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Abstract

Robot localization, i.e., the task of recognizing the cur-
rent position of the robot from sensor inputs is an
essential problem for autonomous mobile robots. In
this paper, we discuss the localization problem through
probabilistic models, information theoretic criteria,
and statistical learning. When we use some variety
of sensors or high dimensional inputs like image pix-
els, decreasing �rst their dimensionality, or extract fea-
tures, is necessary for making the data tractable. We
will show popular feature extraction methods for lo-
calization and some properties of them. After feature
extraction we can construct position estimation prob-
abilistic models by regression. By probabilistic model-
ing, the information theoretic meaning of a feature ex-
traction method becomes clearer. We introduce a mu-
tual information-based criterion to evaluate the feature
set, and compare this criterion with Kullback Leibler
divergence and the average Bayesian localization error.
In general, the evaluation result of the feature extrac-
tion depends strongly on the particular region of the
environment. A feature performing well in a local re-
gion may not be good for the other local region. For
an entire environment, an appropriate feature should
be selected according to the corresponding situation.
We call this idea situated feature focusing that select
feature extraction modules and local regression mod-
els. This approach can be realized by Bayesian net-
works to estimate possibility of current situation and
the mixture of experts which is the combination of var-
ious feature extraction.

1 Introduction

For intelligent autonomous robots which move in the
real world, a localization task to identify the robot's
position is essentially important. Matching the sensory
inputs with a deterministic environment model has the
drawback that it is not so robust for noisy and uncer-
tain sensors and also because it is di�cult to describe
a complete model a priori. To overcome such prob-
lems, probabilistic modeling is studied as a promising
approach [1, 2, 3, 8, 9]. In this framework, training the
model to estimate locations from sensor inputs can be
regarded as probabilistic regression.

Many sensors or camera images are necessary to
get enough information for practical localization, thus
decreasing the dimensionality internally is necessary
for making a model tractable. This preprocessing cor-
responds to the feature extraction scheme of pattern
recognition. Good feature extraction can decrease the
redundancy of sensor inputs and allow invariance for
irrelevant uctuations of the signals.

Therefore, we use the following two steps for the
robot localization problem: (1) project into relatively
low-dimensional internal vector from raw sensor signal
vector, and (2) apply probabilistic regression model-
ing from the robot's position to the internal feature
vector. In earlier works, as a projection in (1) the
principal component analysis (PCA) [4, 5, 9, 8], neu-
ral networks [2] and human designed features (speci�c
mark, color, etc.) have been studied in this context.
However there are practical problems, e.g., that neural
network learning requires long time to converge, PCA
as a linear projection does not have enough exibility
to approximate complex target environments, and the
human designing features are e�ective for speci�c only
environments and not for general ones. The important
issue is not only obtaining better projection but also
specifying criteria to select better projections, since it
is not obvious what kind of projection is desirable.

In this paper we study a probabilistic modeling
method for robot localization and investigate the use
of a mutual information-based criterion for extract-
ing better features. By probabilistic modeling, the in-
formation theoretic meaning of the feature extraction
method becomes clearer. We also discuss di�erences
among the mutual information based criterion, the
Kullback Leibler divergence, and the average Bayesian
localization error [2].

Finally, we maintain that good feature extraction
should depend on the particular local region of the
environment. For an entire environment, the robot
should select appropriate feature sets for each current
local region of the environment. For better feature ex-
traction, we introduce the idea of `situated feature fo-
cusing' involving local feature extraction modules and
local regression models. This approach can be realized
by Bayesian networks to estimate possibility of current
situation and the mixture of experts which is the com-
bination of various feature extraction. We believe that



this is more consistent with the human active percep-
tual behavior to recognize the real environment.

2 Probabilistic modeling for localization

The robot observes a sensor vector z at a position
x. The robot localization task is to correctly esti-
mate x from z. For this task, an environment model
x = M(z) is required. The real environment is �lled
with uncertainty, then it is modeled as a conditional
probability distribution P (xjz), where x and z are ran-
dom variables. This probability distribution is a non-
deterministic realization of the model x = M(z), and
the probability of x can be regarded as the degree of
belief that the robot is located in x.

In practical situations, two sources of the problem
are encountered:

� Similar z may be obtained from di�erent x (per-
ceptual alias)

� z may change abruptly even if x changes slightly
(non linearity)

From the former, a one to one mapping from z to x as
a model is not adequate. From the latter, a non linear
regression model may be necessary.

The sensor high dimensional vector z often includes
noise and redundancy, so we use feature extraction as
a preprocessing step to get a lower dimensional vector.
This feature extraction is denoted by y = f(z) (y is
lower dimensional vector than z). If this feature ex-
traction y = f (z) is enough to distinguish x, we can
estimate the robot locations from the probabilistic re-
lationship between y and x.

The posterior probability of the robot position x
given sensor reading z is described through a paramet-
ric model P (yjx; �) and the Bayes theorem as

P(xjz) � P (xjy = f (z)) =
P (y = f (z)jx; �)P (x)R

x
P (y = f (z)jx; �)P (x)dx ;

(1)
where � is a parameter vector, and the prior distri-
bution P (x) is given. The integral operation in the
denominator is marginalization for all possible x.

P (xjy) may be multi-modal, however, by modeling
as eq.(1), the parametric model P (yjx; �) can be uni-
modal, e.g., a single Gaussian distribution.

Thus, the environment modeling proceeds as fol-
lows:

� First choose appropriate feature extraction projec-
tion y = f (z).

� Then estimate � for the parametric model P (yjx; �).
After the modeling steps, we can get an estimate of

the robot's position x which maximizes the quantity

P (xjy = f (z)) / P (y = f (z)jx; �)P (x); (2)

when the sensor reading is z.

3 Regression models

The modeling scheme described in the previous section
can be established by statistical learning from a data
set D � fxi; zig; (i = 1; � � �) obtained in the environ-
ment by the robot. This can be regarded as regression.
In this section, we show two regression models com-
bined with feature extraction for probabilistic robot
localization.

3.1 PCA regression

Principal Component Analysis (PCA) is known as the
method that gives lower information loss and lower di-
mensional vectors which are uncorrelated and orthogo-
nal with each other. The projections obtained by PCA
are linear combinations which maximize the variance
of ffPCA(zi)g; (i = 1; � � �).

After applying PCA, we can use a parametric
model with a single Gaussian,

P (yjx; �) = 1

�
p
2�

exp(�(g(x; �) � y)2=2�2): (3)

where, g(x; �) and �2 denote a non linear function with
parameter � and the variance, respectively. The pa-
rameter � in eq.(1) is decided by regression from the
data set Df � fxi; yi = fPCA(zi)g. In [8], a gener-
alized linear model was used for g(x; �), giving rise to
PCA regression. In this model, y = fPCA(z) is a linear
deterministic function.

3.2 Neural networks

Neural networks have been applied to feature extrac-
tion under a Bayesian probabilistic formulation, an
approach called Bayesian landmark learning [2]. The
feature extraction scheme is modeled by a conditional
probability P (yjz) as the output of a feed forward neu-
ral network fNN (z). The estimation of the posterior
probability of position x given z is given by the Bayes'
theorem and the Markov assumption1 .

The neural network fNN (z) is trained by a gradi-
ent descent argolithm so as to minimize the average
Bayesian localization error (discussed in the next sec-
tion), giving rise to `useful' features for robot localiza-
tion.

4 Criterion for localization

For the principal component regression model, fPCA
is decided by PCA (maximizing the variance) and �
is decided by regression (least mean squares �tting).
However, what seems to lack is an information theo-
retic meaning of PCA that would, for example, shed
light to which principal components should be selected
as good features for localization. Therefore, we would

1 Sensor readings are conditionally independent of previous
readings and the action of the robot if the robot's location is
unknown.



like to understand the general desirable property be-
hind feature extraction and the estimation of proba-
bilistic models in this context. For this purpose we in-
troduce a mutual information-based criterion and dis-
cuss about the properties of the PCA regression model
under this criterion.

4.1 Kullback Leibler divergence

Kullback Leibler (KL) divergence is used for measur-
ing the distance between probability distributions. If
we imagine the data set is generated from an un-
known true distribution, then the KL divergence be-
tween the true distribution and an estimated distri-
bution modeled by eq.(3) is introduced naturally. We
denote the true distribution as P �(x; y) in the x � y
space. The estimated distribution of eq.(3) is P (x; y) =
P(yjx; �)P (x). Therefore, the KL divergence is de-
scribed as Z

x

Z
y

P �(x; y) log
P �(x; y)

P (yjx; �)P (x)dydx

=

Z
x

Z
y

P �(x; y) log P �(x; y)dydx

�
Z
x

Z
y

P �(x; y) log P (yjx; �)P (x)dydx: (4)

The �rst term corresponds to the negative entropy de-
�ned byD and y = f(z). The second term corresponds
to the log-likelihood of the training set which we denote
by Lg(�).

4.2 Mutual information-based criterion

The �rst term in the de�nition of the KL divergence
above says that this criterion prefers larger variance
when the second term (log-likelihood) remains con-
stant. If we apply the KL divergence criterion for robot
localization, this implies choosing projections which
give larger variance for equal likelihood. This prop-
erty may make the estimation result ambiguous. For
preciser estimation, the selected projection should give
lower entropy, and this implies an alternative crite-
rion for the robot localization: the ambiguity of the
estimation is evaluated by the expected entropy of
P(xjy = f(z)) which is denoted by Ey [H(xjy)] and
can be calculated asZ

y

Z
x

�P �(xjy)logP �(xjy)dxP �(y)dy; (5)

where

P �(y) �
Z
x

P �(x; y)dx (6)

P �(xjy) � P �(x; y)=P �(y): (7)

ThenEy[H(xjy)] can be decomposed by Bayes' the-
orem as

Ey[H(xjy)] = Ey[H(yjx) +H(x)�H(y)]: (8)

Since H(x) is completely determined by D, selecting
y = f(z) a�ects only the terms H(yjx)�H(y). Using
this instead of the �rst term of eq.(4), we get a new
criterion for robot localization as

Ey[H(yjx)�H(y)]� Lg(�) (9)

The model minimizing this criterion should give a cor-
rect estimation of the position of the robot. Minimiz-
ing eq.(8) means selecting y which maximizes the mu-
tual information H(x)�H(xjy), thus this criterion is
also consistent with our intuition.

When we calculate the entropy, histograms ofD are
necessary. If the model can �t to D well, the entropy
can be obtained by analytical calculation about the
model. In the case of PCA regression eq.(3), H(xjy)
becomes constant with respect to �. The m-th selected
projection y(m) by PCA is ordered so as to maximize
the variance, i.e., if m < n then H(y(m)) > H(y(n)).
This result says that feature extraction by PCA can
minimize the �rst term in eq.(9).

Next we must take into account the second term
in eq.(9) which requires the unknown true P�(x; y).
Substituting this, we calculate the log-likelihood from
the data set D, deriving the second term of eq.(9) with
eq.(3)

Lg(�) /
X
i

log P (y = f(zi)jxi; �)

=
X
i

log
exp(�(g(xi; �)� f(zi))2=2�2)

�
p
2�

= �� �
X
i

(g(xi; �) � f(zi))
2; (10)

where, � and � are constants decided by �.
Accordingly, � given by the least squares error �t-

ting can optimize eq.(10). This means that the second
term of eq.(9) is also optimized by the PCA regression
model.

Finally, it has been experimentally shown [8] that
the PCA regression model gives optimum estimation
under the criterion of eq.(9) when regression after PCA
is achieved perfectly. However, PCA just maximizes
H(y) but does not commit to H(yjx). It rather relies
upon the selected regression scheme. If the general-
ized linear model after PCA is not enough for perfect
regression, i.e., H(yjx) is not consistent with �, then
we need a more powerful feature extraction method for
maximizing the mutual information 2 .

4.3 Average Bayesian localization error

In [2] it was proposed an average Bayesian localization
error as a criterion for learning landmarks with neural
networks. When x� denotes the true position and x
denotes the estimation position, the estimation error is

2 Instead of PCA, our group is also investigating the Projec-
tion Pursuit method [11].



measured by jjx� x�jj. For a single x�, the estimation
error of P (xjy) is de�ned as

Err(x�) =

Z
x

Z
y

jjx � x�jjP (yjx�)P (xjy)dx; (11)

where P (xjy) denotes the posterior probability distri-
bution given y and P (yjx�) denotes the likelihood of
observing y from x�. This formula de�nes an average
position estimation error for all possible y from x�.
Since the model is de�ned by P (yjx; �), the above is
transformed by Bayes' theorem as

Err(x�) =

Z
x

Z
y

jjx� x�jjP (yjx�)

P (yjx)P (x)P�1(y)dydx; (12)

P (y) =

Z
x

P (yjx)P (x)dx: (13)

Moreover, we can imagine the average error for all
possible true position x� which gives

Err = avgx�Err(x
�)

=

Z
x�
Err(x�)P (x�)dx�

=

Z
x�

Z
x

Z
y

jjx� � xjjP (yjx�)

� P (yjx)P (x)P (x�)P�1(y)dydxdx�:(14)

This is the average Bayesian localization error[2].
In [2], y is restricted to binary variables and it is

recognized as a kind of a landmark. Then, training
a neural network to optimize the above error realizes
an automatic landmark detection or feature extraction
mechanism.

The computation of the average Bayesian localiza-
tion error requires marginalization over three variables
x�, x, and y, with complexity O(jyjjxj2), (jxj denotes
the size of the x space). Furthermore, since the method
requires the calculation of the gradient for learning it-
eration, the total computational cost may be a problem
3 .

5 Situated feature focusing

In the previous sections, some probabilistic methods
for obtaining good feature extraction are discussed.
The PCA regression model achieves features by a glob-
ally linear projection y = fPCA(z), and the neural net-
work approach achieves a generative non-linear projec-
tion y = fNN (z). Both of them are global, i.e., over
the entire robot space, projections.

In a small region of the environment such a global
feature extraction method can work well. However, in
general, it is not so easy to scale it up to larger and

3 In [2] it is reported that learning required 12 and half hours
on a Pentium Pro 200MHz
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Figure 1: Bayesian network expecting region

more complex environments, because even if the pro-
jection is non-linear for the input space, the projection
is the same in di�erent locations. In practical cases it
is easy to �nd out the most relevant sensor in di�erent
regions of the robot space. For a real environment, an
appropriate feature should be selected according to the
corresponding situation.

One approach is combining local projections which
depend on particular locations. Each local model as-
sumes responsibility for relevant features in its own
situation which could be, e.g., a limited region of the
whole environment, a corridor, etc. Thus, we can ob-
tain each feature extraction projection fc(z) for each
region c. For example, PCA and neural network learn-
ing can be applied to yield fc from the data set Dc

sampled from a respective bounded region c.
In order to select an appropriate projection fc,

we have to estimate the current situation c. This
can be modeled as a conditional probability P (xt 2
cjxt�1; at�1), where xt�1 is the previous position of
the robot, xt is the next position, c is a region and
at�1 is an action at position xt�1. This conditional
probability has been implemented by a Bayesian net-
work (Figure 1) and trained from examples taken by
the real mobile robot[7]. We call this idea situated fea-

ture focusing, and the model for it can be constructed
as the following.

P (xtjz; xt�1; at�1) =X
c

P (y = fc(z)jxt)P (xt 2 cjxt�1; at�1)=Z;(15)

where Z is a normalizer. The above can be regarded
as a mixture of experts model [6]. By this method we
can focus on the extraction of relevant combinations of
features for a particular situation. This property bears
resemblance to the human cognitive behavior (so called
focus of attention).

6 Conclusions

We derived a probabilistic formulation of the robot lo-
calization problem and discussed the use of a mutual



information-based criterion for feature extraction. The
justi�cation of the PCA regression model and also its
limitations becomes clearer by this criterion. Neural
network learning is also possible by this criterion in-
stead of optimizing the average Bayesian localization
error. In this case, it is expected that the computa-
tional cost will be decreased as mentioned in the sec-
tion 4.3. For much better feature extraction in the
entire environment we introduced the idea of situated
feature focusing. Learning the mixture of local models
with Bayesian networks and their experimental evalu-
ation will be the next important issue.
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