Development of Conceptual Hazard Event Tree of CO2 Geological Storage R&D

Atsuko Tanaka¹, Takeshi Komai², Yasuko Okuyama² and Toshiyuki Tosha²

¹,² National Institute of Advanced Industrial Science and Technology (AIST), Institute for Geo-Resources and Environment, Tsukuba, Japan, email: a.tanaka@aist.go.jp

Keywords: Hazard Event Tree, CO2 geological storage, carbon capture and sequestration (CCS), safety analysis, risk analysis.

INTRODUCTION

To maintain sustainable carbon consumption in the world, carbon capture and sequestration (CCS) is one of essential technologies that have to be utilized in the near future. The CO2 geological storage technology aims to store Carbon dioxide into underground oil or gas reservoirs, coal beds, or aquifers. To utilize the technology, three categories of research and development issues have to be broken through: (1) monitoring and verification; (2) evaluation capacity of various types of CO2 storage reservoir capacity; (3) safety and risk assessment for practical realization in the near future. In this paper, the authors report about our development of conceptual hazard event tree of CO2 geological storage R&D, as an effort of (3) category of above.

The state of art of CO2 geological storage R&D in Japan

Concerning to R&D of CO2 geologic storage, weight has been put on verification of reality of this new technology especially from geosciences and energy-economical side of view.

In Japan, under the contract with Ministry of Economy, Trade and Industry, some of institutes are contributing to the project. AIST GSJ is in charge of geo-technological side of R&D: evaluation of capacity of geological CO2 storage, laboratory experiments, modeling and simulations, research and evaluation of potential storage capacity of major aquifers. Getting preferable results of a few years in-site experiments and monitoring, the R&D is going to enter verification for realization stage: basic verification test of injection and monitoring, development of advanced model of storage, and preliminary safety assessment methodology.

Side by side with geo-technological R&D, Japanese legislative sector start to consider on legislations about this new technology. For realization of the CO2 geological storage technology safely and effectively, efforts on preliminary safety and risk evaluation is essential in this stage.

As for safety and risk evaluation of CO2 geological storage, huge contributions have been made with geo-technical perspective. To accomplish total safety and risk evaluation for whole CO2 geological storage technology, considerations from safety engineering side point of view shall contribute in some extent.

Conceptual hazard event tree and scenarios for risk analysis

To utilize the CO2 geological storage technology, there are three categories of research and development issues those have to be verified: (1) monitoring and verification; (2) evaluation capacity of various types of CO2 storage reservoirs capacity; (3) safety and risk assessment.

As regard with (3) safety and risk assessment of the CO2 geological storage, those include consideration of operation errors within the geologic storage systems in the future and/or risks of carbon dioxide release from geologic storage sites. It requires identification of hazards and
evaluation of consequences and frequencies of inherent hazards within the new technologies.

To avoid any oversight in risk assessment framework of the new technology, the assessment of the risks associated with CO2 geological storage has to be simultaneously processed with (1) and (2) above. Results of the assessment will be feed back to newer results of monitoring and verification researches, and evaluation of capacities of various types of CO2 storage reservoirs researches.

Fig. 1: Conceptual hazard event tree of CO2 geological storage R&D

IPCC 2005 report on CO2 geological storage pointed out the lack of referable hazard data and importance of gathering hazard scenarios by way of FEP (Features, events and processes) data. IEA GHG is developing a FEP database, which has 178 qualitative scenarios of seven categories of risks. To evaluate total risk and establish management system of CO2 geological storage, further quantization efforts should be made. One example of engineering side of risk evaluation is shown in EN draft of legislation 2008: some estimation of number of fatalities due to CO2 leakage. Nevertheless, risks of all hazard scenarios are not estimated yet in overview. Therefore, estimation of hazard from related fields is essential for advancement of the risk evaluation.

To prepare wide ranged risk assessment framework of CO2 geological storage, we are developing a conceptual hazard event tree of technical problems that should be solved within R&D stage. We constructed the tree using factors that were gathered in interviews to geologists and mining engineers and a survey of the literatures (Figure 1). This is preliminary step of risk assessment.
of CO2 geological storage. The tree will assist decision-making of range and depth of safety and risk assessment of this problem.

<table>
<thead>
<tr>
<th>Hazards</th>
<th>CO2 Injection plant</th>
<th>Well</th>
<th>Storage Aquifer</th>
<th>Frequency / Consequence</th>
<th>Mitigating / Recovery Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural disasters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volcanic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind and flood</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosion</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accidents					
Leaks		X			
Corrosion		X			
Errors		X			

| Referable technology/ | Geothermal power plant, Oil & natural gas extraction (especially in air or water induced production), Underground mining, Natural gas storage and supply, Nuke geological disposal |
| engineering | |

Table 1: Extraction of short and long term hazard preliminary analysis

Along with the conceptual hazard event tree, we are developing short and long-term hazard preliminary analysis also to prepare total preliminary risk analysis (Table 1). To accomplish table 1 and evaluate risks, the authors are extending investigation and gathering data not only hazard scenario but possible mitigating measures. The result of the study is expected to contribute both risk management and legislation in realization stage of this technology in near future.

CONCLUSIONS
To prepare wide ranged risk assessment framework of CO2 geological storage, we developed a conceptual hazard event tree of technical problems those have to be solved, based on interviews of geologists and mining engineers and a survey of the literatures. Along with the conceptual hazard event tree, we are developing short and long-term hazard preliminary analysis also to prepare total preliminary risk analysis. The authors are extending investigation and gathering data not only hazard scenario but possible mitigating measures. The result of the study is expected to contribute both risk management and legislation in realization stage of this technology in near future.

REFERENCES

Center of GSJ (2008.3), Research report on CO2 Geological storage, National Institute of Advanced Industrial Science and Technology (AIST), No. 44, AIST08-G63144 (written in Japanese)

An Improved Research Method of Regional Economic Resilience of Disasters Model

Guijuan Tang¹ and Yibo Li²

¹Harbin Institute of Technology, Harbin, China, email: tangguijuan@yahoo.com.cn
²University of Electronic Science and Technology of China, ChengDu, China

BACKGROUND

Entering the new century, a number of devastating disasters throughout the world, such as "September 11" terrorist attack, a series of explosions in the London subway, the tsunami in South-east Asia and eastern Africa, Hurricane Katrina, WenChuan China huge earthquake made tremendous huge losses in many countries. Therefore, more and more scholars in the field of disaster risk management focus on the rapid recovery of living and producing after the huge shock. Taking 5.12 WenChuan China huge earthquake as an example, the government also attaches importance to the recovery of production in the hit enterprise and comeback of the living conditions except for focusing on rescuing and helping casualties. To some extent, resilience of disasters plays an important role in the recovery of the region after events.

Resilience refers to the adaptive ability of rapid response of an entity itself following a disaster shock that enables the region to decrease potential losses in a very short time after the occurrence of a hazardous event (Shaoyu Wang, 2007). Nowadays, more and more organizations emphasize the study of resilience. Most of them focus on the definition, composing factors and influencing factors of regional resilience. However, the discussion of these parts is absolutely not the destination. The aim is to find a way to recover to the original state after the huge disaster through the study of definition and factors. So the most important meaning of studying regional resilience of disasters lies that we can find the equilibrium point between expense of reducing disasters and benefits of restarting business activities after disaster.

In the field of equilibrium analysis, for many years, input-output (I-O) analysis was used most widely modeling approach. However, I-O is featured by a linear and rigid response, almost devoid of behavioral content. In this approach, for example, it is extremely difficult to incorporate input substitution or conservation. In essence, basic I-O analysis provides only an upper bound estimate of the direct and indirect responses to a supply shortage. Some progress has been made with regard to the shortcomings of this approach for application to hazard situations, but only in a limited manner that has not altered its general liabilities. This approach is severely limited in modeling most aspects of resilience to hazards at either the level of the firm, the market, or the regional economy. Therefore, there is coming a alternative model approach ---- computable
Please note that during the editorial process only minor grammatical and spelling corrections were made to the English of the abstracts.

CD cover design: kommunikativ, Heidi Roth Kaspar, 7247 Saas, Switzerland

All rights reserved. This publication may not be reproduced in whole or in part without permission from the publisher, Global Risk Forum GRF Davos.

Published and distributed by the Global Risk Forum GRF Davos, 7260 Davos Dorf, Switzerland. Tel.: +41 (0)81 4170 372; Fax: +41 (0)81 4170 110; www.grforum.org
Copyright: Global Risk Forum GRF Davos
Sponsors

SDC – Swiss Agency for Development and Cooperation

ETH Board – Board of the Swiss Federal Institutes of Technology

Swiss Federal Office for Civil Protection

Canton of Grisons

Landschaft Davos Gemeinde

Swiss Re

Risk Management Solutions, Inc.
Pollution Risk Assessment from the Solid Waste Management Facilities in Delhi
Amitabh Kumar Srivastava and *Arvind K. Nema* 607

Contribution of Remote Sensing and Geo-Information Systems in Flood Risk Management in Romania
Gheorghe Stancalie, Vasile Craciunescu, Cristian Flueraru and Argentina Nertan 609

MedISys: A Multilingual Media Monitoring Tool for Medical Intelligence and Early Warning
Ralf Steinberger, Flavio Fuart, Bruno Pouliquen and Erik van der Goot 612

Epidemiological Modelling, Surveillance and Web-Based Information Systems: Tools for Public Health Decision Making
Nikolaos I. Stilianakis and Thomas P. Weber 615

Utilising Climate Research to Inform the Insurance Industry: Can We Dynamically Simulate Tropical Cyclones for Risk Assessment?
Jane Strachan 618

The R&D-Programme GEOTECHNOLOGIEN: Interface between Science and Application
Ludwig Stroink 621

Regional Differences in Public Trust in Social Disaster Reduction Ability and Their Flood Risk Perceptions: Based on the Investigation and Analysis of Yangtze River
*Yun Su*1,2, *Na Li*1, *Meihua Zhang*1 and *Lilong Gao*1 624

Urban Risk and Risk Management Analysis for Planning and Effectiveness Improvement at Local Level: The Manizales City Case study
D.C. Suárez and O.D. Cardona 627

Improving Signage for Evacuation Wayfinding and Sheltering for Vulnerable Groups
Helen T. Sullivan and Dana Piechocinski 630

Portable Web Based Tools for Survey Data Collection in the Aftermath of Disasters
Helen T. Sullivan 633

Development of Conceptual Hazard Event Tree of CO2 Geological Storage R&D
*Atsuko Tanaka*1, *Takeshi Komai*2, *Yasuko Okuyama*2 and *Toshyuki Tosha*2 634

An Improved Research Method of Regional Economic Resilience of Disasters Model
*Guijuan Tang*1 and *Yibo Li*2 637

Standardization: A New Global Approach to Increase Crisis and Continuity Management Capabilities
Stefan Tangen 642

Measuring Economic Impact of a Disaster without Double Counting Based on Multi-Sector Economic Growth Models
*Hirokazu Tatano*1 and *Kazuyoshi Nakano*2 645

Earthquake Hazard Mitigation Achievement in Iran
Mohsen Tehranizadeh 649

Earthquake mitigation and preparedness at the individual level in Istanbul and factors affecting this process
*Sıdıka Tekeli Yeşil*1,2, *Necati Dedeoğlu*3, *Marcel Tanner*1 and *Charlotte Braun-Fahrlaender*2 652
Table of Contents

IDRC Davos 2008 Conference Leadership Committee 1
IDRC Davos 2008 International Scientific Committee 2
IDRC Davos 2008 Local Organizing Committee 5
Collaborating Organizations 6
Preface 10
Extended Abstracts of Oral and Poster Presentations 11
Extended Abstracts of Invited Sessions 759
Extended Abstracts of the ICCR Conference 1061
Extended Abstracts of the YSC Conference 1104

Extended Abstracts of Oral and Poster Presentations 11

Risk Dialogue through Gaming Technology
Manasi Abhyankar, Dilip Kalantri and Parag Mankeekar 12

Measures for Vulnerability Mitigation at Ground Motion in Uzbekistan
Rustam Abirov 14

A Geo-Collaboration Portal for a Local Geospatial Data Infrastructure for Improved Coordination & Group Work in Disaster Management
Trias Aditya and Leni S. Heliani 17

The 25th Hour
Ali Afdjei¹, Gilles Gugliemi², Thomas Hanslik³ and Jean-Yves Chevet⁴ 20

Adaptation to Climate Change for Improving Health Care: Towards an Alternative Option for Drinking Water to Combat Water-Borne Diseases in Bangladesh
Ahsan Uddin Ahmed¹, Sharmind Neelormi² and Md. Amjad Hossain² 23

Reduce Destruction and Rule of “Earthquake Information Systems”: The Comparative Study in Turkey, Afghanistan and Iran
Sima Ajami, M. Fattahi and Z. Moradi 26

Potential Impact of Earthquakes on Built and Physical Environment: Republic of Moldova Case Study
V. Alcaz 29

Making Emergency Management Education and Training Sustainable
David Alexander 31

Best Practices in Disaster Risk Management: The Ormoc Experience
Jose C. Alfaro 34

Post-Disaster Management Issues Related to Building Collapse in Bangladesh
T. M. Al-Hussaini¹ and M. N. A. Hossain² 36