very 

accurately in a good environment. Therefore, the velocity from 

GNSS Doppler Vgnss can be considered as the actual velocity 

in a good environment. With this assumption, the scale factor 

SF can be estimated by equation (2). 
 

SF=
Vgnss

Vwheel

(2) 

 

However, GNSS Doppler velocity Vgnss is not necessarily 

accurate. Since the actual tire diameter rarely fluctuates 

dynamically, it is often safe to continue using the estimated 

scale factor SF. Therefore, the Eagleye algorithm accumulated 

only data under favorable conditions, and uses the average 

obtained value as the scale factor SF. 

C. Heading angle and Yaw rate error estimation 

The heading angle is estimated by integrating the GNSS 

Doppler and the IMU yaw rate. The GNSS Doppler can 

calculate the velocity vector with respect to north as shown in 

Figure 4. From this velocity vector, the heading angle relative 

to north can be determined. In the Eagleye algorithm, the 

heading angle is estimated as follows:  
 

Ψgyro = Ψinit −∫  Ψ̇ dt
t

t-k

(3) 

Ψinit = argmin∑(Ψgnss − Ψgyro)
2

(4) 

 

 
Figure 4 Relationship between velocity vector and heading 

angle by GNSS Doppler 

 

where Ψ𝑔𝑦𝑟𝑜 is the relative heading angle accumulated from 

the yaw rate of the gyro,Ψ̇ is the yaw rate andΨ𝑔𝑛𝑠𝑠  is the 

heading angle obtained from GNSS Doppler. In the integration, 

the last 30 seconds of GNSS Doppler and yaw rate data are 

used to estimate the heading angle. The 30 seconds of 

accumulated data is minimized according to equation (4), and 

the resulting heading angle, Ψinit, is the estimated result. In the 

absence of GNSS reception, the yaw rate is estimated by 

integrating it from the heading angle Ψinit. The heading angle 

Ψgnss from the GNSS can be affected by multipath and cause 

errors in urban environments [27]. As a result, the estimated 

heading angle Ψinit  is also subject to error. The Eagleye 

algorithm improves the estimation performance by removing 

this multipath affected result. If the residual difference 

between the stored heading Ψgyro and the GNSS heading Ψgnss 

is large, the GNSS is considered to have suffered from 

multipath and the data is eliminated (Figure 5). In this way, the 

optimal heading angle Ψinit can be estimated by removing the 

bad data and minimizing it again according to equation (4). 

Instantaneous determination of multipath in GNSS is 

considered to be difficult. The Eagleye algorithm uses long 

time series data, a feature that allows it to reject multipath 

results. This feature allows us to improve the accuracy of the 

heading angle compared to conventional methods. 
 

 
Figure 5 Heading angle estimation with outliers removed 
 
On the other hand, the yaw rate measured by the IMU 

contains an error. If the raw yaw rate values are accumulated 

over a long period of time, there may be a cumulative error. 

Therefore, it is necessary to accurately estimate and 

compensate for the amount of yaw rate error. The yaw rate 

error is produced by the bias offset of the IMU. This amount 

of offset is estimated by approximating the differences 

between the long time (several minutes) yaw rate integration 

value and the estimated heading angle Ψinit  (Figure 6). 

Estimating the yaw rate error allows for long time integration. 

Therefore, even when GNSS cannot be received for a long 

period of time, it is expected to have the effect of keeping the 

accuracy of the heading angle interpolated by the yaw rate at a 

high level of accuracy.  

 

 
Figure 6 Yaw rate error estimation by temporal approximation 

D. Side slip angle estimation 

When a vehicle is turning, there is a gap between the 

direction of the vehicle and the angle of the tires, called the 

sideslip angle. Due to this sideslip angle, the moving direction 

of the vehicle, which is important for position estimation, 

cannot be estimated correctly. The IMU can measure the 

direction in which the vehicle is facing. Therefore, it is 

necessary to estimate the sideslip angle to improve the 

accuracy of position estimation. Conventional methods [28, 

29] set up an observer to measure the parameters needed to 

estimate the sideslip angle. However, measuring all of them 

accurately is difficult. 

The Eagleye algorithm for estimating the sideslip angle 

uses a two-wheel vehicle model to simplify the 
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problem.According to the two-wheel vehicle model, the 

sideslip angle 𝛽 has the relationship shown in equation (5).  
 

𝛽  −
𝑚𝐿𝑓

2𝐿𝐾𝑟
 ̇ (5) 

 
where 𝑚 is the mass of the vehicle,  𝐿𝑓 is the distance between 

the front wheel axle and the vehicle’s center of gravity, 𝐿 is the 

distance between the front wheel axle and the rear wheel axle, 

𝐾𝑟  is the cornering power of the rear wheels and   is the speed 

of the center of gravity. Even with the two-wheel vehicle 

model, a large number of parameters are required to obtain the 

sideslip angle, as shown in Equation (5). 

 Notice here that the GNSS Doppler is the relative velocity 

between the satellite and the receiver. In other words, the 

velocity vector from GNSS Doppler indicates the direction of 

travel of the vehicle. Therefore, when the vehicle turns, the 

difference between the heading angleΨgnss from the GNSS 

Doppler and the heading angle Ψgyro from the yaw rate 

integration becomes the sideslip angle. (see Figure 7 and 

Equation 6). 
 

𝛽  Ψgyro − Ψgnss (6) 
 

Some parameters in equation (5) are vehicle-specific 

parameters and can be considered to change little dynamically. 

Therefore, we define the vehicle-specific parameters as 

coefficients K as follows: 
 

𝐾  −
𝑚𝐿𝑓

2𝐿𝐾𝑟
(7) 

 

 From equation (7), if K can be obtained, the sideslip angle 

can be estimated. Using equation (5) to equation (7), it can be 

obtained as follows: 
 

                           𝛽  Ψgyro − Ψgnss  K ̇   

 

𝐾  
Ψgyro − Ψgnss

 ̇ 
(8) 

 
However, each parameter in the right-hand side of equation 

(8) may contain errors. Therefore, in order to reduce these 

errors, the least-squares method is used to estimate the 

coefficient K. If the coefficient K can be estimated accurately, 

it is possible to estimate the sideslip angle when there is no 

GNSS reception. 

 

 

 
Figure 7 Appearance and relationship of sideslip angle 

generation 

E. Relative and absolute position estimation 

Using the parameters estimated in sections B to D, it is 

possible to calculate the velocity vector of the vehicle. By 

accumulating these velocity vectors, it is possible to estimate 

the relative position the vehicle has traveled. In Eagleye, this 

velocity vector is called the vehicle motion vector, and the 

relative position is called the vehicle trajectory. The vehicle 

trajectory can be expressed as follows, decomposed into east 

and north directions. 

 

 

Figure 8 Overview of calculate trajectory 

𝑇𝑒  𝑇𝑒𝑖𝑛𝑖 +∑{𝑆𝐹 ∙ Vwheel ∙ cos(Ψ + 𝛽) ∙ 𝑑𝑡} (9) 

𝑇𝑛  𝑇𝑛𝑖𝑛𝑖 +∑{𝑆𝐹 ∙ Vwheel ∙ sin(Ψ + 𝛽) ∙ 𝑑𝑡} (10) 

Where 𝑇𝑒  is the vehicle trajectory in the east direction, 𝑇  is 

the vehicle trajectory in the north direction, 𝑆𝐹  is the scale 

factor of wheel speed, Vwheel  is the wheel speed, Ψ  is the 

estimated heading angle, and 𝛽 is the estimated sideslip angle. 

The vehicle trajectory estimated by equations (9) and (10) can 

be estimated with a performance of 0.5 m per 100 m. 

The next section describes absolute position estimation by 

integrating GNSS positioning results and vehicle trajectory. 

The Eagleye algorithm uses the exact shape of the vehicle 

trajectory to estimate the current position using that shape as a 

constraint. The algorithm estimates the position in a similar 

way to the heading angle. The integrated position of the GNSS 

position result and the vehicle trajectory is estimated by the 

following equation. 

𝐵𝑒  = argmin∑(𝑃𝑒 − 𝑇𝑒)
2 (11) 

𝐵𝑛 = argmin∑(𝑃𝑛 − 𝑇𝑛)
2 (12) 

where 𝑃𝑒  𝑃𝑛  is the GNSS position, 𝑇𝑒  𝑇𝑛  is the trajectory 

positions and 𝐵𝑒  𝐵𝑛  is the estimated position. The vehicle 

trajectory is integrated with the GNSS position using the least-

squares method. The vehicle trajectory and GNSS position are 

compared, and the results with large residuals are removed as 

multipath. Again, the trajectory and GNSS positioning results 

are integrated and the residuals are compared. This process is 

repeated until the maximum value of the residuals is less than 

the threshold value, which indicates that the outlier removal 
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from the GNSS positioning results has been completed, and 

the result is the final position estimation result.  

 Figure 9 shows the location estimation using real data. 

Figure 9 shows the result of applying the proposed method to 

an environment with many high-rise buildings around Nagoya 

Station. In such an environment, the GNSS positioning results 

in Figure 9a) deviate greatly from the actual route and 

integrating these positioning results and trajectories results in 

a position estimation that deviates from the actual route. In 

Figure 9b), however, it can be confirmed that the position 

estimation is close to the actual driving route by using the 

shape of the trajectory as a constraint and selecting the GNSS 

positioning results. 

 
a) Before                                b)  After eliminate by 

trajectory               

Figure 9 Integration of vehicle trajectory and GNSS for 

position estimation 

IV. EVALUATION TESTS 

A. Outline of evaluation testing 
 

In order to confirm the effectiveness of the proposed 

method, we conducted evaluation tests in various 

environments. For the evaluation test, we will use the open 

dataset made available by Meijo University [30]. According 

to Reference [30], Table 1 shows the list of sensors used in 

the evaluation tests, and Figure 10 shows the vehicle used in 

the tests. The sensors used in the evaluation tests were low-

cost ones, and the GNSS receiver was a U-blox F9P with a 

reception cycle of 5 [Hz]. For the MEMS IMU, Tamagawa 

Seiki's MEMS IMU AU7684 was used with an acquisition 

period of 50[Hz]. As a comparison, the POSLV220 was used 

as an expensive GNSS/IMU system equipped with a 3-axis 

fiber optic gyro and a GNSS receiver for surveying. The post-

processing results of the POSLV are used as the true value in 

the evaluation. The real-time results of the POSLV under the 

same conditions as those of the proposed method are used for 

comparison in the evaluation. 

 
Table 1 Equipment used for evaluation [30] 

 

 

 
Figure 10 Experimental car exterior [30] 

 

The evaluation test consists of relative position evaluation 

and absolute position evaluation items. First, the relative 

position evaluation verifies the performance of the estimated 

vehicle trajectory. The evaluation method is to calculate the 

error in 100m dead reckoning. Figure 11 shows an overview 

of the evaluation test. First, the initial position is adjusted to 

the position result of the POSLV post-processing. Then, a 

dead reckoning of 100 m is performed, and the difference 

between the final position and the POSLV post-processing 

position is defined as the error. This is done every 10 meters 

during one lap of the course, and the statistic of the error is 

evaluated as the achievement rate of the cumulative frequency 

distribution. Dead reckoning is performed using the real-time 

results of the vehicle trajectory and POSLV in the proposed 

method, and the raw values of the IMU. In order to confirm 

the effectiveness of the proposed method in estimating the 

lateral slip angle, we evaluate the method with and without 

the lateral slip angle. 

 

 
Figure 11 Overview of relative position evaluation 

 

Next, in the absolute position evaluation, the difference 

between the estimated position result and the POSLV post-

processing result is defined as the error. In the same way as in 

the relative position evaluation, the absolute position 

evaluation is also performed by evaluating the statistics of the 

error as the achievement rate of the cumulative frequency 

distribution.  The evaluation items are the proposed method 

and the real-time position estimation results of POSLV. Since 

the POSLV, which is a comparison target, uses a single 

positioning method, the proposed method also uses a single 

positioning method to match the conditions. In addition, the 

proposed method uses DGNSS positioning with correction 

information for position estimation and evaluation. Figure 12 

shows the locations where the evaluation tests were 

conducted. Two test courses (14.0 km and 12.5 km) were 

conducted around Odaiba, Tokyo. 
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Figure 12 List of courses used in the evaluation test 

 

B. Relative position evaluation test   

Figure 13 shows the results of relative position evaluation. 

In Figure 13, comparing the proposed method (Propositional) 

with the one using the raw IMU values (IMU Raw), the 

accuracy is significantly improved in both courses. In addition, 

when comparing the proposed method with the real-time 

results of POSLV (POSLV RT), it can be confirmed that the 

same level of accuracy is obtained. From these two 

comparisons, it can be confirmed that the proposed method 

provides the same performance as the expensive IMU used in 

the POSLV with the correction effect of the low-cost IMU.  

Next, we discuss the trajectory performance of the 

proposed method. First, it is confirmed that the estimation 

accuracy is improved by 5% to 10% by estimating the lateral 

slip angle in the proposed method. The trajectory of the 

proposed method can be estimated with an accuracy of 0.5 m 

per 100 m in 80% of the cases, and with an accuracy of 1.0 m 

in 95% of the cases. Therefore, the evaluation tests show that 

the proposed method can estimate the trajectory with high 

accuracy even in an urban multipath environment.  
 

C. Absolute position evaluation test  
 

Figure 14 shows the results of the absolute position 

evaluation. Figure 14 shows the comparison between the 

proposed method (Proposal Single) and the real-time results 

of POSLV (POSRV RT Single). In both results, the  

 
 

Figure 13 List of results of relative position evaluation 

 

 
 

Figure 14 List of results of absolute position evaluation 

 

achievement rate of 1.5 m accuracy is low, indicating that lane 

level positioning accuracy has not been achieved. Figure 15 

shows a part of the estimation results around Odaiba, Tokyo. 
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Figure 15 shows that the proposed method does not have any 

outlier errors while the single positioning method has errors 

due to multipath. However, it can be seen that the proposed 

method and POSLV have an offset error from the true value.  

This may be because the single positioning method used for 

position estimation has an error of several meters due to the 

ionosphere and troposphere. The accuracy of the proposed 

method and POSLV was not improved due to the influence of 

the error. In the proposed method, the ionospheric and 

tropospheric errors are removed by using the correction 

information and the DGNSS positioning results are re-

estimated (Figure 13: Proposed with Correction). By using the 

correction information, we can confirm that the accuracy has 

been improved in all courses. In this test conducted in the 

Odaiba area of Tokyo, the ionosphere and troposphere had a 

large impact on the stand-alone positioning results, resulting 

in large errors. In fact, the GNSS positioning results were 

found to be offset by about 1.5 m to the north-northwest on 

average. Therefore, if the POSLV is also measured using the 

correction information, the same effect as that obtained by the 

proposed method can be obtained and the accuracy can be 

improved. In addition, it can be confirmed that 85% to 90% 

of the POSLV positions are estimated with 1.5 m accuracy, 

which is the lane level, in all courses using the proposed 

method. The performance of the proposed method is similar 

in suburban and urban areas, indicating that it reduces the 

effect of multipath as well as relative position evaluation. 

V. CONCLUSION 

In this paper, we propose a method for accurate and robust 

position and attitude angle estimation in an urban environment. 

This method is characterized by the fact that it does not 

perform a global optimization to estimate the position and 

attitude angle simultaneously but integrates them in a 

compatible combination. In addition, by using tens to hundreds 

of  seconds  of  data  for  these  estimations,  it  is  possible  to 

remove multipaths received by the satellite. As a result, the 

proposed method can achieve accurate and robust position and 

attitude estimation even in urban areas using low-cost sensors. 

In the evaluation test, we verified the effectiveness of the 

proposed method. In addition, we compared the real-time 

performance of the proposed method with that of a POSLV 

equipped with expensive sensors. In the relative position 

evaluation, it was confirmed that the proposed method could 

estimate the position with the same performance as the real-

time performance of the POSLV with the correction of the 

low-cost IMU. In absolute position estimation, the 

performance of the proposed method is comparable to the real-

time performance of the POSLV. In absolute position 

estimation, we confirmed that the proposed method can 
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estimate the position at the lane level with an accuracy of 1.5 

m (85% to 90%) by using correction information in GNSS 

positioning. The results of the evaluation tests show that the 

system is capable of low-cost and high-accuracy position 

estimation even in an urban environment. We believe that this 

location estimation system, Eagleye, will be more widely 

applied to vehicles such as self-driving cars and mapping 

systems. 

In the future, we are considering introducing this Eagleye 

algorithm into Autoware. We believe that the introduction of 

the Eagleye algorithm will help to increase the accuracy and 

reliability of the location estimation system. For example, by 

using Eagleye's relative trajectory, which is more accurate than 

the vehicle speed and attitude angle used as input values in 

Autoware's Extended kalman filter, we can improve the 

robustness and accuracy of the system. Also, in recent years, 

RTK-GNSS has become readily available. We would like to 

further improve the estimation performance of the Eagleye 

algorithm by introducing RTK-GNSS. In addition, not only 

real-time estimation, but also post-processing can be 

introduced to improve the accuracy, which is expected to be 

utilized for map generation using SLAM. 
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