
A Calculus of Countable Broadcasting Systems

Yoshinao ISOBE, Yutaka SATO, Kazuhito OHMAKI

Computer Science Division, Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

E-mail:{ isobe|ysato|ohmaki }@etl.go.jp

Abstract. In this paper we propose a process algebra named CCB (a
Calculus of Countable Broadcasting Systems). We define an observation-
al congruence relation in CCB after basic definitions of CCB, and give
a sound and complete axiom system for the congruence relation of finite
agents.
CCB is developed for analyzing a multi-agent model with broadcast com-
munication. The most important property of CCB is that a broadcaster
of a message can know the number of receivers of the message after
broadcasting. The property is not easily described in the other process
algebras.
The multi-agent model is useful for constructing extensible systems. A
disadvantage of the multi-agent model is that agents must be designed
very carefully because unexpected behavior may arise by interactions
between the agents. Therefore we want to analyze behavior of the agents.

1 Introduction

A design of software should be divided into several program components called
agents which may be executed concurrently and communicate with each other
through events, in order to develop and refine them independently thus effi-
ciently. This approach is called a multi-agent model[1]. The advantages of the
multi-agent model can be summarized as follows:

1. Choice of different description languages: Each agent can be programmed by
its appropriate language and communicate with other agents through some
standardized protocols modeled as events.

2. Software reusability: If each agent is carefully designed, it can be shared
and reused. The interfaces (i.e., protocols) between agents must be designed
simple and flexible to achieve this goal.

3. Machine independence: Machine independence should be realized in recent
computer systems which contain a wide variety of machines in one network.
The multi-agent model will also fit to realize this machine independence.

In order to flexibly connect agents, one of the authors has developed a mech-
anism named VIABUS[13] which has a software bus architecture with broadcast
communication based on the multi-agent model. The advantage of broadcast
communication is that a broadcaster of an event need not be modified when new
receivers of the event are attached to VIABUS, because destinations of the event

are not specified. Thus broadcast communication is useful for constructing ex-
tensible software systems. For example, VIABUS has been used for an extensible
User Interface Management System named VIAUIMS[13] as shown in Fig.1.

event flows

VIABUS

interfase
agents

application
agents

contral
agents

UIMS
agents

Fig. 1. The architecture of VIAUIMS

Though the multi-agent model is useful for efficient development and refine-
ment of software, agents should be designed very carefully in order to prevent
unexpected behavior such as deadlocks by interactions between agents. Thus we
want a tool to analyze behavior of agents in the multi-agent model, where the
tool should satisfy the following four requirements:

1. Broadcast communication can be described. A broadcasted event is received
by all agents which require the event.

2. A broadcaster of an event can know the number of receivers of the event after
broadcasting. Though a broadcaster does not specify the number of receivers
of the event when broadcasting, it sometimes wants to know the number
after broadcasting.

3. Agents can dynamically change receivable events. Agents may change their
receivable events as reaction of events from the other agents.

4. Multicast communication can be also described. An agent sometimes wants
to multicast an event to the specific number of receivers for synchronization.

We attempt to adopt a process algebra as a basic tool for analyzing agents in
the multi-agent model. Many various process algebras have been proposed such
as CCS[2], π-calculus[3], SCCS[4], and CBS[7, 8]. The above requirements 1 and
3 are satisfied by CBS, and the requirement 4 is satisfied by SCCS. However it
is difficult for existing process algebras to satisfy the requirement 2.

If users can attach and detach agents in a system, then the number of receivers
of an event can not be fixed. Furthermore one agent can change its receivable
events. Therefore it is important to dynamically count the number of receivers
of an event. For example, we want to describe the following behavior:

– An agent P1 broadcasts an event st, and starts (triggers) the other agents
Q1,···,n which receive st, where P1 must wait to continue its task until all
the triggered agents Q1,···,n finish their tasks.

In this case P1 must know the number n of the triggered agents.
In this paper we propose a process algebra named CCB (a Calculus of Count-

able Broadcasting Systems). The above four requirements are satisfied by CCB.
We define an observational congruence relation in CCB, and give a sound and
complete axiom system for the congruence relation of finite agents.

The outline of this paper is as follows: In Section 2 we introduce process alge-
bras, and point out some problems of existing process algebras for broadcasting
systems. In Section 3 we informally introduce CCB. In Section 4 the syntax and
the semantics of Core-CCB which is a base of CCB are defined. In Section 5
CCB is defined based on Core-CCB by translation. In Section 6 an observation-
al congruence relation in Core-CCB is defined, then an axiom system is given.
In Section 7 we discuss how to describe broadcast communication in the other
process algebras. In Section 8 we conclude this paper.

2 Process algebras

Process algebras are well known as mathematical tools to describe and analyze
concurrent and communicating systems. Behavior of agents is described as (a-
gent) expressions in a process algebra, then equality of behavior of two agents
is proven by rewriting their expressions according to algebraic laws in the pro-
cess algebra. In general, messages are carried by events with names. When an
event with a name and messages has been broadcasted, each agent decides by
monitoring the name whether to read the messages in the event, or discard.

Many various process algebras have been proposed. In the rest of this section,
we classify them into three groups by their communication styles, and point out
some problems of existing process algebras for analyzing broadcasting systems.

2.1 Point-to-point communication

When an agent sends an event, only one agent can receive the event in CCS[2],
π-calculus[3], and so on. In order to simulate broadcast communication, an event
must be sent the same times as the number of agents which require the event,
but it is very difficult to dynamically know the number. The following example
shows that an agent C(i) attempts to count the number of agents which can
receive an event a but fails it, using CCS.

P1
def= a.0, P2

def= b.0, P3
def= a.0, C(i) def= a.C(i+ 1) + out(i).0

SY S
def= (C(0)|P1|P2|P3)\{a, b}

The agent C(i) increases the local variable i by 1, when it can send the event a
(in other words, an agent can receive the event a). The agent C(i) also sends out
an event out with the value of the variable i as a message. At the initial state,
two agents P1 and P3 can receive the event a. Therefore it is expected that the
value of i sent out is 2, but it can not be predicted at all which value 0, 1, or 2
is sent out, as shown the following equation1.

SY S ∼ out(0).0 + τ.(out(1).0+ τ.out(2).0)

The problem is caused by possibility that C(i) sends the event out before sending
the event a to both the agents P1 and P3. This problem is not solved even though
the event a has higher priority[11] than the event out. Because SY S falls into
an infinite loop if P1 is defined as P1

def= a.P1.
1 ∼ is strong equivalence in CCS[2].

2.2 Multicast communication

When an agent multicasts an event to n agents, just n agents can receive the
event in SCCS[4], Meije[5], and so on. For example, in SCCS multicast commu-
nication is described as follows2:

P0 × P1 × P2
1−→ P ′

0 × P ′
1 × P ′

2

where each component is defined as follows:

P0
def= a−2 :P ′

0 P1
def= a1 :P ′

1 P2
def= a1 :P ′

2

In this example an agent P0 multicasts an event a to explicitly two agents3.
Therefore if a new agent which require the event a is attached to this example,
then P0 must be slightly modified as P0

def= a−3 :P ′
0.

In order to simulate broadcast communication, a multicaster of an event must
count the number of receivers of the event, but it is very difficult by the same
reason as shown in Subsection 2.1.

2.3 Broadcast communication

When an agent broadcasts an event, all agents which require it can receive it in
CSP[6], CBS[7], and so on. Especially CBS has been developed for broadcasting
systems. For example, in CBS broadcasting is described as follows:

(P0|P1|P2|P3)\{a}
τ−→ (P ′

0|P ′
1|P2|P ′

3)\{a}

where each component is defined as follows:

P0
def= a!.P ′

0, P1
def= a?.P ′

1 + b?.P ′′
1 , P2

def= b?.P ′
2 + c?.P ′′

2 , P3
def= a?.P ′

3

Attributes ! and ? of events means transmitting and receiving, respectively. P0

broadcasts an event a, then both P1 and P3 receive it. P2 does not receive
the event a, because it has no transitions like a?−→, thus it dose not require a.
Unfortunately, CBS is not interested in the number of receivers of an event.

3 Introduction of CCB

We propose a process algebra CCB which is an extension of CCS. The four
requirements mentioned in Section 1 are satisfied by CCB. The requirement 2
is the most important, because the other requirements are satisfied also by the
other process algebras.

An event in CCB has a form aθ〈x〉(y), where a is a name, θ is an attribute,
x is the number of receivers of this event (We call x the received number), and y
means a message passed by this event. We often omit a received number 〈1〉 and
an empty message (). CCB has four attributes {!, ?, !!, ??} explained as follows:
2 : and × are a prefix and a composition combinators in SCCS, respectively.
3 −2 in a−2 of P0 means sending to two agents.

1. a!〈n〉(m) is used for multicasting. n is a non-negative integer (including zero).
m is a message carried by this multicasting. Especially if n is zero then
a!〈0〉(m) is called a silent event. The silent event can be considered as an
invisible and uncontrolled event like τ in CCS. In observational analysis, the
silent event should be ignored as far as possible.

2. a?〈n〉(y) is used for receiving a multicasted event with the same event name
a. n is a positive integer (not including zero). y is a variable bound to a
message carried by the multicasted event.

3. a!!〈x〉(m) is used for broadcasting. x is a variable bound to the number of
receivers of this event. m is a message carried by this broadcasting.

4. a??〈n〉(y) is used for receiving a broadcasted event with the same event name
a. n is a positive integer. y is a variable bound to a message.

For example, in CCB broadcasting is described as follows:

(P0|P1|P2|P3)\{a}
a!〈0〉−→ (P ′

0(2)|P ′
1|P2|P ′

3)\{a}

where each component is defined as follows:

P0
def= a!!〈x〉.P ′

0(x), P1
def= a??.P ′

1 + b??.P ′′
1 , P2

def= b??.P ′
2 + c??.P ′′

2 , P3
def= a??.P ′

3

P0 broadcasts an event a, then both P1 and P3 receive it. x is bound to the
number 2 of the receivers as shown in P ′

0(2) after broadcasting.

4 The definition of Core-CCB

In this section, we define the syntax and the semantics of Core-CCB which is
the base of CCB. Core-CCB is a process algebra with no value variables4. The
definition of CCB is given based on Core-CCB in Section 5.

4.1 The syntax of Core-CCB

First, we assume that an infinite set of names, N = a, b, c, · · ·, is given. The set
of event Event is defined by using N as follows:

Event = {aθn : a ∈ N , θ ∈ T , n ∈ I} − {a?0, a??0 : a ∈ N}

where I is a set of non-negative integer {0,1, 2, · · ·}, and T ranged over by θ is a
set of attributes {!, ?, !!, ??}. Especially a!0 is a silent event for any a. n of aθn is
the received number of this event, and must be a constant even for broadcasting
(θ =!!). We show how to describe broadcast communication of CCB by Core-CCB
in Section 5.

Furthermore we introduce a set of agent variables, X ranged over byX,Y, · · ·,
a set of agent constants, K ranged over by A,B, · · ·, and a set of renaming
functions, F ranged over by S : N → N .

We define the set E of Core-CCB expressions as follows:
4 The value variables are used for received numbers and messages in events of CCB
like x, y in aθ〈x〉(y).

Definition 4.1 The set of agent expressions, E ranged over by E,F, · · ·, is de-
fined by the following BNF expression:

E ::= X A 0 aθn.E E +E E|E E[S] E\L

where we take X ∈ X , A ∈ K, aθn ∈ Event, S ∈ F , and L ⊆ N .

An agent is an agent expression with no agent variables. The set of agents
is denoted by P ranged over by P,Q, · · ·. An agent constant is an agent whose
meaning is given by a defining equation. In fact, we assume that for every agent
constant A there is a defining equation of the following form: A def= P (P ∈ P),
where we also assume that A is weakly guarded[2] in P . The weak guard is defined
as follows:

Definition 4.2 X is weakly guarded in E if each occurrence of X is within some
subexpression of E of form aθn.F .

Agent constants which are not weakly guarded make a calculus more complex,
and the behavior is indefinite. Practically, we are interested in weakly guarded
agent constants in CCB. (also in CBS.)

4.2 The semantics of Core-CCB

The semantics of Core-CCB is defined by the following labelled transition system
like one of CCS:

(E , Event, { aθn

−→: aθn ∈ Event})

For example, E aθn

−→ E′ (E,E ′ ∈ E) indicates that the agent expression E may
perform the event aθn and thereafter become the agent expression E ′. The se-
mantics for agent expressions E consists in the definition of each transition rela-
tion aθn

−→ over E .
Before defining the semantics, we define a function mon(E) named monitor

function which takes an agent expression and produces a subset of names.

Definition 4.3 For each agent expression E, we inductively define monitor
function mon : E → 2N as follows:

mon(0) = ∅

mon(aθn.E) =
{
{a} (θ =??)
∅ (otherwise)

mon(E + F) = mon(E) ∪mon(F)
mon(E|F) = mon(E) ∪mon(F)

mon(E[S]) = {S(a) : a ∈ mon(E)}
mon(E\L) = mon(E)− L

mon(A) = mon(P) (A def= P)
mon(X) = ∅

��

Since agent constants must be weakly guarded, mon(E) can be effectively
evaluated. Intuitively, if an agent expression E now requires receiving a broad-
casted event, then the event name is included in mon(E).

Then the semantics of Core-CCB is defined.

Definition 4.4 The transition relation aθn

−→ over agent expressions is the small-
est relation satisfying the following inference rules. Each rule is to be read as
follows: if the transition relations above the line are inferred and the side condi-
tions are satisfied, then the transition relation below the line can be also inferred.

Event
aθn.E

aθn

−→ E

Choice1
E

aθn

−→ E′

E + F
aθn

−→ E′

Choice2
F

aθn

−→ F ′

E + F
aθn

−→ F ′

Ren E
aθn

−→ E′

E[S]
S(a)θn

−→ E′[S]

Res1
E

aθn

−→ E′

E\L aθn

−→ E′\L
(a /∈ L)

Res2
E

aθ0

−→ E′

E\L a!0−→ E′\L

(
θ ∈ {!, !!},
a ∈ L

)

ConP
aθn

−→ P ′

A
aθn

−→ P ′ (A
def
= P)

Para1
E

aθn

−→ E′

E|F aθn

−→ E′|F

(
θ ∈ {!, ?} or
a /∈ mon(F)

)

Para2
F

aθn

−→ F ′

E|F aθn

−→ E|F ′

(
θ ∈ {!, ?} or
a /∈ mon(E)

)

Para3
E

aθm

−→ E′ F
aφn

−→ F ′

E|F aθ(m−n)

−→ E′|F ′

(
θ ∈ {!, !!},
φ = @(θ),
m ≥ n

)

Para4
E

aφn

−→ E′ F
aθm

−→ F ′

E|F aθ(m−n)

−→ E′|F ′

(
θ ∈ {!, !!},
φ = @(θ),
m ≥ n

)

Para5
E

aθm

−→ E′ F
aθn

−→ F ′

E|F aθ(m+n)

−→ E′|F ′
(θ ∈ {?, ??})

where @ in the conditions is a function from T to T defined as follows:
@(!) =?, @(?) =!, @(!!) =??, @(??) =!! ��

Then the following proposition for monitor function is proven.

Proposition 4.1 E
a??n

�−→ for any n iff a /∈mon(E) ��

We intuitively explain Parai rules.

1. By Para1 E multicasts an event or receives a multicasted event without
respect to F . While E broadcasts an events or receives a broadcasted event
only if the event name is not included in mon(F), thus F does not require the
event. If F requires the event, then Para3 or Para5 msut be used instead
of Para1. This restriction relates to the requirement 1 stated in Section 1.
Para2 is symmetric to Para1.

2. By Para3 E multicasts or broadcasts an events and F receives the event,
if the number of receivers within F is not greater than the received number
specified by E. If the number (m − n) in the conclusion of Para3 is zero,
then E|F can no longer communicate with the other agents. This calculation
of the received number relates to the requirement 2 stated in Section 1.
Para4 is symmetric to Para3.

3. By Para5 to receive an event can be synchronized. We have no rules for
synchronization of transmitting.

Then we explain an event of form a!!0 which is not a silent event. In order to
compare a!0 with a!!0, we show the following transitions:

(1) ((a!2.0|a?1.0)|a?1.0)|a?1.0 a!0−→ ((0|0)|0)|a?1.0

(2) ((a!!2.0|a??1.0)|a??1.0)|a??1.0
a!!0

�−→

The transition (1) is inferred by Para3 and Para1. However Para1 can not be
used for the transition (2), because a ∈ mon(a??1.0). The following transitions
by broadcasting are possible:

(3) ((a!!3.0|a??1.0)|a??1.0)|a??1.0 a!!0−→ ((0|0)|0)|0
(4) ((a!!2.0|a??1.0)|a??1.0)\{a}|a??1.0 a!0−→ ((0|0)|0)\{a}|a??1.0

In the transition (3), the number specified by the broadcaster is equal to the
number of receivers. In the transition (4), the scop of the event a is restricted
and a!!0 is changed to a!0 by Res2.

5 The definition of CCB

In this section, we define the syntax and the semantics of CCB, and give a small
example. The semantics of CCB is given by translation to Core-CCB.

5.1 The syntax of CCB

The syntax of CCB is defined as follows:

Definition 5.1 The set of agent expressions, E+ ranged over by E,F, · · ·, is
defined by the following BNF expression:

E ::=X A(e1, · · · , en) 0 a[e1]!〈c0〉(e2).E a[e1]!!〈x〉(e2).E a[e]?〈c1〉(x).E
a[e]??〈c1〉(x).E E +E E|E E[S] E\L [[b]]E

where we take X ∈ X , A ∈ K, a ∈ N , S ∈ F , and L ⊆ N . x is a bound
value variable, b is a boolean expression, and ei is an expression. ci is also an
expression, where the range of c0 must be non-negative integer and the range of
c1 must be positive integer. All value variables in expressions b, ei, and ci must
be bound by their occurrences on their left. ��

The unconventional combinator [[b]] is a conditional combinator. It intuitively
means that if b is true then [[b]]E behaves like E, otherwise it stops.

Each agent constant A with arity n has a defining equation A(x1, · · · , xn)
def=

E, where the right-hand side E may contain no agent variables and no free value
variables except x1, · · · , xn.

An event name a[e] consists of a base event name a and a postfix [e]. We
sometimes omit a postfix [0]. Intuitively an event a[x]! will be received by a[e]?
for some e. In order to avoid ambiguous communication, x must be bound before

a[x]! is multicasted. For example, the following agent INC is a procedure which
takes a value y and return a value y + 1.

INC
def= inc?(x).((in[x]?(y).out[x]!(y + 1).0)|INC)

INC is duplicated just after called by a caller in order to prepare for the next
caller. INC binds x to a process-id of a caller and certainly return y + 1 to the
caller through out[x]. For example a caller may be defined as follows:

CALLER23 def= inc!(23).in[23]!(7).out[23]?(z).TASK23(z)

TASK23(z) depends on z, and z will be bound to 8. This strategy has been
used in a parallel programming language M[2] defined in CCS.

5.2 The semantics of CCB

The semantics of CCB is given by translation. Each expression in CCB without
free value variables is translated into an expression in Core-CCB by a function
B : E+ → E . We introduce a operator .̈ It takes an expression and produce a
fixed value which the expression evaluates. For example, if e = 2+3 then ë = 5.

Definition 5.2 The function B from E+ to E is defined as follows5:

B(X) = X
B(A(e1, · · · , en)) = Ae1,···,en

B(0) = 0
B(a[e1]!〈c〉(e2).E) = aë1,ë2 !c̈.B(E)
B(a[e1]!!〈x〉(e2).E) =

∑
n∈I aë1,ë2 !!n.B(E{n/x})

B(a[e]?〈c〉(x).E) =
∑

v∈V aë,v?c̈.B(E{v/x})
B(a[e]??〈c〉(x).E) =

∑
v∈V aë,v??c̈.B(E{v/x})

B(E + F) = B(E) + B(F)
B(E|F) = B(E)|B(F)
B(E[S]) = B(E)[S′]
B(E\L) = B(E)\L′

B([[b]]E) =
{
B(E) if b=true
0 otherwise

where we assume that all values belong to the fixed value set V , and

S′(av1,v2) = S(a)v1,v2 , L′ = {av1,v2 : a ∈ L, (v1, v2) ∈ V 2}

where {v/x} is a substitution of a value v into a variable x. Furthermore the
single defining equation A(x1, · · · , xn)

def= E of an agent constant is translated
into the indexed set of defining equations

{Av1,···,vn

def= B(E{v1/x1, · · · , vn/xn}) : (v1, · · · , vn) ∈ V n}. ��

We now give a simple example of translating CCB into Core-CCB. The fol-
lowing expression is described in CCB:

CHECK
def= a!!〈x〉.([[x = 0]]zero!〈1〉.0+ [[x �= 0]]nonzero!〈1〉.0)

This agent CHECK broadcasts an event a!!〈x〉, and check the number of agents
which receive a!!〈x〉. Thereafter if the number is zero then CHECK multicasts

5 It I 	= ∅, then
∑

i∈I
Pi is a syntactic shorthand of P1 + P2 + · · ·, otherwise it is a 0.

an event zero!〈1〉, otherwise multicasts an event nonzero!〈1〉. This expression in
CCB is translated into an expression in Core-CCB by B as follows:

B(CHECK) = B(a!!〈x〉.([[x = 0]]zero!〈1〉.0+ [[x �= 0]]nonzero!〈1〉.0))
=

∑
n∈I a!!n.B([[n = 0]]zero!〈1〉.0 + [[n �= 0]]nonzero!〈1〉.0)

=
∑

n∈I a!!n.(B([[n = 0]]zero!〈1〉.0) + B([[n �= 0]]nonzero!〈1〉.0))
= a!!0.(B(zero!〈1〉.0) + 0) +

∑
n∈I1

a!!n.(0 + B(nonzero!〈1〉.0))
= a!!0.(zero!1.0+ 0) +

∑
n∈I1

a!!n.(0+ nonzero!1.0)

where I is a set of non-negative integer and I1 is a set of positive integer.
We show another example of translating CCB into Core-CCB by using INC

and CALLER23 defined in Subsection 5.1.

B(INC) = B(inc?(x).((in[x]?(y).out[x]!(y + 1).0)|INC))
=

∑
v∈V incv?.((

∑
u∈V inv̈,u?.outv̈, ¨u+1!.0)|B(INC))

= inc1?.((in1,1?.out1,2!.0+ in1,2?.out1,3!.0+ · · ·)|B(INC))+
inc2?.((in2,1?.out2,2!.0+ in2,2?.out2,3!.0+ · · ·)|B(INC)) + · · ·

B(CALLER23) = B(inc!(23).in[23]!(7).out[23]?(z).TASK23(z))
= inc23!.in23,7!.(

∑
v∈V out23,v?.TASK23v)

In this case, TASK238 will be choiced through an event out23,8?.

5.3 An example in CCB

We show an example of a distributed used-car information system. This system
consists of many agents which have information about used-cars and give the
information to car-dealers, described as follows:

CARINFO
def= (INFO1|INFO2| · · · |DEALER1|DEALER2| · · ·)

For example, information agents about PORSCHE-928 are defined as follows:

INFO45 def= porsche928??(x).(info[x]!(‘1985.RED.52940km.S34’)|INFO45)
INFO81 def= porsche928??(x).(info[x]!(‘1991.BLUE.21380km.S16’)|INFO81)

A postfix [x] is used for determining a destination of information as used in INC.
A car-dealer wants to gather all information about a car, though he does not
know the number of agents with the car information. Therefore he broadcasts
an event for the car. For example, a car-dealer may be defined as follows:

DEALER7 def= porsche928!!〈x〉(7).LP (x, nil)
LP (n, list) def= [[n �= 0]]info[7]?(y).LP (n− 1, y ::list) + [[n = 0]]PRINT (list)

DEALER7 querys about PORSCHE-928 through an event porsche928, then
gets the number of agents with information about PORSCHE-928. Two variables
n and list of LP (n, list) are initially bound to the number of the information
agents and nil, respectively. When LP (n, list) receives an event info[7], y is
bound to car information carried by info[7]. Then y is concatenated into idlist
and n is decreased by 1. If n is zero, then list is printed out by an agent PRINT ,
because LP (n, list) has already gathered all information about PORSCHE-928.

6 Equivalence and congruence relations

We want observational congruence relations in Core-CCB like in CCS. It is
important that observation congruence =[2] defined in CCS is not a congruence
relation in Core-CCB as shown in the following example:

P1 = P2, P1|Q �= P2|Q

where each component is defined as follows:

P1
def= a??1.b!0.P1, P2

def= a??1.P2, Q
def= a!!0.out0!1.Q+ a!!1.out1!1.Q

P1 and P2 are observation congruent because the silent event b!0 is ignored, but
P1|Q and P2|Q are not observation congruent because P1 sometimes fails to
receive the event a broadcasted by Q while P2 can always receive it. Therefore
we define a slightly stronger observational congruence relation in this paper than
observation congruence. We prepare several notations for the definition.

The set Event∗, ranged over by s, t, · · ·, is a set of event sequences including
an empty sequence ε, and if t = a1(θ1)n1 · · · ak(θk)nk ∈ Event∗, then we write

E
t−→ E′ if E

a1(θ1)
n1

−→ · · · ak(θk)nk

−→ E′. Especially, if E ε−→ E′ then E′ ≡ E. (≡
means syntactic identity.) About transitions by silent events, we sometimes write

E
τ−→ E′ if E a!0−→ E′ for some event name a. We now define a new transition

relation as follows:

Definition 6.1 If t = a1(θ1)n1 · · · ak(θk)nk ∈ Event∗, then E
t=⇒ E′ if

E(τ−→)∗
a1(θ1)

n1

−→ (τ−→)∗ · · · (τ−→)∗
ak(θk)nk

−→ (τ−→)∗E′

where (τ−→)∗ means zero or more transitions by silent events. ��

Then we define an observational bisimulation relation in Core-CCB like weak
bisimulation in CCS.

Definition 6.2 A binary relation S ⊆ P × P over agents is a weak monitor
bisimulation if (P,Q) ∈ S implies, for all aθn ∈ Event, that

(i) whenever P
aθn

−→ P ′ then for some Q′, Q
âθn

=⇒ Q′ and (P ′, Q′) ∈ S,

(ii) whenever Q
aθn

−→ Q′ then for some P ′, P
âθn

=⇒ P ′ and (P ′, Q′) ∈ S,
(iii) whenever a /∈ mon(P) then, for some Q′, Q′′,

Q⇒ Q′ ⇒ Q′′, a /∈ mon(Q′), and (P,Q′′) ∈ S,
(iv) whenever a /∈mon(Q) then, for some P ′, P ′′,

P ⇒ P ′ ⇒ P ′′, a /∈mon(P ′), and (P ′′, Q) ∈ S.

where t̂ is the event sequence gained by deleting all occurrences of silent events
from t. ��

Weak monitor bisimulations are obtained from weak bisimulations by adding the
conditions (iii) and (iv). A relation is defined by using weak monitor bisimula-
tions.

Definition 6.3 P and Q are weakly monitor equivalent, written P ≈m Q, if
(P,Q) ∈ S for some weak monitor bisimulation S. ��

Weak monitor equivalence is the largest relation preserved by a parallel combi-
nator | and included in observation equivalence ≈ defined in CCS, as shown in
the following proposition.

Proposition 6.1 P1 ≈m P2 iff for any Q, P1|Q ≈ P2|Q ��

We show an interesting equation in the following proposition.

Proposition 6.2 P1 + P2 + a!0.(P1 + a!0.(Q+ P2)) ≈m P1 + a!0.(Q+ P2) ��

This equation shows a property of weak monitor equivalence, because this equa-
tion does not held for strong monitor equivalence defined in Definition 6.5.

We notice a special case P ≡ P ′ ≡ P ′′ and Q ≡ Q′ ≡ Q′′ in Definition 6.2,
and define strong monitor bisimulations as follows:

Definition 6.4 A binary relation S ⊆ P × P over agents is a strong monitor
bisimulation if (P,Q) ∈ S implies, for all aθn ∈ Event, that

(i) whenever P
aθn

−→ P ′ then for some Q′, Q
âθn

=⇒ Q′ and (P ′, Q′) ∈ S,

(ii) whenever Q
aθn

−→ Q′ then for some P ′, P
âθn

=⇒ P ′ and (P ′, Q′) ∈ S,
(iii) mon(P) = mon(Q).

��

A relation is defined by using strong monitor bisimulations like weak monitor
equivalence.

Definition 6.5 P and Q are strongly monitor equivalent, written P !m Q, if
(P,Q) ∈ S for some strong monitor bisimulation S. ��

It is helpful to consider strong monitor equivalence before weak monitor
equivalence, because the definition of strong monitor equivalence is simpler than
one of weak monitor equivalence and P !m Q implies P ≈m Q. In the rest of
this paper we consider only strong monitor equivalence.

Strong monitor equivalence is an equivalence relation but is not a congru-
ence relation because it is not preserved by a choice combinator +. Therefore
we define a congruence relation from strong monitor equivalence by adding the
weakest conditions. Before the definition of the congruence relation, an equiva-
lence relation .= over events is introduced for ignoring difference between many
silent events.

Definition 6.6 Event equivalence .= is a binary relation over events defined as
the following set: {(a!0, b!0) : a, b ∈ N} ∪ {(aθn, aθn) : aθn ∈ Event}. ��

Then we define strong monitor congruence as follows:

Definition 6.7 P and Q are strongly monitor congruent, written P ∼=m Q, if
for all aθn ∈ Event

(i) whenever P
aθn

−→ P ′ then for some Q′, b, aθn .= bθn, Q
bθn

=⇒ Q′, P ′ !m Q′,

(ii) whenever Q
aθn

−→ Q′ then for some P ′, b, aθn .= bθn, P
bθn

=⇒ P ′, P ′ !m Q′,
(iii) mon(P) = mon(Q). ��
We now extend strong monitor congruence over agents to agent expressions.

Definition 6.8 Let agent expressions E and F contain agent variables X1, · · · , Xn

(written by X̃) at most. Then E ∼=m F if, for all indexed sets P̃ of agents,
E{P̃ /X̃} ∼=m F{P̃ /X̃}.6 ��

Most of propositions for observation congruence are also held for strong mon-
itor congruence with slight modifications. Several propositions are shown below.

Proposition 6.3 Strong monitor congruence is a congruence relation. ��

Proposition 6.4 P !m Q iff
((P ∼=m Q) or (P ∼=m a!0.Q +Q) or (a!0.P + P ∼=m Q)) ��

Proposition 6.4 is used for strengthening !m to ∼=m, for example, in the proof
of Theorem 6.6. We show two notions defined in [2].

Definition 6.9 X is sequential in E if every subexpression of E which contains
X, apart from X itself, is of the form aθn.F or

∑
F̃ . ��

Definition 6.10 X is guarded in E if each occurrence of X is within some
subexpression of E form aθn.F such that aθn is not a silent event. ��

Then we give a proposition which guarantees existence of unique solution
P such that P ∼=m E{P/X} under a certain condition on the agent expression
E. The solution is naturally the agent A defined by A

def= E{A/X}. Thus this
proposition is useful for proving whether two agents with recursive definition are
strongly monitor congruent or not.

Proposition 6.5 Let agent expressions Ẽ contain the variables X̃ at most, and
let X̃ are guarded and sequential in Ẽ. Then if P̃ ∼=m Ẽ{P̃ /X̃} and Q̃ ∼=m

Ẽ{Q̃/X̃} then P̃ ∼=m Q̃. ��
In the rest of this section, we give an axiom system for finite agents which

contains no agent constants (no recursions). We define an axiom system A.
Definition 6.11 We write A # P = Q if the equality of two agents P and Q
can be proven by equational reasoning from an axiom system A, where the axiom
system A consists of the following equations:

M1 P1 + P2 = P2 + P1

M2 (P1 + P2) + P3 = P1 + (P2 + P3)
M3 P = P + P
M4 P = P + 0

6 {P̃ /X̃} means a simultaneous substitution of an agent Pi into an agent variable Xi.

E1 P |Q ≡ (
∑

(i∈I1) ai(θi)mi .Pi)|(
∑

(i∈I2)
bi(φi)ni .Qi)

=
∑

(i∈I1)
{ai(θi)mi .(Pi|Q) : θi ∈ {!, ?} or ai /∈ mon(Q)}

+
∑

(i∈I2)
{bi(φi)ni .(P |Qi) : φi ∈ {!, ?} or bi /∈ mon(P)}

+
∑

(i∈I1)

∑
(j∈I2){ai(θi)(mi−nj).(Pi|Qj) : ai=bj, θi ∈ {!, !!}, φj=@(θi),mi ≥ nj}

+
∑

(i∈I1)

∑
(j∈I2){bj(φj)(nj−mi).(Pi|Qj) : ai=bj , φj ∈ {!, !!}, θi=@(φj), nj ≥ mi}

+
∑

(i∈I1)

∑
(j∈I2){ai(θi)(mi+nj).(Pi|Qj) : ai = bj, θi = φj ∈ {?, ??}}

E2 (
∑

(i∈I) ai(θi)ni .Pi)\L =
∑

(i∈I){ai(θi)ni .(Pi\L) : ai /∈ L}
+

∑
(i∈I){ai!0.(Pi\L) : ai ∈ L, θi ∈ {!, !!}, ni = 0}

E3 (
∑

(i∈I) ai(θi)ni .Pi)[S] =
∑

(i∈I) S(ai)(θi)ni .(Pi[S])
T1 aθn.(b!0.P + P) = aθn.P
T2 P +R + a!0.(P +Q) = R + a!0.(P +Q) if mon(P) ⊆ mon(R)
T3 aθn.(P + b!0.Q) + aθn.Q = aθn.(P + b!0.Q)
T4 a!0.P = b!0.P ��

M1-4, E1-3, and T1-4 correspond to monoid laws, expansion laws, and τ
laws in CCS, respectively. Finally we show a theorem which means that A is a
sound and complete axiom system for strong monitor congruence of finite agents.

Theorem 6.6 Let P and Q are finite. Then P ∼=m Q iff A # P = Q. ��

7 Related work

CBS has already been proposed for broadcasting systems. To introduce broad-
cast communication into process algebras, negative transitions by receive-events
are important in general. In CBS transitions by special events (actions) named
discards are used instead of the negative transitions. The advantage of using the
discards instead of the negative transitions is to be able to use a synchronization
algebra[12].

We adopt monitor function instead of the negative transitions, because we
want to use monitor function as conditions in equations. For example, monitor
function is used in equation T2 in the axiom system A. Monitor function causes
the same effect as the discards. The important difference between CCB and CBS
is the received number. In CCB a broadcaster of an event can know the number
of receivers of the event after broadcasting.

Process algebras with notion of time have been proposed, for example TCCS[10].
In TCCS broadcast communication may be simulated by using a lot of loops with
timeout. Thus for development of programming languages with broadcast com-
munication, such timed process algebras are very useful. On the other hand, we
want to use such languages which have been already developed, and to simply
analyze programs in the languages. CCB is appropriate for this purpose.

We show [9] as another study of broadcast communication by existing process
algebras. In [9] a translation from CBS to SCCS is presented, and the relation
between CBS and SCCS is clarified. We want to also clarify relation between
CCB and SCCS.

8 Conclusion and future works

In order to flexibly connect agents, one of the authors has developed a mechanism
named VIABUS which has a software bus architecture with broadcast commu-
nication. Then π-calculus has been introduced into VIABUS[13] as a common
communicating language to control agents written in different languages, but
there are problems about describing broadcast communication in π-calculus.

In this paper we have proposed a process algebra CCB. The most important
property of CCB is that a broadcaster of an event can know the number of
receivers of the event after broadcasting. Then we have defined an observational
congruence relation named strong monitor congruence, and have given a sound
and complete axiom system for strong monitor congruence of finite agents. We
consider weak monitor equivalence as the next subject.

In the future we shall extend CCB with a notion of space distance.

Acknowledgement

The authors wish to express our gratitude to Dr. Kimihiro Ohta, Director of Computer

Science Division, ETL. They also thank Dr. Yoshiki Kinoshita in Computer Language

Section and all colleagues in Information Base Section for their helpful discussions.

References
1. J.Coutaz, “Architecture Model for Interactive Software: Failures and Trends”,

Proc. of the IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-
Computer Interaction, pp.137 - 153, 1989.

2. R.Milner, “Communication and Concurrency”, Prentice-Hall, 1989.
3. R.Milner, J.Parrow and D.Walker, “A Calculus of Mobile Processes, I and II”,

Information and Computation, 100, pp.1 - 40 and pp.41 - 77, 1992.
4. R.Milner, “Calculi for Synchrony and Asynchrony”, Journal of Theoretical Com-

puter Science, Vol.25, pp.267 - 310, 1983.
5. R.de Simone, “Higher-level Synchronizing Devices in Meije-SCCS”, Journal of The-

oretical Computer Science, Vol.37, pp.245 - 267, 1985.
6. C.A.R.Hoare,“Communicating Sequential Processes”, Prentice-Hall, 1985.
7. K.V.S.Prasad, “A Calculus of Broadcasting Systems”, TAPSOFT’91, Vol.1:CAAP,

LNCS 493, Springer-Verlag, pp.338 - 358, 1991
8. K.V.S.Prasad, “A Calculus of Value Broadcasts”, PARLE’93, LNCS 694, Springer-

Verlag, pp.391 - 402, 1993
9. Uno Holmer, “Interpreting Broadcast Communication in SCCS”, CONCUR’93,

LNCS 715, Springer-Verlag, pp.188 - 201, 1993
10. F.Moller and C.Tofts,“An overview of TCCS”, Proc. of EUROMICRO’92, Athens,

June 1992.
11. L.Aceto, B.Bloom, and F.Vaandrager “Turning SOS Rules into Equations”, Proc.

7th Annual IEEE Symposium on Logic in Computer Science, pp.113 - 124, 1988.
12. G.Winskel, “Synchronization trees”, Journal of Theoretical Computer Science,

Vol.34, pp.33 - 82, 1984.
13. Y.Sato and K.Ohmaki “A Flexible Inter-Agent Connection Scheme for Interactive

Software”, IPSJ Technical Report, SE89-7, pp.49 - 56, 1992.

This article was processed using the LaTEX macro package with LLNCS style

