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1 Introduction

The “WP-GEB” in the tool name WP-GEB-Estimator stands for weight-perturbed generalization er-
ror bounds and WP-GEB-Estimator is a tool for estimating the upper bounds of randomly weight-
perturbed generalization errors and the upper bounds of worst weight-perturbed generalization errors
of neural classifiers1 (hereafter called just classifiers). The weight-perturbed generalization errors rep-
resent the expected values of the misclassification-rates of classifiers when perturbations are added on
weight-parameters between neurons during inferences for any input. Random perturbations are randomly
selected from uniform distribution with specified range, while worst perturbations are selected towards
misclassification within the range. Although even worst perturbations do not necessarily cause misclas-
sification, perturbations really causing misclassification are called adversarial perturbations.

Machine Learning Quality Management (MLQM) Guideline [1] has been developed to clearly explain
the quality of various industrial products including statistical machine learning. This guideline defines
an internal quality property, called the stability of trained models, which represents that trained-models
reasonably behave even for unseen input data. Figure 1 shows the techniques to evaluate and improve
stability for each phase and each level, which is Figure 14 in the MLQM-Guideline version 42. WP-GEB-
Estimator is a useful tool for evaluating the stability of trained classifiers in the evaluation phase because
it has the following functions:

• [Noise robustness] It can measure misclassification-rates of randomly weight-perturbed classi-
fiers for a test-dataset and a perturbation sample.

• [Adversarial attack] It can search for adversarial weight-perturbations for each input in a test-
dataset.

• [Adversarial verification] It can statistically guarantee with a confidence for any input that
the existence-probability of adversarial weight-perturbations is less than a threshold.

• [Generalization error] It can statistically guarantee with a confidence that the weight-perturbed
generalization error (i.e. for any input including unseen input) is less than an upper bound.
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Figure 1: Techniques to evaluate and improve stability (Fig.14 in MLQM-Guideline [1])

2 Introduction to WP-GEB

In this section, weight-perturbed generalization error bounds (WP-GEB) are defined in Subsection 2.1,
and the methods for estimating WP-GEB are explained in Subsection 2.2.

1neural networks trained for classifications
2The version 3 has already been available [1] and the version 4 will be published soon.
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2.1 Definition of WP-GEB

The randomly weight-perturbed generalization errorRα(fw) of the classifier fw with the weight-parameters
w is the expected value of the weight-perturbed individual errors rα(x,y)(fw) for any pair (x, y) ∼ D, where

D is the distribution of pairs of input x and output (correct class) y, and it is defined as follows:

Rα(fw) := E
(x,y)∼D

[
rα(x,y)(fw)

]
where, the weight-perturbed individual error rα(x,y)(fw) is the expected value of the misclassification-rate

for one pair (x, y) of data when adding any perturbation u ∼ Uw,α on weights w, and the distribution
of weight-perturbations Uw,α is a multi-dimension uniform-distribution for randomly selecting ones from
the set Uw,α of weight-perturbations.

rα(x,y)(fw) := E
u∼Uw,α

[ℓ(fw+u(x), y)]

Uw,α := {(u1, . . . , u|w|) | ∀i. |ui| ≤ α|wi|}

where ℓ(y, y′) is the 0-1 loss-function that returns 0 if y = y′ and otherwise 1 (i.e. ℓ(y, y′) := 1 [y ̸= y′]).
The set Uw,α of weight-perturbations means that the absolute value of perturbation ui added on each
weight wi is less than or equal to α|wi|, where the α is the ratio of the perturbation to the weight.

The worst weight-perturbed generalization error Wα
θ (fw) is the expected value of 0/1 boolean value

for any pair (x, y) ∼ D, such that the boolean value is 1 if the weight-perturbed individual error rα(x,y)(fw)
is greater than the threshold θ(x,y), and it is defined as follows:

Wα
θ (fw) := E

(x,y)∼D

[
1

[
rα(x,y)(fw) > θ(x,y)

]]
Θ := E

(x,y)∼D

[
θ(x,y)

]
where θ(x,y) is a threshold that can be defined for each (x, y), and Θ is the expected value. The threshold
is the accepted ratio of existence of adversarial perturbations. Although the threshold is ideally 0 (Θ = 0)
for rigid evaluation, it is practically reasonable to set the threshold to an appropriate small value from
the perspective of computation cost and so on. Reasonable definitions of thresholds (fixed threshold and
adaptive threshold) are explained in the next Section 2.2.

In general, it is difficult to exactly compute weight-perturbed generalization errors because there can
infinitely exist data (x, y) and perturbations u. Therefore, WP-GEB-Estimator estimates the upper-
bound B of the weight-perturbed generalization error GE such that the following inequality holds with
probability at least (1 − δ) for any δ ∈ (0, 1).

P[GE ≤ B] ≥ 1− δ

2.2 Estimation of WP-GEB

It has been well studied to estimate the upper bound of randomly weight-perturbed generalization error
Rα(fw). For example, Pérez-Ortiz et al. [4] presented that such upper bound can be estimated by the
combination of the theorem of Maure Bound [3] and the theorem of Sample Convergence Bound [2], from
the inference-results of the classifier fw for a finite dataset and a finite perturbation-sample. WP-GEB-
Estimator estimates the upper bounds based on the method presented by Pérez-Ortiz except that test
datasets are used in WP-GEB-Estimator instead of training datasets.

On the other hand, it has not been well studied to estimate the worst weight-perturbed generalization
error Wα

θ (fw). It depends on the threshold θ, and there are two practical and reasonable approaches for
deciding the threshold [5]. One of them is fixed threshold θfix(m,n, δ0) that is independent from data
(x, y) and is defined as follows3:

θfix(m,n, δ0) := 1−
(
δ0
2n

)1/m

3It can be statistically guaranteed with a probability at least (1 − δ0/n) that the upper bound of the expected value
of rα

(x,y)
(fw) is less than the fixed threshold θfix(m,n, δ0) when adversarial perturbations cannot be found by the random

weight-perturbation sample for each (x, y) ∈ T .
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where δ0 ∈ (0, δ) is the acceptable degradation of confidence caused by using the perturbation sample
whose size is m instead of any perturbation, and n is the size of the test dataset T . In general, it is
reasonable to select δ0 to about a half of δ (i.e. δ0 = 0.5 × δ). The other one is adaptive threshold

θadapt(x,y) (m,n, δ0) and is defined as follows:

θadapt(x,y) (m,n0, δ0) :=

{
0 if (x, y) ∈ T1

θfix(m,n0, δ0) otherwise

where T1 is a subset of the test dataset T and is the set of the pairs (x, y) of data such that one or more
adversarial weight-perturbations are found for each (x, y) by adversarial perturbation-search or a random
perturbation-sample, and n0 is the size of (T − T1). WP-GEB-Estimator estimates the upper bounds of
the worst weight-perturbed generalization errors with fixed threshold Wα

θfix(fw) and the upper bounds
of the worst weight-perturbed generalization errors with adaptive threshold Wα

θadapt(fw) in accordance
with methods presented in [5].

3 Introduction to WP-GEB-Estimator

In this section, the four tools that constitute WP-GEB-Estimator are introduced in Subsection 3.1, and
then input files that WP-GEB-Estimator takes and output files that WP-GEB-Estimator generates are
explained in Subsections 3.2 and 3.3, respectively.

3.1 Tool Structure

WP-GEB-Estimator consists of the four tools for training, measuring, searching, and estimating. These
tools are described in the Python language with the TensorFlow/Keras libraries.

• train: trains classifiers to demonstrate WP-GEB-Estimator.

– Input: Train-dataset, Network architecture (CSV format), etc

– Output: Trained classifier (TensorFlow-SavedModel format), etc

• measure: measures misclassification-errors of trained classifiers for random weight-perturbations.

– Input: Test-dataset, Trained classifier (SavedModel format), Perturbation-ratios, etc

– Output: Measurement result (CSV format) of errors for random weight-perturbations, etc

• search: searches for adversarial weight-perturbations in trained classifiers.

– Input: Test-dataset, Trained classifier, Measurement results (CSV format) of errors, etc

– Output: Adversarial search results (CSV format) including measurement results

• estimate: estimates weight-perturbed generalization error bounds.

– Input: Results of search and random perturbation sample (CSV format), etc

– Output: Estimate results of weight-perturbed generalization error (CSV format), etc

The weight-perturbed generalization error bounds of classifiers trained by the first tool train or
the other tools can be estimated by sequentially executing the rest three tools: measure → search →
estimate. The relation between input/output files of the four tools that constitute WP-GEB-Estimator
is shown in Figure 2. In the case of evaluating classifiers already trained, it is not necessary to execute the
train tool train. However, the search tool search must be executed before the estimate tool estimate,
even though it is not necessary to search for adversarial weight-perturbations (i.e. worst weight-perturbed
errors with adaptive thresholds) because the tool estimate must take the file search_out.csv generated
by the tool search. In this case, the tool search with the option --skip_search can quickly generate
the files by skipping the real search. The input and output files are explained in the next Subsections 3.2
and 3.3.
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Figure 2: The relation between input/output files of the four tools that constitute WP-GEB-Estimator

3.2 Input files

The trained classifier to be evaluated and the test dataset are specified by the options --model_dir

and --dataset_file in the measure tool measure. The format of classifiers currently supported is only
TensorFlow-SavedModel and the format of datasets currently supported is only TF-Record. The built-in
classifiers (e.g. Inception v3) and datasets (e.g. MNIST) that are available in Keras can be used by
specifying the names in the options explained in Section 4.

For training a classifier, the tool train takes a CSV file that describes the architecture of the classifier.
The types and parameters that can be specified in the columns of the CSV file are shown in Table 1,
where I and R are the set of integers more than 0 and the set of real numbers more than 0, respectively.
As shown in Table 1, some parameters must be specified in accordance with layer-types, while the L2-
regularization coefficient (regular_l2) and the dropout-rate (rate) can be omitted because they can be
later specified by options explained in Section 4. By sequentially describing layers from the input layer in
lines of the CSV file, it can represent simple multilayer perceptrons (MLP), convolutional neural networks
(CNN), etc. Several samples of CSV files of MLP and CNN are saved in the directory net_arch.

Table 1: The types and the parameters of layers (a ∈ {relu|linear|softmax}, n, ni ∈ I, r ∈ R)

type activation units filters int_tuple regular_l2 rate

Activation a
Dense a n r
Conv2D a n (n1, n2)
MaxPooling2D (n1, n2)
Dropout r
BatchNormalization

Flatten
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3.3 Output files

The input/output information used in each tool train, measure, search, and estimate is saved in text-
files train_info.txt, measure_info.txt, search_info.txt, and estimate_info.txt in the directory
result, respectively (the file names can be changed by options). In addition, the input/output data are
also saved in the CSV file estimate_out.csv, that includes intermediate data saved in measure_out.csv

and search_out.csv. The estimate-result for each weight-perturbation ratio is incrementally added to
one line in the CSV file estimate_out.csv after the execution of the tool estimate. The CSV file is
useful for analyzing the results and drawing their graphs. The each column (A ∼ AL) of the CSV file
estimate_out.csv is explained as follow:

• Input/Output data in measure (also saved in A ∼ Q of measure_out.csv)

A [rnd_seed_measure] Random seed

B [dataset_name] The name of test dataset

C [dataset_size] The size of test dataset

D [dataset_offset] The start index of test dataset

E [dataset_file] The file name of test dataset

F [dataset_fmt] The file format of test dataset

G [image_width] The width of images in test dataset

H [image_height] The height of images in test dataset

I [batch_size_measure] The number of data for batch inference

J [model_dir] The name or the directory name of classifier

K [perturb_bn] The perturbation on batch normalization parameters (0: not added, 1: added)

L [perturb_params_size] The number of perturbed weight-parameters

M [perturb_ratio] The ratio of the maximum weight-perturbation to weight

N [perturb_sample_size] The size of the random sample of weight-perturbations

O [err_num_random] The number of data, for which adversarial weight-perturbations are found
by random sample

P [test_err_wst] The ratio of data, for which adversarial weight-perturbations are found by
random sample

Q [test_err_avr] The average of test error for random weight-perturbation sample

• Input/Output data in search (also save in R ∼ W in search_out.csv)

R [rnd_seed_search] Random seed

S [batch_size_search] The number of data for gradient computation in parallel

T [search_mode] The search-mode for adversarial weight-perturbations (0: FGSM, 1: I-FGSM)

U [max_iteration] The maximum iteration in I-FGSM

V [err_num_search] The number of data, for which adversarial weight-perturbations are found
by search

W [err_num] The number of data, for which adversarial weight-perturbations are found by search
or random sample

• Input/Output data in estimate

– Worst weight-perturbation (adaptive threshold)

X [gen_err_wst_adapt_ub] Perturbed generalization error upper bound

Y [test_err_wst_adapt_ub] Perturbed test error upper bound

Z [err_thr_adapt_ub] Adaptive threshold (expected upper bound)

AA [err_thr_adapt] Adaptive threshold (average for test dataset)
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AB [conf_wst_adapt] Confidence of perturbed generalization error upper bound

AC [conf0_wst_adapt] Confidence of perturbed test error upper bound

– Worst weight-perturbation (fixed threshold)

AD [gen_err_wst_fix_ub] Perturbed generalization error upper bound

AE [test_err_wst_fix_ub] Perturbed test error upper bound

AF [err_thr_fix] Fixed threshold

AG [conf_wst_fix] Confidence of perturbed generalization error upper bound

AH [conf0_wst_fix] Confidence of perturbed test error upper bound

– Random weight-perturbation

AI [gen_err_rnd_ub] Perturbed generalization error upper bound

AJ [test_err_rnd_ub] Perturbed test error upper bound

AK [conf_rnd] Confidence of perturbed generalization error upper bound

AL [conf0_rnd] Confidence of perturbed test error upper bound

4 Execution of WP-GEB-Estimator

In this section, it is explained how to execute each tool in WP-GEB-Estimator with options. Hereafter,
the set I of integers more than 0, the set R of real numbers more than 0, and the set S of strings are used.
In addition, the following set SR∗ of strings that represent lists of real numbers, where the delimiter is
the space " " is used.

SR∗ = {"r1 r2 · · · rm" | ∃m ∈ I. ∀i ∈ {1, . . . ,m}. ri ∈ R} ⊂ S

Furthermore, the following sets are also used for expressing the bulit-in datasets and classifiers that are
available in TensorFlow/Keras.

KerasDataSets = {"mnist", "fashion_mnist", "cifar10"} ⊂ S

KerasModels = {"inception_v3", "inception_resnet_v2", "resnet50", "xception",
"densenet121", "densenet169", "densenet201", "vgg16", "vgg19",
"nasnetlarge", "nasnetmobile"} ⊂ S

4.1 Training classifiers

The train tool train can be executed by the following command in the directory src:

python train_main.py [options]

where the following options are available.

--random_seed n (n ∈ I, default n = 1)

sets the random seed to n. (if n = 0 then random seed is not used, i.e. it is non-deterministic.)

--net_arch_file s (s ∈ S, default s = "net_arch/cnn_s")

specifies the CSV-file name of the network architecture to s.

--result_dir s (s ∈ S, default s = "result")

specifies the directory for saving the training results to s.

--model_dir s (s ∈ S, default s = "model")

specifies the directory (in the SavedModel format) for saving the trained classifier to s.

--dataset_name s (s ∈ KerasDataSets, default s = "mnist")

specifies the dataset name for training/testing to s.
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--train_dataset_size n (n ∈ I, default n = 50000)

sets the size of training dataset to n.

--train_dataset_offset n (n ∈ I, default n = 0)

sets the start index of training dataset to n.

--test_dataset_size n (n ∈ I, default n = 5000)

sets the size of test dataset to n.

--test_dataset_offset n (n ∈ I, default n = 0)

sets the start index of test dataset to n.

--validation_ratio r (r ∈ [0, 1) ⊂ R, default r = 0.1)

sets the ratio of the validation dataset in training dataset to r.

--sigma r (r ∈ R, default r = 0.1)

sets the standard deviation of normal distribution of initial parameters to r

--batch_size n (n ∈ I, default n = 100)

sets the batch size to n for training.

--epochs n (n ∈ I, defaultn = 50)

sets the number of epochs to n for training.

--dropout_rate r (r ∈ [0, 1) ⊂ R, default r = 0.0)

sets the dropout rate to r if it is not specified in the architecture file.

--regular_l2 r (r ∈ R, default r = 0.0)

sets the L2-regularization coefficient to r if it is not specified in the architecture file.

--learning_rate r (r ∈ R, default r = 0.01)

sets the (initial) learning rate to r.

--decay_rate r (r ∈ R, default r = 1.0)

sets the decay rate of learning rate to r. (if r = 1.0 then there is no decay)

--decay_steps n (n ∈ I, default n = 0)

sets the decay step of learning rate to n. (if n = 0 then there is no decay)

--early_stop b (b ∈ {0, 1}, default b = 0)

makes early-stopping valid if b = 1 otherwise early-stopping is invalid.

--early_stop_delta r (r ∈ R, default r = 0.0)

defines not-decreasing as the situation that the amount of the decrease is less than r.

--early_stop_patience n (n ∈ I, default n = 3)

stops training when loss is not-decreasing continuously n steps if early stopping is valid.

--verbose b (b ∈ {0, 1, 2}, default b = 1)

displays the progress of training if b = 1 or 2.
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4.2 Measuring errors for random perturbations

The measure tool measure can be executed by the following command in the directory src:

python measure_main.py [options]

where the following options are available.

--random_seed n (n ∈ I, default n = 1)

sets the random seed to n. (if n = 0 then random seed is not used, i.e. it is non-deterministic.)

--result_dir s (s ∈ S, default s = "result")

specifies the directory for loading or saving results to s.

--measure_file s (s ∈ S, default s = "measure")

specifies the file name for saving the measurement results to s.

--model_dir s (s ∈ S, default s = "model")

specifies the directory (in the SavedModel format) for loading the trained classifier to s.

(if s ∈ KerasModels then the built-in classifier s pre-trained in Keras is loaded.)

--dataset_name s (s ∈ S, default s = "mnist")

specifies the test dataset name to s.

(if s ∈ KerasDataSets then the built-in dataset s in Keras is loaded.)

--dataset_file s (s ∈ S, default s = "~/imagenet/1k-tfrecords/validation-*-of-00128")

specifies the file name for loading test dataset to s (not necessary if s ∈ KerasDataSets)

--dataset_fmt s (s ∈ S, default s = "tfrecord")

specifies the file format of test dataset to s.

(Currently, the supported format is TF-Record ("tfrecord") only.)

--image_width n (n ∈ I, default n = 0)

specifies the width of images in test dataset to n (n = 0 if Keras provides the width)

--image_height n (n ∈ I, default n = 0)

specifies the height of images in test dataset to n (n = 0 if Keras provides the height)

--dataset_size n (n ∈ I, default n = 5000)

sets the size of test dataset to n.

--dataset_offset n (n ∈ I, default n = 0)

sets the start index of test dataset to n.

--batch_size n (n ∈ I, default n = 0)

sets the dataset size measured at one time to n. (if n = 0 then it is the dataset size.)

--perturb_ratios s (s ∈ SR∗, default s = "0.01 0.1 1")

sets the list of the ratios of maximum weight-perturbation to weight to s.

(The weight-perturbed errors are sequentially estimated from the top of the list.)

--perturb_bn b (b ∈ {0, 1}, default b = 0)
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perturbs parameters in batch normalization layers if b = 1. (usually b = 0)

(if b = 0 then scale/shift parameters in batch normalization layers are not perturbed.)

--perturb_sample_size n (n ∈ I, default n = 1215)

sets the size of random perturbation sample to n.

--verbose_measure b (b ∈ {0, 1}, default b = 1)

displays the progress of measuring if b = 1. (if b = 0 then it is not displayed.)

4.3 Searching for adversarial perturbations

The search tool search can be executed by the following command in the directory src:

python search_main.py [options]

where the following options are available.

--random_seed n (n ∈ I, default n = 1)

sets the random seed to n. (if n = 0 then random seed is not used, i.e. it is non-deterministic.)

--result_dir s (s ∈ S, default s = "result")

specifies the directory for loading or saving results to s.

--measure_file s (s ∈ S, default s = "measure")

specifies the file name for loading the measurement results to s.

--search_file s (s ∈ S, default s = "search")

specifies the file name for saving the search results (including the measurement results) to s.

--skip_search b (b ∈ {0, 1}, default b = 0)

skips searching for adversarial weight-perturbations if b = 1. (usually b = 0)

(The search can be skipped if worst weight-perturbed errors (adaptive thr.) are not necessary.)

--search_mode n (n ∈ {0, 1}, default n = 0)

sets the search-mode for adversarial weight-perturbations to mode-n.

・mode-0: FGSM adds weight-perturbations towards misclassification based on gradients.

・mode-1: I-FGSM iteratively applies FGSM until reaching a local loss-maximum.

--batch_size n (n ∈ I, default n = 10)

sets the number of data for gradient computation in parallel to n if FGSM (mode-0) is used.

--max_iteration n (n ∈ I, default n = 20)

sets the maximum iteration to n if I-FGSM (mode-1) is used.

--verbose_search b (b ∈ {0, 1}, default b = 1)

displays the progress of searching if b = 1.
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4.4 Estimating WP-GEB

The estimate tool can be executed by the following command in the directory src:

python estimate_main.py [options]

where the following options are available.

--result_dir s (s ∈ S, default s = "result")

specifies the directory for loading or saving results to s.

--search_file s (s ∈ S, default s = "search")

specifies the file name for loading the search and the measurement results to s.

--estimate_file s (s ∈ S, default s = "measure")

specifies the file name for saving the estimate results to s.

--delta δ (δ ∈ (0, 1) ⊂ R, default δ = 0.1)

sets the confidence of generalization error bounds to 1− δ. (It is explained in Subsection 2.2.)

(The confidence-degradation is caused by using a dataset instead of any data.)

--delta0_ratio r0 (r ∈ (0, 1) ⊂ R, default r0 = 0.5)

sets the confidence of perturbed test-error bounds to 1− δr0 (The δr0 is δ0 in Subsection 2.2.)

(The confidence-degradation is caused by using a perturbation set instead of any perturbation.)

--max_nm n (n ∈ I, default r = 10)

sets the maximum number of iterations in Newton Method used in estimating bounds to n.

--eps_nm r (r ∈ R, default r = 0.0001)

sets the acceptable maximum error in Newton Method to r.

5 Execution Examples of WP-GEB-Estimator

In this section, examples of execution commands for WP-GEB-Estimator and some execution results
are introduced. WP-GEB-Estimator is described in the Python language with the libraries TensorFlow
and NumPy. The software versions used in the development are Python 3.10.10, TensorFlow 2.13.0, and
NumPy 1.23.2.

5.1 Training a classifier and estimating WP-GEB

Figure 3 shows the execution script run.sh (saved in the directory examples) for training a multilayer
perceptron by the dataset MNIST, that includes images of hand-written digits, measuring the errors when
random weight-perturbations are added, searching for adversarial weight-perturbations, and then estimat-
ing the generalization error bounds. The execution result is saved in the directory results/result. The
execution time in MacBook Pro (CPU: Apple M2 Max, Mem: 96GB) was as follows: For each perturba-
tion ratio (dataset size: 5000, weight-perturbation sample size: 1215, corresponding to the fixed threshold
1%), about 100 seconds for training, about 5 minutes for measuring, about 1 minute for searching, and
less than 0.1 seconds for estimating.

Figure 4 is a part of the result estimate info.txt for the execution script run.sh. It shows the esti-
mate results of the worst weight-perturbed generalization bounds, test error bounds, and the thresholds.
For example, the worst weight-perturbed generalization is less than 25% with probability at least 90%,
for the adaptive threshold bound 0.75% for the ratio 0.01 of the weight-perturbation to the weight.
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� �
python train_main.py --net_arch_file "net_arch/mlp_s_bn"

python measure_main.py

python search_main.py

python estimate_main.py� �
Figure 3: A simple execution script run.sh� �

Perturbation ratio = 0.01

Random perturbation sample size: 1215

Worst weight-perturbation (adaptive threshold):

Perturbed generalization error bound: 25.01% (Conf: 90.00%)

Perturbed Test error bound: 23.36% (Conf: 95.00%)

Adaptive threshold bound (expected): 0.7648% (Conf: 90.00%)

Adaptive threshold (average): 0.7495%

Worst weight-perturbation (fixed threshold):

Perturbed generalization error bound: 4.32% (Conf: 90.00%)

Perturbed Test error bound: 3.56% (Conf: 95.00%)

Fixed threshold: 0.9996%

Random weight-perturbation:

Perturbed generalization error bound: 6.23% (Conf: 90.00%)

Perturbed Test error bound: 4.91% (Conf: 95.00%)

(Elapsed Time: 0.0 [sec])

Perturbation ratio = 0.1

Random perturbation sample size: 1215

Worst weight-perturbation (adaptive threshold):

Perturbed generalization error bound: 100.00% (Conf: 90.00%)

Perturbed Test error bound: 99.90% (Conf: 95.00%)

Adaptive threshold bound (expected): 0.0013% (Conf: 90.00%)

Adaptive threshold (average): 0.0004%

Worst weight-perturbation (fixed threshold):

Perturbed generalization error bound: 7.34% (Conf: 90.00%)

Perturbed Test error bound: 6.36% (Conf: 95.00%)

Fixed threshold: 0.9996%

Random weight-perturbation:

Perturbed generalization error bound: 6.29% (Conf: 90.00%)

Perturbed Test error bound: 4.96% (Conf: 95.00%)

(Elapsed Time: 0.0 [sec])� �
Figure 4: A part of the execution result estimate info.txt for the script run.sh

5.2 Estimating WP-GEB for the pre-trained classifier Inception-v3

Figure 5 is an execution script run_imagenet.sh for estimating generalization error bounds of the pre-
trained bulit-in classifier Inception-v3 provided in TensorFlow/Keras. The execution result is saved in
the directory results/result_imagenet. Here, it is assumed that the file (in the TF-Record format) of
the dataset ImageNet is saved in the directory ImageNet_DIR. The ImageNet file (1k-tfrecords-0.zip,
1k-tfrecords-1.zip) in the TF-Record format can be downloaded from the following web-site of Kaggle.

ImageNet 1K TFrecords ILSVRC2012 - part 0

https://www.kaggle.com/datasets/hmendonca/imagenet-1k-tfrecords-ilsvrc2012-part-0

The execution time in MacBook Pro (CPU: Apple M2 Max, Mem: 96GB) was as follows: for the
dataset size 1000 and weight-perturbation sample size 525, corresponding to the fixed threshold 2%, about
30 minutes for measuring, about 7 minute for searching, and less than 0.1 seconds for estimating. The
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� �
ImageNet_DIR="$HOME/datasets/imagenet/1k-tfrecords/validation"

python measure_main.py \

--result_dir "result_imagenet" --dataset_name "imagenet" \

--dataset_file "$ImageNet_DIR/validation-*-of-00128" \

--dataset_size 1000 --batch_size 50 \

--model_dir "inception_v3" \

--perturb_ratios "0.0001" --perturb_sample_size 525

python search_main.py --result_dir "result_imagenet"

python estimate_main.py --result_dir "result_imagenet"� �
Figure 5: An execution script run imagenet.sh for the pre-trained classifier Inception-v3
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Figure 6: The estimate results of weight-perturbed generalization errors and the thresholds（conf. 90%）

estimate result was as follows: for the ratio 0.0001 of the weight-perturbation to the weight, the worst
weight-perturbed generalization is less than 36.1% with probability at least 90%, for the adaptive thresh-
old bound 1.4% and the randomly weight-perturbed generalization is less than 33.2% with probability at
least 90%.

5.3 Comparison of WP-GEB between two classifiers

The script run_main.sh (saved in the directory examples) is an execution script for training two classifiers
with or without regularization and for estimating the weight-perturbed generalization error bounds. The
L2-regularization coefficient can be easily specified by the execution option --regular_l2 if the L2-
regularization coefficients in the architecture file are omitted. About the options, also see the scripts
run_submit.sh and run_option.sh, that are executed by run_main.sh.

Figure 6 shows the graph of the estimate results by WP-GEB-Estimator and they are the weight
perturbed generalization error bounds (confidence 90%) and the thresholds of the classifier without reg-
ularization and the classifier with the L2-regularization coefficient 0.001. The graph was drawn by the
spreadsheet-software Microsoft Excel from the estimate_out.csv. The horizontal axis represents the
ratio of weight-perturbation to weight. Figure 6 explicitly shows that the classifier with regularization is
more robust for weight-perturbations than the classifier without regularization, even though there is no
difference between their errors when no perturbation is added. In addition, the worst weight-perturbed
generalization error bounds with adaptive thresholds start increasing at the ratio that is two orders less
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than the randomly weight-perturbed generalization error bounds start increasing.
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