
A Generic Theorem Prover of
CSP Refinement

∗

Yoshinao Isobe1 and Markus Roggenbach2

1 AIST, Japan
y-isobe@aist.go.jp

2 University of Wales Swansea, United Kingdom
M.Roggenbach@Swan.ac.uk

Abstract. We describe a new tool called Csp-Prover which is an inter-
active theorem prover dedicated to refinement proofs within the process
algebra Csp. It aims specifically at proofs for infinite state systems, which
may also involve infinite non-determinism. Semantically, Csp-Prover sup-
ports both the theory of complete metric spaces as well as the theory of
complete partial orders. Both these theories are implemented for infinite
product spaces. Technically, Csp-Prover is based on the theorem prover
Isabelle. It provides a deep encoding of Csp. The tool’s architecture fol-
lows a generic approach which makes it easy to adapt it for various Csp
models besides those studied here: the stable failures model F and the
traces model T .

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent rôle. It has proved to be suitable
at the level of requirement specification, at the level of design specifications,
and also for formal refinement proofs [2]. In this context, the process algebra
Csp [11, 21] has successfully been applied in various areas, ranging from train
control systems [5] over software for the international space station [3, 4] to the
verification of security protocols [23].

Concerning tool support for Csp, the model checker FDR [15] is without
doubt the standard proof tool for Csp. It allows for refinement proofs as well as
for deadlock and livelock analysis. However, in general FDR restricts Csp spec-
ifications to finite state systems1 and allows only the use of concrete data types.
Furthermore, in practical applications it is often hard to deal with the state ex-
plosion problem. In this context, the use of theorem provers has been suggested
e.g. by [26, 25, 8, 24] in order to complement the well-established technique of
model checking.

∗
Supported by Royal Society with Short Visit Grants.

1 On the LHS of a refinement check, see [22] for a precise characterisation of the
possible infinite state processes on the RHS.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 108–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:y-isobe@aist.go.jp
mailto:M.Roggenbach@Swan.ac.uk

A Generic Theorem Prover of CSP Refinement 109

In this paper we describe a new tool Csp-Prover. Its generic architecture
makes it suitable for various denotational Csp models. The implemented theories
of complete metric spaces and complete partial orders allow Csp-Prover to deal
with infinite state systems with unbounded non-determinism. Using the theorem
prover Isabelle [16], Csp-Prover can also analyse specifications in Csp based on
abstract data types. We demonstrate the relevance of these properties by proofs
in the context of an industrial case study.

The paper is organised as follows: First, we describe the theorem prover
Isabelle and give a short overview on the process algebra Csp. Then, the generic
architecture of Csp-Prover is discussed in detail. Sect. 5 demonstrates how to
apply Csp-Prover in various settings. Finally, we relate Csp-Prover to similar
tools.

2 The Theorem Prover Isabelle

Isabelle [18] is an interactive theorem prover. Theorems to be proved are entered
as goals. A goal can be manipulated by proof-commands referring to a set of
predefined inference rules producing new goals. Such rules can be combined to
form proof tactics. A proof is completed, if by application of rules and tactics
the only open goal is the truth value True. Successfully proved theorems can be
stored and used later as new rules.

To extend an existing logic, Isabelle offers mechanisms to define new types,
functions, predicates etc. The keyword typedef defines a new type as a non-
empty subset of an existing type:

typedef SubType = {x::SuperType. P(x)}

Here, P is a predicate over the existing type SuperType, and SubType is the
newly defined type by the subset. In addition, the keyword datatype is used
for recursive type definitions with type-constructors, for example,

datatype ’a list = Nil | Cons ’a "’a list"

where Nil and Cons are type constructors, and ’a is a type variable. Type classes
can be defined by

axclass SubClass < SuperClass
name1: (a condition) name2: (a condition) · · ·

where SubClass is included in SuperClass and contains only types which sat-
isfy conditions named name1,2,···. Everything in SuperClass is inherited by
SubClass. Another possibility to use this inheritance is to declare that a type
forms an instance of SubClass by the keyword instance. Such a declaration
requires a proof that the type satisfies the conditions of SubClass and all its
super classes.

Theorems, together with definitions and proof-commands needed for their
proof, can be stored in theory-files. Isabelle organises such files in a rule-database,
to which other theory files may refer. Such a theory-file generally has the format

110 Y. Isobe and M. Roggenbach

theory T = B1 + · · · + Bn: declarations, definitions, and proofs end

where B1, · · · , Bn are names of parent theories of theory T. Everything used in
parent theories is available in their children. This allows for a hierarchical or-
ganisation of theory-files.

3 The CSP Dialect Chosen for CSP-Prover

This section briefly summarises Csp syntax, Csp semantics and how to analyse
process equations in Csp, following closely [21]. It also gives a first overview on
what has been implemented in Csp-Prover.

P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| a -> P %% action prefix
| c ! v -> P %% sending v over channel c (*)
| c ? x : X -> P(x) %% receiving x∈X on channel c (*)
| c !! x : X -> P(x) %% non-deterministic sending x∈X on channel c (*)
| c !! x -> P(x) %% non-deterministic sending x on channel c (*)
| ? x : X -> P(x) %% external prefix choice
| ! x : X -> P(x) %% internal prefix choice (*)
| P [+] P %% external choice
| P |~| P %% internal choice
| ! x : X .. P(x) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P ||| P %% interleaving (*)
| P || P %% synchronous parallel (*)
| P -- X %% hiding
| P [[r]] %% relational renaming
| P ;; P %% sequential composition
| P [> P %% (untimed) timeout (*)
| <C> %% process name

Fig. 1. Syntax of basic Csp processes in Csp-Prover

3.1 Syntax

The process algebra Csp [11, 21] is defined relative to a given set of commu-
nications. Its basic processes are built from primitive processes like SKIP and
STOP. Csp includes communication primitives like sending and receiving val-
ues over a communication channel, distinguishes between internal and external
choice between two processes, offers a variety of parallel operators, sequen-
tial composition of processes, and various other features like renaming and
hiding. Fig. 1 shows that the Csp dialect implemented by Csp-Prover covers
all these features2. This syntax definition involves certain Isabelle notations:
given a type ’a as set of communications, a:’a is a single communication,
c:(’v⇒’a) denotes a channel name, v:’v is a passed value, b:bool stands

2 The syntactical differences to Csp-M, as e.g. in the sequential composition P ;;
P, avoid overloading of symbols also used by Isabelle.

A Generic Theorem Prover of CSP Refinement 111

for a boolean value, X:’a set is a subset of ’a, and r:(’a * ’a) set de-
notes a binary relation over communications. Derived operators are marked
by (*) . In Csp, recursive processes are either defined by process equations
or by so-called µ-recursion. Here, Csp-Prover currently offers only the former
mechanism. Each recursive process has the form LET df IN P, where the body
process P can contain process names whose behaviours are defined by fixed
points of the function df. The most convenient way to define this function is
to use Isabelle’s keyword primrec for defining recursive functions. For exam-
ple, a process Inc which iteratively sends an increasing natural number n to
a channel c is defined as follows:

primrec df (Loop n) = c ! n -> <Loop (n+1)>
defs "Inc def: Inc == LET df IN <Loop 0>"

Such parametrised process expressions can – on the semantical side of Csp –
give rise to infinite systems of equations.

3.2 Semantics

Csp is a language with many semantics, different in their style as well as in
their ability to distinguish between different reactive behaviour. There are op-
erational, denotational and algebraic approaches, ranging from the simple finite
traces model T to such complex semantics as the infinite traces model with
failures/divergences U . For a general theorem prover on Csp the denotational
semantics are of special interest. Even under the restriction to finitely nondeter-
ministic Csp the algebraic approach does not work quite cleanly for the three
main models: the traces model T , the failure-divergence model N , and the stable
failures model F (see [21] for the details).

The current prototype of Csp-Prover concentrates on the denotational stable-
failures semantics F : This semantics allows for analysis of deadlock-freedom and
of liveness properties (for which the traces model T is too weak). Furthermore,
the semantic domain of F is a complete metric space (cms) as well as complete
partial order (cpo) even in the case of infinite alphabets3. For recursively defined
processes, both approaches, cms and cpo, allow to prove the existence of solutions
and to analyse these solutions by powerful induction principles.

Given a set of communications A, the domain of the stable failures model F
is a set of pairs (T ,F) satisfying certain healthiness conditions, where T ⊆ A∗�

and F ⊆ A∗� × P(A�)4. In such a pair (T ,F), T is the set of traces a process
can execute, while the elements (s,X) ∈ F describe sets of communications X
which a process can fail to accept after executing the trace s. The healthiness
conditions state e.g. that the sets T need to be non-empty and prefix-closed,

3 The semantic domain of the failure-divergence model N is not a cpo on refinement
order for infinite alphabets; however it is a cms independent of the alphabet size.
Another problem is that in N the semantics clauses for hiding work only under
special conditions.

4 A� := A ∪ {�}, A∗� := A∗ ∪ {s � 〈�〉 | s ∈ A∗}.

112 Y. Isobe and M. Roggenbach

that a trace occurring in F needs to be a trace in T , that after termination a
process may refuse to engage in any events.

Typical examples of the semantic clauses of F are:

traces(STOP) = {〈〉}
failures(STOP) = {(〈〉,X) | X ⊆ A�}

traces(a -> P) = {〈〉} ∪ {〈a〉 � s | s ∈ traces(P)}
failures(a -> P) = {(〈〉,X) | a �∈ X } ∪ {(〈a〉 � s,X) | (s,X) ∈ failures(P)}

Our implementation uses the traces semantics and the stable-failures seman-
tics as they are defined in [21]. As Isabelle allows only for consistent the-
ories, our encoding can also be seen as a proof for the well-formedness of
these semantics5.

3.3 Analysing CSP Recursion

Consider the recursive equations in Csp defined by the following functions:

primrec df1 (P) = a -> <P> |~| b -> SKIP
primrec df2 (Q) = a -> <Q>

For such equations the natural questions are: (1) Do there exist solutions for P
and Q in, say, the Csp model F? (2) Are these solutions uniquely determined?
(3) How to prove properties on these solutions, e.g. that Q refines P? To deal
with these questions, Csp employs two different techniques: complete metric
spaces (cms) and complete partial orders (cpo) which are both implemented
in Csp-Prover. These two approaches follow a similar pattern: the first step
consists of proving that the domain of a given Csp model is a cms or a cpo,
respectively. As a particularity of Csp, metric spaces are introduced in terms
of so-called restriction spaces. The second step consists of proving that the
various Csp operators satisfy the pre-requisite properties, namely contractive-
ness for cms and continuity for cpo. Finally, a fixed point theorem is used to
deal with question (1). In the case of cms this is Banach’s theorem, while it
is Tarski’s theorem within the cpo approach. For question (2) Banach’s theo-
rem leads to a unique fixed point, while Tarski’s theorem does not guarantee
uniqueness. Here, the least fixed point is chosen in the Csp models T and F .
To answer question (3) both the cms and the cpo approach offer as a tech-
nique the so-called fixed point induction.

Up to now the described framework works only for one single equation.
But how about an infinite system of equations like the recursive process
Inc illustrated in Sect. 3.1? For such infinite systems, infinite products of
cms and cpo, respectively, are required. Furthermore, the pre-requisite prop-
erties of the fixed point theorems need to be proved only on the base of
component functions.

5 In an earlier encoding of Csp in Isabelle [26] it was necessary to correct an
up-to-then established Csp semantics.

A Generic Theorem Prover of CSP Refinement 113

instantiated part
for each model

Th8: CSP-Semactics for

Th9: Proof Infrastructure for

Th7: Domain

Th2: Trace

Th4: cms_rs, metric FP induction

Th3: cms, Banach theorem

Th5: cpo, Tarski theorem

standard FP induction
Th6: CSP-Syntax

Th1: CSP-Prover Infrastructure

Isabelle/HOL-Complex

reusable part

Fig. 2. The theory map of Csp-Prover instantiated with the stable-failures model F

4 A Generic Theorem Prover for CSP Refinement

Csp-Prover extends the Isabelle [18] theory HOL-Complex (which is HOL [16]
extended with a definitional development of the real and complex numbers) by a
hierarchy of theory-files encoding Csp, see Fig. 2. The prototype discussed here
supports the stable-failures model F as well as the traces model T . Csp-Prover
has a generic architecture divided into a large reusable part Th1,···,6 independent
of specific Csp models and an instantiated part Th7,8,9 for each specific Csp
model.

The reusable part contains Banach’s fixed point theorem and the metric fixed
point induction rule based on complete metric spaces (cms) as well as Tarski’s
fixed point theorem and the standard fixed point induction rule based on com-
plete partial orders (cpo). Furthermore, it provides infinite product constructions
for these spaces. Thus, when Csp-Prover is instantiated with the domain of a
new Csp model, the fixed point theorems, the induction rules, as well as the
product constructions are available for free, provided the domain is a cms or a
cpo. Additionally, the reusable part provides guidelines in form of proof obli-
gations on how to show that a domain is a cms or a cpo. Here, especially the
theory on restriction spaces plays an important rôle for proofs concerning cms.

Another contribution of the reusable part is the definition of the Csp syn-
tax as a recursive type. Here, instantiating Csp-Prover with a new model re-
quires to provide its semantic clauses defined inductively over this type. This
means that the syntax is deeply encoded, thus structural induction on pro-
cesses is supported.

4.1 Reusable Part

The reusable part consists of a theory of traces (Th2), fixed point theories on
cms and cpo (Th3,4,5), the definitions of the Csp syntax (Th6), and fundamental
theorems on limits and least upper bounds (Th1). In this Section, we concentrate
on how to encode cms and restriction spaces. Trace theory is similar to the data

114 Y. Isobe and M. Roggenbach

type of lists6. The discussion of the syntax definition is postponed to Sect. 4.3,
where it is considered in the context of semantic clauses. For modelling cpos in
Isabelle we refer to [26, 25].

In the theory file Th3, first the class of metric spaces is defined as a type-
class ms which satisfies conditions of diagonal, symmetry, and triangle inequality.
Next, the class of complete metric spaces is defined as a type-subclass cms of
the class ms by adding the completeness condition complete ms, which requires
every Cauchy sequence xs to converge to some point x:

axclass cms < ms
complete ms: "∀xs. cauchy xs−→(∃x. xs convergeTo x)"

Then, Banach’s fixed point theorem is proved, i.e. that any contraction map
f over cms has a unique fixed point and the sequence obtained by iteratively
applying f to any value x0 converges to the fixed point.

theorem Banach thm: "contraction (f::(’a::cms⇒’a))
=⇒ (f hasUFP ∧ (λn. (f^n) x0) convergeTo (UFP f))"

A way for deriving a metric space from a restriction space is given in [21].
Thus, if a space is an instance of the class rs of restriction spaces then the space
is also an instance of ms rs which is the multiple-inheritance from ms and rs.
An important result on ms rs is that the completeness of ms rs is preserved by
the constructors * (binary product) and fun (function space). For example, if
type T is an instance of cms rs, then the function type I ⇒ T is also an instance
of cms rs for an arbitrary type I. This theorem is expressed in Isabelle by

instance fun :: (type,cms rs) cms rs

The function type I ⇒ T1 is used to deal with infinite product spaces whose index
set is I, which are required to deal with infinite state systems (see Sect. 3.3). Take
for example the Csp model F . Here we need that F I is a cms for any infinite
index set I, which is intuitively the set of (infinitely many) process names. The
above property expresses: if F is an instance of cms rs then F I is also an
instance of cms rs.

Finally, the following metric fixed point induction rule on cms rs is proved
(see [21] on continuity and constructiveness for restriction spaces).

theorem cms fixpoint induction: "[| (R::’a::cms rs⇒bool) x ;
continuous rs R ; constructive rs f ; inductivefun R f |]

=⇒ f hasUFP ∧ R (UFP f)"

6 The event type of Csp consists of communications (Ev a) and the event � for
successful termination. The trace type is defined as the subset of event lists such
that � cannot occur except in the last place of a list.

A Generic Theorem Prover of CSP Refinement 115

4.2 Instantiated Part

The instantiated part consists of instantiated domain theories (Th7 in Fig. 2),
semantic clauses (Th8), and a proof infrastructure (Th9). The proof infrastruc-
ture contains many Csp laws such as step laws, distributive laws, fixed-point
induction rules, etc. Furthermore, it provides a powerful tactic csp hnf tac for
translating any expression to a head normal form. As these rules and tactics are
proved in Isabelle, they are guaranteed to be sound with respect to the chosen
Csp semantics.

In the current Csp-Prover, the domains of the stable-failures model F and the
traces model T are instantiated as types ’a domSF and ’a domT, respectively,
where ’a is the type of communications. Here, the type ’a domT can be reused
for defining ’a domSF:

typedef ’a domT = "{T::(’a trace set). HC T1(T)}"
types ’a failure = "’a trace * ’a event set"
typedef ’a domF = "{F::(’a failure set). HC F2(F)}"
types ’a domTF = "’a domT * ’a domF"
typedef ’a domSF = "{SF::(’a domTF). HC T2(SF) & HC T3(SF)

& HC F3(SF) & HC F4(SF)}"

where HC T1, · · ·, HC F4 are predicates which exactly represent the healthiness
conditions T1, · · ·, F4 given in [21].

In order to apply Banach’s theorem and the metric induction rule to the
model F , it is required to prove that the infinite product (’i,’a) domSF prod
of ’a domSF is an instance of cms rs, where (’i,’a) domSF prod is a synonym
of (’i ⇒ ’a domSF) and the type ’i represents the indexing set of the product
space. This is proved as follows: (1) domT and domF are instances of cms rs, (2)
domTF is also an instance of cms rs, thus there exists a limit of each Cauchy
sequence in domSF (⊂ domTF), (3) the limit is contained in domSF, thus domSF is
also an instance of cms rs, and (4) domSF prod is an instance of cms rs. Here,
the proofs of (2) and (4) follow by preservation of cms rs under the constructors
* and fun as mentioned in Sect. 4.1. This example shows how the provided
infrastructure in terms of restriction spaces discharges certain proof obligations
when a new Csp model is integrated in Csp-Prover.

4.3 Deep Encoding

The Csp syntax is defined as a recursive type (’n,’a) proc by the command
datatype as shown in Fig. 3, where ’n and ’a are type variables for process-
names and communications, respectively. This syntax encoding style implies that
structural induction over processes is available by the Isabelle’s proof command
induct tac. Recursive processes take the form LET:fp df IN P, their type is
(’n,’a) procRC. Here, the function df binds process names to processes, it has
the type (’n,’a) procDF. And fp is a variable instantiated by either Ufp or Lfp,
and specifies which fixed point of df is used for giving the meaning of process
names: i.e. the unique fixed point by Ufp and the least fixed point by Lfp. In
the current Csp-Prover, LET df IN P is an abbreviation of LET:Ufp df IN P.

116 Y. Isobe and M. Roggenbach

datatype (’n,’a) proc = STOP
| SKIP
| Act prefix "’a" "(’n,’a) proc" (" -> ")
| · · ·
| Proc name "’n" ("< >")

type (’n,’a) procDF = "’n ⇒ (’n,’a) proc"

datatype fp type = Ufp | Lfp

datatype
(’n,’a) procRC = Letin "fp type" "(’n,’a) procDF" "(’n,’a) proc" ("LET: IN ")

Fig. 3. Syntax definition of processes

consts
evalT :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domT" ("[[]]T")
evalF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domF" ("[[]]F")
evalSF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domSF" ("[[]]SF")

primrec
"[[STOP]]T = (λe. {[]t}t)"
"[[SKIP]]T = (λe. {[]t, [�]t}t)"
"[[a -> P]]T = (λe. {t. t=[]t ∨ (∃s. t=[Ev a]t @t s ∧ s ∈t [[P]]T e) }t)"

...
"[[<C>]]T = (λe. fstSF (e C))" (∗ note: fstSF (T ,, F) = T ∗)

primrec
"[[STOP]]F = (λe. {f. ∃X. f=([]t, X) }f)
"[[SKIP]]F = (λe. {f. (∃X. f=([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f=([�]t, X)) }f)
"[[a -> P]]F = (λe. {f. (∃X. f=([]t,X) ∧ Ev a /∈ X) ∨

(∃s X. f=([Ev a]t @t s, X) ∧ (s, X) ∈f [[P]]F e) }f)

...
"[[<C>]]F = (λe. sndSF (e C))" (∗ note: sndSF (T ,, F) = F ∗)

defs evalSF def :
"[[P]]SF == (λe. ([[P]]T e ,, [[P]]F e))”

consts
evalDF :: "(’n⇒(’m,’a) proc)⇒(’m,’a) domSF prod ⇒(’n,’a) domSF prod" ("[[]]DF")
evalRC :: "(’n,’a) procRC⇒’a domSF" ("[[]]RC")

defs evalDF def :
"[[df]]DF == (λe. (λC. ([[df C]]SF e)))"

recdef evalRC "measure (λx. 0)"
"[[LET:Ufp df IN P]]RC = [[P]]SF (UFP [[df]]DF)" (∗ based on cms ∗)
"[[LET:Lfp df IN P]]RC = [[P]]SF (LFP [[df]]DF)" (∗ based on cpo ∗)

Fig. 4. Semantics definition of processes

The Csp semantics is defined by translating process-expressions into elements
of the model F by a mapping ([[P]]SF e) as shown in Fig. 4, where e is an
evaluation function for process names in P. The mapping ([[P]]SF e) is a pair
of mappings ([[P]]T e ,, [[P]]F e), where (T ,, F) requires T and F to satisfy
healthiness conditions T1 and F2, respectively, and the pair of them to satisfy
T2, T3, F3, and F4. The mappings ([[P]]T e) and ([[P]]F e) are defined by the

A Generic Theorem Prover of CSP Refinement 117

same semantic clauses of the model F in [21], where subscripts t and f (e.g.
in []t and ∈f) are attached to operators on domT and domF, in order to avoid
conflicts with the operators on Isabelle’s built-in types such as list and set.
Furthermore, the meaning [[df]]DF of each defining function is defined such that
the meaning of each process name C is [[df C]]SF. Finally, the meaning [[LET:fp
df IN P]]RC of each recursive process is defined by [[P]]SF, where the meaning of
each process name in P is given by a suitable fixed point of [[df]]DF.

5 Applications

In this section we demonstrate how Csp-Prover can be used for the verification
of reactive systems. First, we discuss deadlock analysis and a refinement proof
in the context of an industrial case study. Then we study a mutual exclusion
problem arising in the classical example of the dining mathematicians.

5.1 Verification in the Context of an Industrial Case Study

The EP2 system7 is a new industrial standard of electronic payment systems. It
consists of seven autonomous entities centred around the EP2 Terminal : Card-
holder (i.e., customer), Point of Service (i.e., cash register), Attendant, POS
Management System, Acquirer, Service Center, and Card, see Fig. 5. These en-

EP2 Component

SI−Config

COI−Config

EI−ECR

BE−Backend

MI−Subm

MI−Rec

SI−Init FE−FrontEnd

MI−Subm

Other Component

EP2 Interface name

Part of EP2 spec (detailed)
Part of EP2 spec (user interface)
Not part of EP2 spec

CAI−Card

Finance
Institute

Point of
Service

Terminal

Card

Service
Center

Acquirer

POS Mgmt
System

Bookkeeping

Attendant

Merchant

Card
Issuer

Cardholder

Fig. 5. Overview of the EP2 System

tities communicate with the Terminal and, to a certain extent, with one another
via XML-messages in a fixed format.

7 EP2 is a joint project established by a number of (mainly Swiss) financial institutes
and companies in order to define infrastructure for credit, debit, and electronic purse
terminals in Switzerland (www.eftpos2000.ch).

118 Y. Isobe and M. Roggenbach

1 (* data part *)
2 typedecl init d typedecl request d
3 typedecl response d typedecl exit d
4 datatype Data = Init init d | Exit exit d | Request request d | Response response d
5 datatype Event = c Data
6
7 (* process part *)
8 datatype ACName = Acquirer | AcConfM | Terminal | TerminalConfM
9 consts ACDef :: "(ACName, Event) procDF"

10 primrec
11 "ACDef (Terminal) = c !! init:(range Init) -> <TerminalConfM>"
12 "ACDef (TerminalConfM) =
13 c ? x -> IF (x:range Request)
14 THEN c !! response:(range Response) -> <TerminalConfM>
15 ELSE IF (x:range Exit) THEN SKIP ELSE STOP"
16 "ACDef (Acquirer) = c ? x:(range Init) -> <AcConfM>"
17 "ACDef (AcConfM) =
18 c !! exit:(range Exit) -> SKIP |~|
19 c !! request:(range Request) -> c ? response:(range Response) -> <AcConfM>"
20
21 constdefs AC :: "(ACName, Event) procRC"
22 "AC == LET ACDef IN (<Acquirer> |[range c]| <Terminal>)"

Fig. 6. EP2 Specification at the Abstract Component Description Level

In [9], major parts of the EP2 system have been formalised in Csp-Casl
[20]. Following the structure of the original EP2 documents, the specifications
presented in [9] can be classified to be e.g. on the Architectural Level, on the
Abstract Component Description Level, or on the Concrete Component Descrip-
tion Level. In this context, tool support is needed to prove deadlock freedom for
the interaction between the various EP2 components.

Translating the data part of the specifications given in [9] into adequate Is-
abelle code, we obtain specifications in the input format of Csp-Prover. Fig. 6
shows the nucleus8 of the initialisation procedure of the EP2 Terminal at the
Abstract Component Description Level. The Terminal starts the initialisation
(line 11) and waits then for data sent by the Acquirer. If this data is of type
Request, the Terminal answers with a value of type Response (line 14). An-
other possibility is that the Acquirer wants to exit the initialisation (line 15).
Any other type of communication sent by the Acquirer will lead to a deadlock
represented by the process STOP (line 15). On the other end of the communica-
tion, after receiving an initialisation request (line 16) the Acquirer internally
decides if it wants to exit the process (line 18) or interact with the Terminal by
sending a request followed by a response of the Terminal (line 19). The system
AC to be analysed here consists of the parallel composition of the Terminal and
the Acquirer synchronised on the channel c (line 22).

It is the defining characteristic of the Abstract Component Description Level
that the data involved is loosely specified. No specific values are defined (lines
2–5). Semantically this means that – depending on the interpretation of e.g. the
type init d – the described systems might involve infinite non-determinism,

8 For the purpose of this paper, the specification text has been simplified. The complete
formalisation and proof can be found in [12].

A Generic Theorem Prover of CSP Refinement 119

1 datatype AbsName = Abstract | Loop
2 consts AbsDef :: "(AbsName, Event) procDF"
3 primrec
4 "AbsDef (Abstract) = c !! init:(range Init) -> <Loop>"
5 "AbsDef (Loop) =
6 c !! exit:(range Exit) -> SKIP |~|
7 c !! request:(range Request) -> c !! response:(range Response) -> <Loop>"
8
9 constdefs Abs :: "(AbsName, Event) procRC"

10 "Abs == LET AbsDef IN <Abstract>"

Fig. 7. An abstraction of the process shown in Fig. 6

e.g. if the type init d has infinitely many values, the Terminal process of
Fig. 6 chooses internally between sending any of these values (line 11). Thus,
Csp-Prover has simultaneously to deal with a class of specifications: it has to
prove that a certain property holds for any possible interpretation of the types
involved.

Using Csp-Prover, we can show the above described process AC to be stable-
failure equivalent to the process Abs of Fig. 7. Note that Abs is a sequential, i.e.
by syntactic characterisation deadlock-free process. As stable failure equivalence
preserves deadlocks, establishing this equivalence proves that the interaction of
Terminal and Acquirer on the Abstract Component Description Level is dead-
lock free9. Fig. 8 shows the complete script to prove the stable-failure equivalence
Abs =F AC (line 14) in Csp-Prover. First, a mapping is defined from the process-
names of Abs to process expressions in AC (line 3-5)10. Next, it is shown that
the involved recursive processes are guarded and do not use the hiding opera-
tor. This is fully automated routine (lines 8–11). After these preparations, Abs
=F AC is given as a goal (line 14). Using the above mapping, now the recursive
processes are unfolded to a base case and step cases by fixed point induction
(line 16). Since a step case is produced for each of the process names of Abs,
the step cases are instantiated by induction on AbsName (line 17). Finally, the
theorem is proven by Isabelle’s tactic auto, Csp-Prover’s tactic csp hnf tac,
which transforms any expression into a head normal form, and csp decompo,
which decomposes Csp-operators (line 18).

5.2 The Dining Mathematicians

The dining mathematicians [7] are a classical mutual exclusion problem: There
are two mathematicians living at the same place, whose life is focused on two
activities, namely thinking (TH0 and TH1, respectively) and eating (EAT0 and
EAT1, respectively). As they have a strong dislike for each other, they want
never to eat at the same time. To ensure this, they agreed to the following
protocol. They both have access to a common variable (VAR n) storing integer

9 In this example, abstraction is convenient to establish deadlock-freedom; in general,
Csp-Prover is capable to support e.g. the various deadlock rules stated in [21].

10 It is hard to automatically derive such correspondences. However, Csp-Prover can
assist users to derive them.

120 Y. Isobe and M. Roggenbach

1 (* expected correspondence of process-names in Abs to AC *)
2 consts Abs to AC :: "AbsName ⇒ (ACName, Event) proc"
3 primrec
4 "Abs to AC (Abstract) = (<Acquirer> |[range c]| <Terminal>)"
5 "Abs to AC (Loop) = (<AcConfM> |[range c]| <TerminalConfM>)"
6
7 (* guarded and no hiding operator *)
8 lemma guard nohide[simp]:
9 "!! C. guard (ACDef C) & nohide (ACDef C)"

10 "!! C. guard (AbsDef C) & nohide (AbsDef C)"
11 by (induct tac C, simp all, induct tac C, simp all)
12
13 (* the main theorem *)
14 theorem ep2: "Abs =F AC"
15 apply (unfold Abs def AC def)
16 apply (rule csp fp induct cms[of "Abs to AC"], simp all)
17 apply (induct tac C)
18 by (auto simp add: image iff | tactic {* csp hnf tac 1 *} | rule csp decompo)+

Fig. 8. The complete proof script for AC =F Abs

datatype Event = Eat0 | Back0 | End0 | RD0 int | WR0 int
| Eat1 | Back1 | End1 | RD1 int | WR1 int | NUM int

syntax " CH0" :: "Event set" ("CH0") " CH1" :: "Event set" ("CH1")
translations "CH0" == "(range RD0) ∪ (range WR0)" "CH1" == "(range RD1) ∪ (range WR1)"

datatype SysName = VAR int | TH0 | EAT0 int | TH1 | EAT1 int
consts SysDef :: "(SysName, Event) procDF"
primrec
"SysDef (TH0) = RD0 ? n -> IF (EVEN n) THEN Eat0 -> <EAT0 n> ELSE Back0 -> <TH0>"
"SysDef (TH1) = RD1 ? n -> IF (ODD n) THEN Eat1 -> <EAT1 n> ELSE Back1 -> <TH1>"
"SysDef (EAT0 n) = End0 -> WR0 ! (n div 2) -> <TH0>
"SysDef (EAT1 n) = End1 -> WR1 ! (3 * n + 1) -> <TH1>
"SysDef (VAR n) = WR0 ? n -> <VAR n> [+] WR1 ? n -> <VAR n>

[+] RD0 ! n -> <VAR n> [+] RD1 ! n -> <VAR n>"
constdefs Sys :: "int ⇒ (SysName, Event) procRC"
"Sys == (λn. LET SysDef IN (<TH0> |[CH0]| <VAR n> |[CH1]| <TH1>) -- (CH0 ∪ CH1))"

Fig. 9. The dining mathematicians: Csp-Prover description of the concrete system

values. If the stored integer (n) is even, the first mathematician is allowed to start
eating. When finished, the first mathematician sets the stored value to (n/2).
A similar procedure holds for the second mathematician, where the check is if
the value of the stored variable is odd, and the value written back after eating is
(3n+1)11. Fig. 9 shows this system described in Csp-Prover. Here, each of the
process definitions (EAT0 n), (EAT1 n), and (VAR n) describes infinitely many
equations. The question is: does this now precisely described system exclude the
situation where both mathematicians eat together? Or, on a more formal level:
has this system a trace where Eat1 appears between consecutive communications
Eat0 and End0 (or vice versa)?

The classical argument in analysing this system is to provide an abstraction of
the dining mathematicians which clearly has the desired exclusion property. This

11 The function involved here is the so-called Collatz function which is studied in the
context of the 3x + 1 problem, see [13] for a survey.

A Generic Theorem Prover of CSP Refinement 121

abstraction Spc consists only of three states, which stand for the situations ‘both
mathematicians think’ TH0 TH1 and ‘one mathematician eats while the other is
thinking’ (EAT0 TH1 and TH0 EAT1, respectively). With Csp-Prover we can show
that (Sys n) is a stable-failures refinement of Spc for any integer n, thus “ALL
n. Spc <=F Sys n”. The respective proof script is substantially longer than the
proof of Abs =F AC shown in Sec. 5.1. But it follows the same strategy: First,
the goal is unfolded by fixed point induction. In a second step the resulting proof
obligations are translated to head normal forms and automatically discharged.
The details are omitted here, the full script as well as the abstraction Spc are
available at [12]. As Spc is again a sequential process, this refinement result also
establishes deadlock-freedom of (Sys n).

6 Related Work

Based on general purpose theorem provers like Isabelle [18], HOL [10] or PVS
[17], various tools for theorem proving over process algebras have been presented.

Closest to our approach are the Csp encodings of Tej/Wolff [26, 25] and
Schneider/Dutertre [8, 24]. Tej/Wolff suggest a shallow encoding of Csp in Is-
abelle/HOL based on the cpo approach. Their encoding HOL-CSP is focused
on the failure-divergence model of Csp. To deal with recursion it introduces a
new process order that implies the standard refinement order. HOL-CSP lacks
the possibility of proofs on the syntactic process structure. Thus, powerful tac-
tics as csp hnf tac in Csp-Prover for transforming process expressions to head
normal form are not available. Schneider/Dutertre’s encoding of the Csp traces
model T in PVS is tailored to the verification of security protocols. Semantically
it uses the cpo approach. It does not consider process termination. Due to its
clear focus, refinement proofs of the nature shown in the previous section are out
of its scope. Compared to these two encodings, a major advantage of Csp-Prover
is its genericity. It is easy to adapt Csp-Prover to any other denotational Csp
model. Furthermore, in offering both, the cms and the cpo approach, it allows
to use the more convenient and the more promising setting for any proof step.

Alternative to encoding a denotational semantics, [6, 19, 1] base their encod-
ings on an axiomatic semantics of the process algebra. As discussed in Sect. 3.2,
such an approach is not an option in the context of Csp.

7 Conclusion and Future Work

We have shown a new tool Csp-Prover which supports refinement proofs over
various Csp models. Thanks to its powerful semi-automatic and automatic tac-
tics, Csp-Prover has successfully been applied in an industrial case study as well
as for a complex example tailored to be a benchmark for refinement proofs.

In the future, we intend to include the failure-divergence model N in Csp-
Prover. Furthermore, we will integrate Csp-Prover with the model checker FDR.
In this context the theory of data independence, see e.g. [14], will play an impor-
tant rôle. Continuing the work on EP2 and applying Csp-Prover to other case

122 Y. Isobe and M. Roggenbach

studies, e.g. of the area of train control systems, will help to develop more proof
infrastructure to further automate refinement proofs.

Acknowledgement

The authors would like to thank AIST (Japan) and the Royal Society (UK) for
financial support; Faron G. Moller and Kazuhito Ohmaki for initiating our coop-
eration; Erwin R. Catesbeiana (jr.) for advice on semantical questions; as well as
Christoph Lüth, Ranko Lazic, Jan Peleska, Bill Roscoe, and Holger Schlingloff
for valuable feedback and advice on our tool.

References

1. T. Basten and J. Hooman. Process algebra in PVS. In W. Cleaveland, editor,
TACAS’99, LNCS 1579, pages 270–284. Springer, 1999.

2. J. Bergstra, A. Ponse, and S. Smolka. Handbook of Process Algebra. Elsevier, 2001.
3. B. Buth, M. Kouvaras, J. Peleska, and H. Shi. Deadlock analysis for a fault-tolerant

system. In AMAST’97, LNCS 1349, pages 60–75. Springer, 1997.
4. B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock analysis of a

fault-tolerant system. In A. M. Haeberer, editor, AMAST’98, LNCS 1548, pages
124–139. Springer, 1998.

5. B. Buth and M. Schrönen. Model-checking the architectural design of a fail-safe
communication system for railway interlocking systems. In J. M. Wing, J. Wood-
cock, and J. Davies, editors, FM’99, LNCS 1709. Springer, 1999.

6. A. Camilleri. Combining interaction and automation in process algebra verification.
In G. Goos and J. Hartmanis, editors, TAPSOFT 1991, LNCS 494, pages 283–295.
Springer, 1991.

7. E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier, 2001.

8. B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authenti-
cation protocols. In E. L. Gunter and A. Felty, editors, TPHOL 1997, LNCS 1275,
pages 121–136. Springer, 1997.

9. A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards a formal specification
of an electronic payment system in Csp-Casl. In J. L. Fiadeiro, P. Mosses, and
F. Orejas, editors, WADT 2004, LNCS. Springer, to appear.

10. M. Gordon and T. Melham. Introduction to HOL. Cambrige University Press,
1993.

11. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. Y. Isobe and M. Roggenbach. Webpage on Csp-Prover.

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
13. J. C. Lagarias. The 3x +1 problem and its generalizations. Amer. Math. Monthly,

92:3–23, 1985.
14. R. Lazic. A Semantic Study of Data Independence with Applications to Model

Checking. PhD thesis, Oxford University Computing Laboratory, 1999.
15. F. S. E. Limited. Failures-divergence refinement: FDR2. http://www.fsel.com/.
16. T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283. Springer,

2002.

A Generic Theorem Prover of CSP Refinement 123

17. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, CADE’92, LNAI 607, pages 748–752. Springer, 1992.

18. L. C. Paulson. A Generic Theorem Prover. LNCS 828. Springer, 1994.
19. I. P. Rix Groenboom, Chris Hendriks. Algebraic proof assistants in HOL. In

B. Möller, editor, MPC’95, LNCS 947, pages 305–321. Springer, 1995.
20. M. Roggenbach. CSP-Casl – A new integration of process algebra and algebraic

specification. Theoretical Computer Science, to appear.
21. A. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
22. A. Roscoe. On the expressive power of CSP refinement. In Proceedings of AV-

oCS’03, Technical Report. Southampton University, 2003.
23. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and

Analysis of Security Protocols: the CSP Approach. Addison-Wesley, 2001.
24. S. Schneider. Verifying authentication protocol implementations. In B. Jacobs and

A. Rensink, editors, FMOODS 2002, IFIP Conference Proceedings Vol. 209, pages
5–24. Kluwer, 2002.

25. H. Tej. HOL-CSP: Mechanised Formal Development of Concurrent Processes. BISS
Monograph Vol. 19. Logos Verlag Berlin, 2003.

26. H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97, LNCS 1313, pages
318–337. Springer, 1997.

	Introduction
	The Theorem Prover Isabelle
	The CSP Dialect Chosen for CSP-Prover
	Syntax
	Semantics
	Analysing CSP Recursion

	A Generic Theorem Prover for CSP Refinement
	Reusable Part
	Instantiated Part
	Deep Encoding

	Applications
	Verification in the Context of an Industrial Case Study
	The Dining Mathematicians

	Related Work
	Conclusion and Future Work

