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Abstract—1In this paper, we propose a deformable-model-
driven method to recognize the state of hanging clothes using
three-dimensional (3D) observed data. For the task to pick up a
specific part of the clothes, it is indispensable to obtain the 3D
position and posture of the part. In order to robustly obtain
such information from 3D observed data of the clothes, we
take a deformable-model-driven approach[4], that recognizes
the clothes state by comparing the observed data with candidate
shapes which are predicted in advance. To carry out this ap-
proach despite large shape variation of the clothes, we propose
a two-staged method. First, small number of representative 3D
shapes are calculated through physical simulations of hanging
the clothes. Then, after observing clothes, each representative
shape is deformed so as to fit the observed 3D data better.
The consistency between the adjusted shapes and the observed
data is checked to select the correct state. Experimental results
using actual observations have shown the good prospect of the
proposed method.

I. INTRODUCTION

As home and welfare robots are expected to take an impor-
tant role in an aged society, ability of handling daily objects
is strongly required for robots. Clothes are one of such
typical articles of daily use. Among techniques necessary for
realizing automatic clothes handling, it is essential but still
challenging to visually recognize largely deformed objects.
Although handling of string-type soft objects, such as ropes
and electric lines, has been studied[1][2], in case of dealing
with clothes, complex self-occlusion makes it very difficult
to recognize the clothes state. Here, by the term “state”,
we mean recognition of not only geometrical shape but also
where each part of the clothes is in the shape.

Kaneko et. al[3] proposed a method which recognizes
the clothes state by comparing the contour features (e. g.
curvature, length-ratio) of an observed appearance with ones
of model appearances under the situation that the clothes
is held at two points. However, the detailed contour features
are difficult to robustly extract from real observations and are
very sensitive to a slight deformation of clothes. Additionally,
its learning processes to obtain the model appearances from
actual observations are troublesome.

In [4], a deformable-model-driven method which recog-
nizes the state of clothes held at a point has been pro-
posed. The method predicts possible appearances using a
deformable model of the clothes and selects one which
fits the observed appearance the best. Later, [5] proposed
a method using these results to obtain 3D information for
actual handling, such as the position and posture of the
part to grasp next. Although these results were encouraging.
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Fig. 1. Basic action and our model-driven strategy

there are some drawbacks to use the methods in practical
scenes. First, some restrictions on the color and texture of
the clothes are necessary to robustly extract clothes region
from its background. Another point is that separate processes
are required to obtain 3D information for handling after the
method estimates clothes state from 2D observation.

To overcome such weaknesses, we can use dense 3D infor-
mation obtained by a trinocular stereo camera system[6]. If
we use such 3D data, extraction of clothes region should
become much easier by taking only 3D data around the
holding position. Then, we get a 3D shape of the visible side
of the clothes. In order to robustly recognize the position of
any part from this information, similarly to [4], we take a
model-driven way that compares the 3D observation with
3D possible shapes to find the most consistent states. Here,
a key issue is how we prepare the 3D possible shapes which
can cover wide range of shape variation of the clothes.
For the purpose, we propose a two-staged method. First,
small number of representative 3D shapes are calculated by
simulating physical deformation of the clothes when it is held
by a hand. Then, after observing clothes, each representative
shape is deformed so as to absorb shape difference between
the predicted shape and the observed shape. After this
adjustment process, the adjusted shape which shows the best
consistence with the observed data is selected as the state
of the observation. From now, in Section 2, a whole flow
of our model-driven method is explained. In Section3, a
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method of adjusting a 3D predicted shape to 3D observed
data , that is the main contribution of this paper, is explained.
Finally, in Section 4, experimental results using actual data
are shown to discuss about the effect of the proposed method
for recognizing clothes state.

II. MODEL-DRIVEN CLOTHES STATE RECOGNITION
A. Fundamental idea

One of important and basic action for handling clothes is
grasping a specific part of clothes hung in the air as shown in
Fig 1. By iterating this action by two hands, clothes can be
held at any goal state. For carrying out this basic action, the
3D position and posture of the target part are indispensable
information. Fig. 2 shows an example of 3D observed points
of clothes obtained from a real-time trinocular stereo vision
system[6]. Even though we get such dense 3D information, it
is almost impossible to recognize how the clothes are folded
and where is each part in the observed data in a bottom-
up way. Therefore, we choose a model-driven strategy based
on the assumption that a simple knowledge about the target
clothes, such as style of the target clothes (e.g. pullover,
trousers) and its approximate sizes and softness, is known in
advance.

By simulating physical deformation of the target clothes
based on these information, possible 3D shapes of the clothes
when it is hung at a point are obtained as shown in Fig. 1,
At the current, we have done this simulation using cloth
function of Maya 4.5 [7]. To make the problem simple,
we assume that the front and back sides of the clothes
are not separated and no thickness is given to the model.
Based on this assumption, the model becomes a surface
which deforms three-dimensionally. Here, we classify the
clothes states according to at which position the clothes is
held as shown as “State 17, “State 2” and so on in Fig.
1. We think this classification is natural since the grasping
position is only one condition which explicitly determines
the shape. Of course, the possible shapes obtained by the
above simulation is just one of the most probable shapes
since actually the clothes shape have variation depending on
indefinite conditions such as subtle difference in the trail of
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Fig. 3. Shape variation of the clothes under the same hanging condition

hanging processes. It is quite important how to deal with
such practically unpredictable shape variation.

B. Key issue

Fig. 3(a) and (b) are two observations when the same
pullover was hung at the same position at different times.
Despite of giving the same condition, the 3D shapes are
fairly different from each other. The blue mesh model in
the second column shows the shape our system predicted
for the corresponding state (State 1). Predicted shapes in
Fig 1 are obtained by physical simulation in advance with
the condition that clothes are held by a vertical planar grip.
Then, after the observation, predicted shapes are placed at the
holding position so that the normal direction of the clothes
at the position coincide with that of the actual grip plane.
Since there are two possible postures for this condition, the
one closer to the observed data is selected. The third to the
fifth columns of Fig. 3 show the predecited shape placed on
the observed data in this way. In this example, the grip is set
so that its normal has the same direction as the camera view
direction. Since the both 3D observed data are rather convex
toward the camera system, the predicted shape is placed just
in the same way in the both cases.

The color of vertices of the model illustrates the closeness
from the observed data. Concretely red vertices are ones less
than 25mm from the closest observed point, green vertices
are the others. As seen in the figure, the predicted shape
cannot tell the correct position in many parts.

However, increasing the number of representative shapes
to cover all such shape variation is not practical from
the viewpoint of computational burden. Instead of that, we
propose to deform the representative shapes so that they are
adjusted to each observed situation. In the following section,
we explain our adjustment method of the initial predicted
shape to the observed data.
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III. ADJUSTMENT OF PREDICTED SHAPE
A. Key idea

For the adjustment, we use a deformable model and
deform it by exerting attractive forces towards the observed
data. Some methods related to this matter have been proposed
for the purpose of tracking of deformation of non-rigid
objects. Yamamoto et al.[8] proposed a method of tracking
deformation of paper and balloon with a deformable mesh
model using high speed laser range finder. At each stage of
tracking, vertices of the deformable model are attracted to
the closest observed data under the constraint that all the part
of the model is set close to the observed 3D data. Pilet et
al. [9] has tracked cloth deformation (ex. a part of T-shirts
or sail of yacht) with a deformable mesh model from time-
sequential 2D images under the constraint that the object
have characteristic textures.

Instead of these constraints, we utilize more natural one
for the case of handling task. When we think the situation
that a robot handles clothes, the position and posture of the
grasped part can be actively controlled and these information
is known. That means that the deformable model of the
predicted shape can be placed on 3D observed data so as
that the model is coincident with the data at the holding
position. Therefore, at least in the vicinity of the part, we
can assume that the deformable model is already close to
the observed data, so that we can use Euclidean distance
as a key for finding correct correspondences between model
vertices and the data point. Based on this idea, we deform the
deformable model gradually from the vicinity of the holding
position towards the further parts as conceptually shown in
Fig 4. It can be regarded as analogy of putting up a wallpaper
on the wall from one point to its circumferences gradually.

B. Implementation

Our deformable clothes model is represented by triangular
patches and their vertices. One reason to use triangular
patches is good compatibility with Maya 4.5 [7] which we
use for physical clothes simulation. The idea described in
the previous subsection can be implemented by using “list of
patch to attract”. Only for the vertices of the patches on this
list, the closest observed 3D data points are searched for and
if there, the attractive force to the closest point is exerted. At
the start, a deformable model of the predicted shape is placed
according to the information of actual holding position and
posture. Only the patch at the holding position is included

into the “list of patch to attract”. While exerting forces to
the patches on the list, the distance of each patch of the list
from the closest observed point is checked to judge if the
patch already fits the observed data or not. When a patch
gets on the observed data, that is, it gets sufficiently close
to the observed data, its adjacent patches are newly added to
the “list of patch to attract” if the added patch is visible from
the view direction. Whether a patch is “visible or not” can be
judged in a hidden surface removal manner. These processes
are iterated until the model deformation is converged.

The deformation of the model is calculated using the
following analogical forces in a similar way to general
deformable model methods (ex. snakes[10]).

As internal forces to preserve the clothes-like shape, the
following forces are exerted for all vertices:

1) Forces to keep distance between neighboring vertices
2) Forces to keep distance between vertices connecting via
one neighboring vertex

The first and the second forces respectively correspond to
the elasticity and flexural rigidity of the clothes.

As external forces,

1) Gravitational forces to all vertices,
2) Attractive forces to the closest observed points only for
the vertices of the patches on the “list of patch to attract”.

The movement of the 3D coordinates of the vertices,
x(y,z) is calculated by solving the equation of
Aexip1 + o= — 7 (X1 — X¢)
in a successive approximation way (similarly done about y,
z) . Where, x; is a vector of x coordinates of all vertices
at time ¢; A¢ and f, ; are the square matrix determined by
the internal forces and the vector determined by the external
forces respectively; ~v is a parameter to decide the step width
of successive approximation.

IV. EXPERIMENTS

We applied the proposed method to actual 3D data ob-
served by the trinocular stereo vision system[6]. The main
parameters for the experiments are five: two parameters of
the elasticity and flexural rigidity of the deformable model,
two parameters to determine the gravitational force and
the attractive force to the observed data and the distance
threshold to judge if the vertex is on the observed data or
not. These parameters are empirically determined and fixed
in all the experiments. The deformation process is stopped
if any new patch is not added to “list of patch to attract”
during enough number of iterations.

The same clothes was observed while changing holding
points on the clothes which are corresponding to 9 states in
Fig. 1. States 5 ~ 12 were omitted since they are symmetrical
of any of States 1 ~ 3 and States 14 ~ 18. State 18 was also
omitted since it is fairly close to State 1. At every hanging
state, the clothes was observed three times while re-holding
it at the same point to obtain the data with shape variation.
So totally, 27 shapes were observed. Here, the clothes were
hung so as to be folded rather convexly toward the camera
to avoid similar shapes which are symmetrical to each other
with respect to the grip plane.
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A. Absorption of shape variation

Fig. 5 shows examples of deformation processes and the
final deformed shape for the cases of Fig. 3. At each model,
blue vertices show vertices which are not on the “list of patch
to attract”, green ones are vertices on the list, red to yellow
ones are vertices on the list which are enough close to the
observed data. More red represents closer to the data. In the
both cases, the resultant shapes are well consistent with the
actual 3D state, In other words, the 3D position and posture
of each part (ex. shoulder, armpit and so on) of the clothes
model are fairly close to the actual ones.

For all 27 data, similar results were obtained. Fig. 6
shows examples of the case corresponding to State 17, where
clothes are largely self-occluded and the amount of observed

3D data is relatively small. Even in the cases, the proposed
method realized good adjustment and gave good estimation
of the 3D information of each part of the clothes. It is one
of strong points of a model-driven approach that the 3D
information of even unobserved part can be inferred.

B. Effect for state recognition

In the previous subsection, we showed how the proposed
adjustment method can cover the shape variation in the case
that we give the correct holding position. In this subsection,
we consider the situation that we do not know at where the
clothes is held and use the method under the model-driven
recognition strategy illustrated in Fig. 1. Here, it is important
to understand what happens when a wrong predicted shape
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is given as the initial shape for the adjustment process.

Fig. 7 shows a case where the shapes hung at some
different holding points have 3D observed data close to each
others. The clothes observed in Fig. 7(a) is actually held at
the left shoulder (State 3). However, the shape hung at the
other shoulder (State 5), and the shape hung at one of the
armpits (State 16) give similar 3D observations. Predicted
shapes for the cases obtained through the simulation of
physical deformation are shown in Fig. 7(b). Actually, if
we count the vertices of the predicted shapes which are
enough close to the observed 3D points (red vertices in the
Fig. 7(b)), a wrong state, State 16, has the largest number.
Fig. 7(c) shows adjusted shapes after applying the proposed
method to these predicted shapes. All predicted shapes are
modified so as to better fit to the observed 3D data. However,
in the correct case, after the adjustment, the adjusted model
gets overlapped on the observed data with few excess and
deficiency. On the other hand, in the two wrong cases,
some parts of observed data do not have corresponding

model parts, and vice versa, some model parts do not have
corresponding observed data.

To evaluate this point quantitatively, the following criteria
is calculated: the overlap ratio, R,

coincident area /
visible model surface area

R = coincident area
observed area

Here “area’s are calculated on the 2D image plane of one
of stereo cameras after projecting the 3D observed data and
the 3D adjusted shape on the plane respectively.

Fig. 7(e) shows the results after the adjustment of the
proposed method. R values are 0.832, 0.789 and 0.791 re-
spectively for State 3, State 5, and State 16. The consistency
is well presented by the values.

For the comparison with the method using 2D observed
data[5], the results of overlap ratios after two-dimensional
adjustment were shown in Fig. 7(d). Concretely, each model
appearance is horizontally shrunk or extended so as to have
the same width as the observed region on the image plane.
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Table 1 State estimation results
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Fig. 8. Failure example in state estimation

The adjustment did not work well in this case. As a result,
a wrong state, State 16, has the highest R.

Using this evaluation value, we conducted experiments
to recognize clothes state. The results for all 27 cases are
summed up in Table 1. At each observation, before applying
the adjustment procedures, states which have vertical length
consistent to the observed data are selected as possible states.
The number of remained possible states after this length
check are different depending on observations and shown
in the second row in Table 1. Then, for every possible state,
the overlapped ratio R was calculated after each predicted
shape was deformed by the proposed method. The third and
forth rows show the resultant order of the correct shape
when sorting the candidates in ascending order of R. For
22 data, the correct state had the highest score, and for three
of the remaining data, the correct states came up to the third
position. You can see detailed numbers for each state in
Table 1. It is clear that failures happened intensively in the
case of two states, especially State 15. In most of the failure
cases, the values of R of the correct state were low. Fig 8
shows the adjusted model shape of one of the failure cases.
The adjusted shape still far from the actual state around
the hanging sleeve. Actually, a slight deviation between the
model and observed data around the hanging sleeve are also
shown in the case of Figs. 5, 6. Accumulation of errors
can be one reason for this phenomena since the part is the
furthest from the holding position. However, we infer that the
biggest reason is the accuracy of the initial shape predicted
by physical simulation around the part. The foldings occurred
around shoulders generally look more complex than the
simulation we used. The improvement of this simulation
process should lead better results.

V. CONCLUSIONS

We proposed a deformable-model-driven method for
clothes state recognition, which consists of two stages:
shape prediction by simulating physical deformation of the
clothes and adjustment of the predicted shape to 3D observed
data. The main contribution of this paper is proposal of an
adjustment method for the second stage. Owing to successful
absorption of shape variation of clothes, state of clothes

4
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3

were well recognized in the experiments using actual data
observed by our trinocular stereo vision system. It is one
of future subjects to find the best number of representative
shapes and a way to select good representative shapes.

The computational time is 5-20 sec (Intel Xeon 3.0GHz
dual core) for each adjustment process. It is better to accel-
erate the time for real application, but is allowable since this
recognition process is done only at the first time. Once we
understand the clothes state, we can just track the clothes
deformation based on the known state.

After the adjustment of the second stage, most parts of
the adjusted model show almost correct 3D position of the
corresponding part of the actual clothes. That means, once
we get the results, the 3D position and posture of a specific
target part can be known if the part appears on the observed
data. Even in the case that the target part is unobserved, the
position of the part on the model can give the information
of where and from which direction the clothes should be
observed next to obtain its actual 3D information. To affirm
these characteristics, we plan to conduct experiments of
actual handling by a humanoid.
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