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Abstract— In this paper, we propose a non-parametric
method for estimating the posterior distribution of global
positioning satellite systems (GNSS) integer ambiguity. It is
difficult to estimate the posterior probability of discrete integer
ambiguities directly from carrier phase observations due to
the unclear domain definition. We thus introduce a positional
likelihood field that accumulates the ambiguity function method
values in the position space and then estimate the integer
ambiguity distributions by marginalizing the likelihood over
the entire position. Defining the positional likelihood field in the
position space facilitates carrier phase likelihood accumulation.
To correctly estimate the posterior distribution, however, a
sufficient density of samples is required, which results in a
large computational cost. The proposed method enables large-
scale sampling by taking advantage of GPU parallel processing.
Experimental results demonstrate that the proposed method
enables accurate and robust estimation of integer ambiguity
distributions, contributing to improved centimeter-level posi-
tion estimation accuracy. In addition, the histograms provide
quantitative evidence of events in urban environments where
integer ambiguity is not uniquely determined.

I. INTRODUCTION

Global positioning satellite systems (GNSS) are com-
monly used for applications that require position information
in outdoor environments. In particular, carrier phase based
positioning can provide position information at the centime-
ter level. These systems are used for kinematic positioning
and real time kinematic (RTK)-GNSS. When the carrier
phase is used, the state variables to be estimated include
position and integer ambiguity, which refers to the number
of waves in the carrier wave. Because integer ambiguity is
integer constrained, no general analysis method has been
found. Therefore, many methods for solving integer ambi-
guity based on an exploratory approach have been proposed
[1] [2].

A commonly used approach is integer least squares (ILS)
[3]. ILS requires a non-integer ambiguity as the initial value.
The initial value is then converted to an integer using the
error function of the least-squares method. ILS typically
requires an extensive search of the solution space for integer
ambiguities. To solve this problem, methods have been
proposed to minimize the computational cost by limiting the
search area [4] [5].

*This paper is based on results obtained from the project JPNP14004
subsidized by the New Energy and Industrial Technology Development
Organization (NEDO).
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(a) Prior distribution of GNSS integer ambiguity

(b) Positional likelihood field by multiple observations

(c) Posterior distribution of GNSS integer ambiguity
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Fig. 1: Overview of proposed method for estimating integer
ambiguity with positional likelihood field. (a) Prior distri-
bution of integer ambiguity. (b) Positional likelihood field is
constructed using grid based sampling and then marginalized
to obtain likelihood distributions in integer ambiguity space.
(c) Posterior distribution of integer ambiguity.

The multipath effect is a serious problem for a GNSS.
Observation noise caused by the multipath effect is known
to be non normally distributed. Therefore, approaches that
assume normally distributed observations must eliminate
those affected by the multipath effect. Similar to ILS, the
least-squares method assumes a normal distribution and
thus its performance degrades in environments where GNSS
signals could be perturbed by the multipath effect (e.g., urban
environments).

Ambiguity function methods (AFM) enable position es-
timation using only carrier phase information [6]–[8]. The
AFM approach uses a formulation that removes integer
ambiguity from the error function and evaluates likelihoods
as a function of only receiver positions. Since the carrier
phase observations can be aggregated in the position space,
the position can be estimated using probability sampling in
the position space. However, multiple local optimal solutions
appear due to the high frequency of the carrier signal,



which can lead to sub-optimal solutions. To obtain a globally
optimal solution through AFM, it is essential to appropriately
sample the position space with a wide search space.

In this study, we propose a method for estimating the prob-
ability distribution of integer ambiguity using non-parametric
histograms. It is difficult to directly sample integer am-
biguity probability given all satellite observations because
each satellite has a different basis space for carrier phase
observations. To overcome this challenge, we apply AFM to
aggregate the carrier phase observations in the position space
and sample integer ambiguity probability in the position
space. Leveraging GPU parallel processing for large-scale
sampling, our method constructs a positional likelihood field,
including the globally optimal solution, with AFM. Finally,
the probability distribution of integer ambiguity is obtained
by marginalizing the positional likelihood field.

Fig. 1 shows an overview of the proposed method. Fig.
1(a) shows the prior distribution of integer ambiguity, which
is treated as a uniform distribution with an unknown domain
in the initial state. We construct a positional likelihood
field using AFM through grid-based sampling (Fig. 1(b)).
The posterior probability is estimated using Bayes’ theorem
by combining the observation likelihood, obtained through
the marginalization of the positional likelihood field, with
the prior distribution (Fig. 1(c)). As shown in Fig. 1, the
proposed method can represent multimodal distributions due
to its robust sampling and nonparametric approach. Con-
sequently, the method can be understood as maintaining
multiple hypotheses for integer ambiguity, each accompanied
by probability information.

In this paper, we investigate the fundamental performance
of the proposed method and compare it with several baseline
methods. The proposed method enhances the accuracy of
integer ambiguity estimation through dense resolution sam-
pling. Furthermore, due to its ability to sample a histogram
as wide range of the position space, the method contributes
to improving both the frequency and accuracy of integer
ambiguity estimation compared to the baseline methods.

II. RELATED WORK

A. Integer Ambiguity Estimation Method using ILS

Integer ambiguity estimation has been widely studied
in the context of ambiguity resolution [9]–[11]. Methods
that estimate integer values and approaches that solve the
problem as a mixed-integer programming problem have
been proposed. A common method is to convert non-integer
ambiguity to integer values using the ILS method [12] [13].
Typically, the combination of integer ambiguities is strongly
correlated due to the geometric configuration of satellites. As
a result, the search space in ILS tends to be large.

The commonly used least-squares ambiguity decorrelation
adjustment (LAMBDA) method can limit the search area by
making it uncorrelated [5]. The LAMBDA method formu-
lates the error function in terms of non-integer ambiguity
(float ambiguity). It then searches for the combination of
integer ambiguities with the smallest error function within
a limited search range. However, since the error function

of the LAMBDA method depends on the float ambiguity,
the entire estimation fails if the float ambiguity has errors.
Methods have been proposed to improve the accuracy of the
float ambiguity [14], [15] and to remove satellites with the
multipath effect [16], [17]. These methods are limited in their
performance improvement due to the assumption of a strong
normal distribution derived from the least-squares method
and optimization based on a single float ambiguity.

B. Integer Ambiguity Free Method

AFM is an integer ambiguity free approach because it
removes integer ambiguity from the error function. AFM is
characterized by its ability to consider all combinations of
integer ambiguities in the search range. Therefore, sampling
on an arbitrary position space can be used to estimate the
optimal solution in the space.

However, AFM has many local optima within the search
range because it searches for all combinations of integer
ambiguities. The local optima appear as sharp periodic peaks,
which are derived from the wavelength of the carrier wave.
With insufficient sampling, the global optimal solution can
easily be missed, leading to incorrect estimation. Sampling
must be sufficiently finer than the wavelength. On the other
hand, in a multipath environment or when the number of
observed satellites is small, a sufficiently large search area
is required. Therefore, sampling with AFM requires wide-
area and dense sampling, which increases the computational
cost.

The multiple update particle filter has been proposed to
avoid local optima with less sampling [18]. This method
updates and resamples particles multiple times in descending
order of the spread of the likelihood distribution. By weight-
ing and resampling particles multiple times, it is possible
to gradually shift particles to their true positions. However,
the likelihood cannot be uniquely determined due to the
multipath effect.

The multipath effect is thus a fundamental problem for any
GNSS method and should not be handled by methods that
assume a normal distribution. We propose a nonparametric
method for estimating integer ambiguity using the carrier
phase.

III. METHODOLOGY

A. Problem Formulation of Kinematic Positioning

Kinematic positioning using the carrier phase is formu-
lated as a state estimation problem that solves for the receiver
position and integer ambiguity. In this paper, we denote the
carrier phase observation as zt = {ϕit ∈ Rk|i=1,...,k}, the
integer ambiguity as Nt = {N i

t ∈ Zk|i=1,...,k}, and the
receiver position in the Earth-centered, Earth-fixed (ECEF)
coordinate system as xt = {xt ∈ R3}. In GNSS positioning,
observations at a given time t are obtained according to
the number of observation satellites k. Carrier phase obser-
vations include ionospheric and tropospheric delay errors,
generation and receiver clock errors, and initial phase bias.
In general, these errors can be eliminated by computing the
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Fig. 2: Process flow of proposed method.

double difference (DD) of the observations. The DD-carrier
observation is shown as follows.

ϕit =
1

λ
r(xt) +N i

t (1)

Where λ is the wavelength of the carrier wave and r(x) is
the geometric distance between the satellite and receiver. As
shown in Eq. 1, kinematic positioning is an overdetermined
system. Therefore, it is difficult to uniquely solve for position
and integer ambiguity from carrier phase observations.

B. Histogram Filter

Our objective is to obtain the posterior distribution
p(Nt|zt) of the integer ambiguity from the given obser-
vations. The posterior distribution is obtained by applying
Bayes Theorem.

p(Nt|zt) ∝ p(zt|Nt)p(Nt|zt−1) (2)

Note that although Eq. 2 consists of only the observation
zt and the integer ambiguity Nt, obtaining the likelihood
p(zt|Nt) directly is challenging. This is because integer
ambiguity lives in satellite-specific domain and difficult
to formulate an expression for inter-satellite interference.
Therefore, we focused on AFM’s ability to construct a like-
lihood distribution in the positional space, and then estimate
the likelihood p(zt|Nt) of integer ambiguity in the position
space by marginalizing the likelihood in the positional space.

Fig. 2 shows the sequence of processing steps in the
proposed method. The proposed method discretizes the
positional space in a regular grid (i.e., histogram). The
likelihood of integer ambiguity for each satellite is mapped
to the positional cells using AFM. The likelihoods of all
satellites are multiplied to construct a positional likelihood
field that takes into account all observations. The desired
likelihood p(zt|Nt) is obtained by marginalizing the posi-
tional likelihood field according to the integer ambiguity. The
marginalization is performed by accumulating the likelihood
values of the cells corresponding to integer ambiguities.
Finally, Bayes’ rule in Eq. 2 is used to obtain the posterior
distribution of integer ambiguity.

C. Positional Likelihood Filed Marginalization

Conventional methods [18] use AFM to express the ob-
servation likelihood using only position from carrier phase
observations. The proposed method constructs a positional
likelihood field by calculating the observation likelihood on
the grid as shown in Fig. 2. The observation likelihood is
calculated using AFM as follows:

ψ(ϕit,xt) = round

(
ϕit −

1

λ
r(xt)

)
−
(
ϕit −

1

λ
r(xt)

)
(3)

The proposed method calculates the likelihood of each
sample using a gaussian kernel with the following equation.

p(ϕit|xt) =
1√
2πσ2

ϕ

exp

(
−1

2

ψ(ϕit,xt)
2

σ2
ϕ

)
(4)

Where σ2
ϕ is the noise parameter of the gaussian kernel. The

likelihood of all satellites is expressed as the product of the
individual likelihoods of each satellite.

p(zt|xt) =

k∏
i=1

p(ϕit|xt) (5)

Using Eq. 5, we can construct the positional likelihood
field by computing the observation likelihood for all po-
sition samples on the grid. This positional likelihood field
indicates the likelihood at position x. Integer ambiguity N i

corresponding to position x is obtained as follows:

N i
t = round

(
ϕit −

1

λ
r(xt)

)
(6)

These relationships allow us to map the positional likelihood
field to the observation likelihood p(zt|Nt) mediated by
position x. In other words, by appropriately marginalizing
the positional likelihood field, we can estimate the required
observation likelihood p(zt|Nt). This idea can be expressed
as follows:

p(zt|Nt) =

∫
p(zt|xt)p(xt)dxt (7)

Eq. 7 shows that the desired observation likelihood
p(zt|Nt) can be obtained by sampling the positions. p(xt)
shows the distribution of the samples, which is assumed to
be uniform distribution in the proposed method.



To include the global optimal solution within the position
likelihood field, wide-area and dense sampling is required.
For example, if one axis is divided into 100 segments of 2
m each (i.e., with a resolution of 0.02 m), there would be
1 million (1003) sampling points in the position space. The
large computational cost of processing 1 million sampling
points on a CPU makes this impractical. To overcome this
problem, the proposed method takes advantage of the parallel
processing power of GPU. The processing per sample is
very simple, as all that is required is the AFM calculation.
Therefore, it is expected that all samples can be processed
quickly by parallel processing on GPU.

D. State Transition

Based on Eq. 2, a prior distribution is required to obtain
integer ambiguity. The proposed method obtains the prior
distribution as follows:

p(Nt|zt−1) =

∫
p(Nt|Nt−1)p(Nt−1|zt−1)dNt−1 (8)

Eq. 8 represents the state prediction model, where
p(Nt|Nt−1) denotes the state transition probability. The
state transition probability follows a constant model, as the
integer ambiguity remains unchanged unless the satellite
signal is interrupted.

The proposed method initializes the estimated distribution
when satellite observations are lost (i.e., the integer ambigu-
ity changes significantly) or the anomaly flag (loss of lock
indicator: LLI) is output by the receiver.

E. Positioning via Maximum a Posterior

We first extract representative values of integer ambiguity
Ñt using the most basic maximum a posterior as follows:

Ñt = arg max
Nt

p(Nt|zt) (9)

When Ñt is obtained, the position can be estimated using
Eq. 1. The proposed method employs the Gauss-Newton
method to obtain the position x̃t according to the following
objective function.

x̃t = arg min
xt

k∑
i=1

ρ

{
ϕit −

(
1

λ
r(xt) + Ñ i

t

)}2

(10)

Where ρ is Huber’s robust kernel, and the proposed method
removes simple outlier.

IV. EVALUATION

A. Static Test

The proposed method is tested in static setup for basic
investigation. The experiment used data (500 epochs) from
base stations located in Tsukuba City, Ibaraki Prefecture,
Japan. The proposed method calculated the position error for
various sampling resolutions and values of Gaussian kernel
noise parameter σ2

ϕ. In addition, we investigated how the
computational cost of the proposed method changes with
the number of samples. The parameters used in the tests are
shown in Table I. The sampling grid origin of the proposed

TABLE I: Experimental parameters for static test

Grid Resolution [m] Noise Parameter σ2
ϕ [m2]

0.02 0.001 / 0.005 / 0.01
0.05 0.001 / 0.005 / 0.01
0.10 0.001 / 0.005 / 0.01
0.15 0.001 / 0.005 / 0.01
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Fig. 3: Results of static test for various combinations of
parameter values.

method is set to reference position of base station at Tsukuba
station.

Fig. 3 shows the cumulative distribution function (CDF)
of the position error for the proposed method. For the
majority of combinations of resolution and noise values,
more than 95% of the estimation errors are less than 0.1 m,
demonstrating that the correct integer ambiguity is estimated
by the proposed method. For a resolution of 0.15 m and a
combination of a resolution of 0.1 m and a noise parameter
σ2
ϕ of 0.01 m2, lower positional accuracy is achieved. The

results indicate that a finer grid resolution generally leads to
better accuracy.

Fig. 4 shows estimate integer ambiguity histograms for
a specific satellite (G03) with different grid resolutions.
The noise parameter σ2

ϕ was set to 0.005 m2. When the
resolution is high (0.02 m), the integer ambiguity is uniquely
determined. On the other hand, when the resolution is coarse,
the estimated histograms exhibit ambiguous distributions im-
plying the integer ambiguity is not uniquely determined. We
consider that the histograms with course resolutions failed
to capture the sharp peaks of the AFM caused by the high
frequency of the carrier phase. We emphasize that, as seen
in Fig. 4, our method yields the estimated integer ambiguity
distributions in the form of non-parametric histograms that
can inherently represent complex multi-modal distributions.
As a consequence, we can easily identify satellites affected
by outliers by observing the dispersed histograms.

We evaluate the computational cost of the proposed
method. We created two implementations of the proposed
method respectively using CPU (Intel Core i9-14900KF)
and GPU (NVIDIA GeForce RTX 4080), and measured the
processing times for histogram sizes of 1003 to 3003. Table 2
shows the measured processing times. The processing time of
the proposed method increases at the rate of the third power
when the number of samples per axis is increased. The CPU
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Fig. 4: Histograms of integer ambiguity for various sampling resolutions. Time progresses from the top to the bottom.

TABLE II: Results of processing time for CPU and GPU

Implementation Histogram size Processing Time [ms]

CPU
1003 1179.48 ± 37.55
2003 18160.29 ± 954.26
3003 56978.55 ± 4784.3

GPU
1003 66.08 ± 9.95
2003 222.16 ± 19.87
3003 669.96 ± 60.11

TABLE III: Mean errors of float solution.

Sequences Mean error [m]

Suburban 0.81 ± 0.47
Urban 1 2.35 ± 4.52
Urban 2 6.42 ± 20.0
Urban 3 1.42 ± 2.46

implementation has a considerable processing time. On the
other hand, the GPU implementation can process a histogram
with 1003 bins at 10 Hz and one with 3003 bins at 1 Hz.
These results indicate that the proposed method is simple
on a per sample basis and can thus fully utilize the parallel
processing power of the GPU.

B. Kinematic Test

In this section, the proposed method is evaluated using
real-world environmental data recorded with an on-vehicle
setup. The evaluation uses publicly available datasets [19]
[20]. The test environments were a suburban area (Suburban)
and three urban areas (Urban 1, Urban 2, Urban 3). As a
baseline, we applied methods to solve the integer ambiguity
as well as the proposed method. Two baseline methods are
selected, one is RTKLIB [21] and the other is Demo5 [22],
which is an improved version of RTKLIB.

The test conditions for the proposed method were as
follows. The grid resolution is set to 0.02 m and the number
of samplings is 300 per axis. The proposed method thus
searched an area of 6 m per axis centered on the float
solution. In these experiments, the Gaussian kernel noise
parameter σ2

ϕ in the proposal method was set to 0.001 m2.
The center of the sampling position space for the proposed
method was the float solution estimated by RTKLIB. The

Suburban Urban 1

Urban 3Urban 2

Fig. 5: Kinematic test results for suburban and urban envi-
ronments.

TABLE IV: Cumulative error whitin 0.5 m.

Cumulative frequency [%]
Sequence RTKLIB [21] Demo5 [22] Proposed

Suburban 81.2 98.1 94.0
Urban 1 29.9 58.2 60.0
Urban 2 28.7 24.9 37.5
Urban 3 37.4 40.2 67.6

baseline methods used the same conditions as those for the
proposed method to search for integer ambiguity around the
float solution. Table 3 summarizes the mean errors of the
float solution for each sequence.

Fig. 5 shows the CDF of the position estimation error,
and Table 4 summarizes the cumulative error within 0.5 m
for each method. In this test, we focus on errors within 0.5
m, for which the integer ambiguity can be judged to be
approximately correctly solved. In the suburban environment
test, for the proposed method, more than 94% of the errors
are within 0.5 m; this value is slightly less than that for
Demo5 (98.1%). In the urban environment test, the proposed
method is superior to the two baseline methods.

The above results are summarized as follows.
• When the accuracy of the float solution is high, the

performance of the proposed method is equivalent to
that of conventional methods, which can also easily find
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Fig. 6: Driving route of Urban 3 and position error results
of proposed method. Four points were selected for the
histogram investigation. The error for each point is shown.

the solution despite their limited search space.
• On the other hand, when the float solution deteriorates,

existing methods struggle to find correct solutions from
observations affected by the multipath effect, whereas
the proposed method can find the solutions owing to its
wide search range and non-parametric sampling.

Fig. 5 shows that the proposed method is inferior to the base-
line methods when the error is 1.5 m or larger. The baseline
methods, but not the proposed method, use a pseudorange in
addition to the carrier phase. The benefit of a pseudorange
appears only at the decimeter level and the proposed method
has difficulty estimating positions at the meter level. The
extension of the proposed method to include a pseudorange
will be considered in a future study.

We further investigate the histogram of the integer ambi-
guity estimated using the proposed method. Fig. 6 shows the
driving path of Urban 3. The error of the proposed method is
shown as a heat map on the path. The histograms of integer
ambiguity were investigated at four locations. The selected
points are those with small and large errors. We focus on
satellites G10, G25, and G29, which were received at all
four points.

Fig. 7 shows the estimated posterior distributions of the
integer ambiguities at each point. Points A and B in Fig.
7 have small positional errors. These points show that the
integer ambiguity is uniquely determined in this environ-
ment. The probability of two integer ambiguity candidates
is high at point A, for satellite G25. This is thought to
be due to the half-cycle slip, in which the carrier phase
measurement is shifted by half a wavelength. Points C and
D in Fig. 7 have large errors due to surrounding buildings.
These results indicate that there are several candidates for
integer ambiguity and that it is difficult to obtain a unique
solution. We consider that this is due to the inclusion of noise
caused by the multipath effect in the positional likelihood
field.

It is worth emphasizing that existing methods can only

G10 Point A
Error: 0.19 m

G25 Point A G29 Point A

G10 Point B

Error: 0.19 m Error: 0.19 m

Error: 0.25 m
G25 Point B
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G29 Point C
Error: 1.68 m

G25 Point C
Error: 1.68 m

G10 Point C
Error: 1.68 m

G10 Point D
Error: 1.96 m

G25 Point D
Error: 1.96 m

G29 Point D
Error: 1.96 m

Fig. 7: Histogram of estimated integer ambiguity.

express the estimated distributions in the form of Gaussian
distributions (mean and covariance) and thus have difficulty
in detailed analysis, such as that demonstrated with the pro-
posed method. With the Gaussian distribution representation,
it is difficult, if not impossible, to properly propagate and
represent the uncertainty of the integer ambiguity distribu-
tions. Even under conditions with the multipath effect, the
proposed method can inherently propagate the uncertainty
of ambiguity probability distributions while retaining their
nonlinear multi-modal characteristics. In the future, we will
attempt to use these probability distributions to constrain the
multipath effect.

V. CONCLUSIONS

In this study, we proposed a nonparametric approach for
estimating the probability distribution of integer ambiguity.
It is difficult to sample and integrate integer ambiguities
between satellites because integer ambiguity measurements
are defined in satellite-specific domains. We applied AFM
to sampling on the position space to estimate the posterior
distribution of integer ambiguity. The evaluation results indi-
cate that the estimated integer ambiguity can be determined
uniquely when there is minimal disturbance, while maintain-
ing its nonlinear and multimodal characteristics under the
influence of the multipath effect. The proposed method out-
performs baseline methods in urban environments, primarily
due to the higher frequency of correct integer ambiguity
estimation, which leads to improved positional accuracy.

In the future, we will apply the estimated probability
distribution of integer ambiguity to find a method for ac-
curately determine integer ambiguity even in a multipath
environment.
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