
A complete axiomatic semantics

for the CSP stable-failures model

Yoshinao Isobe1 and Markus Roggenbach2∗

1 National Institute of Advanced Industrial Science and Technology, Japan,
y-isobe@aist.go.jp,

2 University of Wales Swansea, United Kingdom,
M.Roggenbach@Swan.ac.uk

Abstract. Traditionally, the various semantics of the process algebra
Csp are formulated in denotational style. For many Csp models, e.g.,
the traces model, equivalent semantics have been given in operational
style. A Csp semantics in axiomatic style, however, has been considered
problematic in the literature.
In this paper we present a sound and complete axiomatic semantics for
Csp with unbounded nondeterminism over an alphabet of arbitrary size.
This result is connected in various ways with our tool Csp-Prover: (1) the
Csp dialect under discussion is the input language of Csp-Prover; (2) all
theorems presented have been verified with Csp-Prover; (3) Csp-Prover
implements the given axiom system.

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent role. Here, the process algebra Csp
[2, 8] has successfully been applied in various areas, ranging from train control
systems over software for the international space station to the verification of
security protocols.

Traditionally, Csp semantics such as the traces model, the failures-divergences
model, or the stable-failures model, are formulated in denotational style, c.f. [8].
However, the success of the model checker FDR [6], which clearly is the standard
proof tool for Csp, relies on the formulation of operational semantics equivalent
to the given denotational ones.

A similar success story with theorem proving for Csp, see, e.g., [1, 4, 5, 9, 10],
for various approaches, will require an axiomatic (or algebraic) formulation of
the Csp models. A complete axiomatic semantics for Csp, however, is consid-
ered problematic in the literature. There are issues concerning normalisation.
The best known results apply for finitely nondeterministic Csp over a finite al-
phabet of communications only [8]. Consequently, all the implementations listed
above are based on a denotational semantics. While this is satisfactory from a
theoretical point of view (every true proposition over the denotational semantics
∗

This cooperation was supported by the EPSRC Project EP/D037212/1.

can be proven within the theorem prover — up to the incompleteness of the
underlying logic3), the actual proof-practise relies on an known to be incomplete
set of algebraic laws and proof rules derived from the denotational semantics
implemented.

In this paper we present a sound and complete axiomatic semantics for Csp
with unbounded nondeterminism over an alphabet of arbitrary size. Here, we
consider full Csp, where the generic internal choice operator has been replaced
by a restricted one (this is necessary in order to obtain a set of processes rather
than a class), and where recursion is replaced by infinite nondeterminism over
depth-finite processes. We show in Theorem 1 that this language is expressive
with respect to the stable-failures domain.

The considered Csp dialect is the input language of our tool Csp-Prover
[3–5]. Csp-Prover is an interactive theorem prover which supports refinement
proofs over various denotational semantics of the process algebra Csp. In the
context of this paper, we use Csp-Prover to verify that our axiom system is sound
(in this process we found some of the Csp laws established in the literature to
be incorrect — see Section 3) as well as to show that the two transformations
involved in the completeness proof are semantics preserving.

The paper is organised as follows: First, we introduce our Csp dialect and
show that it is expressive. In Section 3 we present a sound axiom system AF
for stable-failures equivalence. The proof that the axiom system AF is complete
involves two steps: (1) sequentialisation, see Section 4, and (2) normalisation of
sequential processes, see Section 5. Finally, we briefly discuss how to verify the
theorems given in this paper with Csp-Prover.

2 The CSP-dialect

This section summarises syntax and semantics of the input language of Csp-
Prover. Especially, we show that it is expressive and that it can deal with in-
finitely many mutual recursive processes.

2.1 Syntax

Fig. 1 shows the syntax of Csp implemented in Csp-Prover: given an alphabet
of communications Σ and the data type of natural numbers Nat , we form a set
Sel(Σ) of selectors to be explained below. ProcΣ denotes the set of the processes
whose alphabet is Σ.

The set Sel(Σ) of selectors used in the replicated internal choice is defined as
the disjoint sum of the powerset over Σ and one element sets of natural numbers:

Sel(Σ) = {(set)A | A ⊆ Σ} � {(nat)n | n ∈ Nat}
3 The traditional formulation of the denotational Csp semantics involves higher-order

concepts such as chain-completeness or metric-completeness.

2

P ::= Skip %% successful terminating process
| Stop %% deadlock process
| Div %% divergence
| a → P %% action prefix
| ? x : A → P(x) %% prefix choice
| P � P %% external choice
| P � P %% internal choice
| !! s : S • P(s) %% replicated internal choice
| if b then P else P %% conditional
| P |[X]| P %% generalized parallel
| P \ X %% hiding
| P [[r]] %% relational renaming
| P o

9 P %% sequential composition
| P ↓ n %% depth restriction

where A,X ⊆ Σ, S ⊆ Sel(Σ), b is a condition, r ∈ P(Σ × Σ), and n ∈ Nat .

Fig. 1. Syntax of basic Csp processes in Csp-Prover.

Note that replicated internal choice takes a subset of Sel(Σ) as its parameter.
One difference from conventional Csp is that we replace the generic internal

choice �P by a replicated internal choice !! s : S • P(s), i.e., instead of having
internal choice over an arbitrary class of processes P ⊆ ProcΣ , internal choice
is restricted to run over an indexed set of processes P(s) : Sel(Σ) ⇒ ProcΣ

only, where the index set S is a subset of Sel(Σ). The other difference is that we
introduce restriction ↓ as a basic operator. Restriction plays an important role
in full-normalisation. In the stable-failures model, restriction cannot be defined
in terms of the other basic operators, see [8].

The following shortcuts have proven to be useful:

!set A : A • P(A) = !! s : {(set)A | A ∈ A} • P((set)−1(s))
!nat n : N • P(n) = !! s : {(nat)n | n ∈ N } • P((nat)−1(s))

! x : A • P(x) = !set X : {{x} | x ∈ A} • P(contents(X))

where A ⊆ P(Σ), N ⊆ Nat , A ⊆ Σ, and contents({x}) = x . Moreover, if the
range of the selector is the universe, the universe is often omitted, for example
we write !nat n • P(n) instead of !nat n : Nat • P(n).

2.2 Semantics

In this paper, we concentrate on the denotational stable-failures model F of Csp.
Its domain FΣ is given as the set of all pairs (T ,F) that satisfy certain healthi-
ness conditions, where T ⊆ Σ∗� and F ⊆ Σ∗� × P(Σ�)4, see [8] for the details.
The semantics of a process P is denoted by [[P]]F , where the map [[·]]F : ProcΣ →
4 Σ� := Σ ∪ {�}, Σ∗� := Σ∗ ∪ {t � 〈�〉 | t ∈ Σ∗}.

3

FΣ is expressed in terms of two functions: [[P]]F = (traces(P), failures(P)). Our
definitions of traces and failures are identical to those given in [8]. However, we
need two add semantical clauses for our two new operators, namely replicated
internal choice5 and depth restriction:

traces(!! s : S • P(s)) =
⋃{traces(P(s)) | s ∈ S} ∪ {〈〉}

failures(!! s : S • P(s)) =
⋃{failures(P(s)) | s ∈ S}

traces(P ↓ n) = traces(P) ↓ n
failures(P ↓ n) = failures(P) ↓ n

where the restriction functions over traces and failures are given as follows:

T ↓ n = {t ∈ T | length(t) ≤ n}
F ↓ n = {(t ,X) ∈ F | length(t) < n ∨ (∃ t ′. t = t ′ � 〈�〉, length(t) = n)}

Note that on the domain, which general internal choice and replicated internal
choice share, they have the same semantics, see the semantical clauses for general
internal choice in the stable-failures model as defined in [8]:

traces(�P) =
⋃{traces(P) | P ∈ P}

failures(�P) =
⋃{failures(P) | P ∈ P}

Process equivalence =F and process refinement �F over the stable failures model
are then defined as usual:

P =F Q ⇔ traces(P) = traces(Q) ∧ failures(P) = failures(Q),
P �F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q).

2.3 Expressiveness

At first glance, the above defined input language of Csp-Prover seems to be
weaker than full Csp as the generic internal choice operator �P is missing.
However, we can show our language to be expressive.

First, we define a function ProcT (n) on sets of traces and a function ProcF(n)

on the domain FΣ, inductively on n as follows:

ProcT (0)(T)=Div
ProcT (n+1)(T)= ((! x : head(T) • (x → ProcT (n)(tail(T , x)))) � Div)

� (if (〈�〉 ∈ T) then Skip else Div)
ProcF(0)(T ,F)= !set A : accept(T ,F) • (? x : A → Div)

ProcF(n+1)(T ,F)= (! x : head(F) • (x → ProcF(n)(tail(T , x), tail(F , x)))) � Div

where head , tail , and accept are defined as

head(T) = {x ∈ Σ | ∃ t . 〈x 〉 � t ∈ T}
head(F) = {x ∈ Σ | ∃ t X . (〈x 〉 � t ,X) ∈ F}

tail(T , x) = {t | 〈x 〉 � t ∈ T}
tail(F , x) = {(t ,X) | (〈x 〉 � t ,X) ∈ F}

accept(T ,F) = {(Σ − Y) | (〈〉,Y) ∈ F ∧ � ∈ Y ∧ (∀ x /∈ Y . 〈x 〉 ∈ T)}.
5 To make the implementation easier we allow the empty set ∅ as a set S of selectors.

Consequently we need to add {〈〉} to the set of traces. However, this makes sense
only in models with a refinement top.

4

Intuitively, A ∈ accept(T ,F) is the set of communications which are not refused
by F and can be performed by T . Next, define a function ProcF as follows:

ProcF (T ,F) = (!nat n • ProcT (n)(T)) � (!nat n • ProcF(n)(T ,F))

With these functions defined, we show that [[·]]F is surjective on FΣ:

Theorem 1. For all (T ,F) ∈ FΣ, [[ProcF (T ,F)]]F = (T ,F).

Proof sketch. We prove by induction on n : if t ∈ traces(ProcT (n)(T)) or
t ∈ traces(ProcF(n)(T ,F)) for some n, then t ∈ T . Then we show by induc-
tion on the length of t : if t ∈ T then t ∈ traces(ProcT (length(t))(T)). Hence,
traces(ProcF (T ,F)) = T . Equality for failures follows by a similar argument. �

2.4 Recursive processes

Infinite processes can be effectively expressed by fixed points. For example, a
buffer Buffer , which iteratively receives a real number r from the channel in
and sends it to a channel out together with an increasing natural number id ,
can be defined by using a solution f of the following system of equations6:

f (Empty (id)) =F in ? r → (f (Full (r , id)))
f (Full (r , id)) =F out (r , id) → (f (Empty (id + 1)))

where Empty and Full are names, and f is a function whose domain is

Dom(f) = {Empty (id) | id ∈ Nat} ∪ {Full (r , id) | r ∈ Real , id ∈ Nat}
and whose range is the set of all processes. Any solution f is a fixed point
(Fix fun) of the function fun : (Dom(f) ⇒ ProcΣ) ⇒ (Dom(f) ⇒ ProcΣ) given
as:

fun(f)(Empty (id)) := in ? r → (f (Full (r , id)))
fun(f)(Full (r , id)) := out (r , id) → (f (Empty (id + 1)))

Therefore, the process Buffer , which initially has no data and whose initial id
is zero, is given as (Fix fun)(Empty (0)).

Csp offers two standard approaches to deal with fixed-points: complete par-
tial orders (cpo) with Tarski’s fixed point theorem or complete metric spaces
(cms) with Banach’s fixed point theorem. The limits (Fix fun) and (Fix ! fun)
of the converging sequences in Tarski’s and Banach’s fixed point theorems can
be defined in our Csp-dialect as follows:

(Fix fun)(x) := !nat n • ((fun(n)(λ y.Div))(x))
(Fix ! fun)(x) := !nat n • (((fun(n)(λ y.Any))(x)) ↓ n)

where Div plays the role of the bottom element in the cpo approach and Any
stands for any process, which corresponds to the arbitrary initial point of Ba-
nach’s theorem. Then, as expected, the following properties hold:
6 in ? r → P(r) is a syntactic sugar for ? x : {in(r) | r ∈ Real} → P(in−1(x)).

5

1. Let fun ∈ ProcFunΣ. Then (Fix fun)(x) =F (fun (Fix fun))(x) for all x ; fur-
thermore, for any f with (∀ x . f (x) =F fun(f)(x)) holds f (x) �F (Fix fun)(x).
Thus, (Fix fun) is the greatest fixed point on �F , in other words, it is the
least fixed point in the semantic domain.

2. Let fun ∈ ProcFunΣ be guarded and without hiding operator. Then we have
(Fix ! fun)(x) =F (fun (Fix ! fun))(x) for all x ; furthermore, if (∀ x . f (x) =F
fun(f)(x)) for any f , then f (x) =F (Fix ! fun)(x). Thus, (Fix ! fun) is the
unique fixed point on =F .

Here, ProcFunΣ is the set of functions fun such that for all x , (λ f . fun(f)(x))
is a process-function. Each process-function P(f) is a process may contain a
process-function variable f , see, e.g., the above example Buffer .

Thus, both ways of Csp of dealing with systems of recursive equations, the
cpo approach using Tarski’s fixed point theorem as well as the cms approach
using Banach’s fixed point theorem, are expressible in the input language of
Csp-Prover.

3 Axiom System

In this section, we present a sound axiom system AF for the Csp stable-failures
model. The completeness of AF is shown later in the Sections 4 and 5.

We write AF � P = Q if the equality of two processes P and Q can be
proven by equational and inductive reasoning from the axiom system AF . Fig. 2
summarizes changes from the axiom system for finite processes given in [8]. The
superscript ∗ denotes modified laws, the superscript + denotes added laws.

Our axiom system AF replaces the usual unwinding laws for recursive pro-
cesses such as (µX .P(X)) = P(µX .P(X)) by new axioms (Tarski-fix) and
(Banach-fix). While the unwinding laws have proven to be handy for verifying
practical systems with Csp-Prover, at the same time they cause problems with
normalization: see the discussion on infinite unwinding of divergent processes
such as (µX .X) in [8], p. 273. Our laws (Tarski-fix) and (Banach-fix), however,
transforms recursive processes to unbounded nondeterministic processes. Such
processes can then be analyzed via induction on n. We give an example of how
to normalise a divergent process at the end of Section 5.

Secondly, we found that the well-known laws (|[X]|-�-split) and (|[X]|-�-input)
(P.288–289 in [8]) are not correct:

(P � P ′) |[X]| (Q � Q ′)
= (P |[X]| Q) � ((P ′ |[X]| (Q � Q ′)) � ((P � P ′) |[X]| Q ′)), (|[X]|-�-split)

(P � P ′) |[X]| (?x : A → Q(x))
= (?x : (A − X) → ((P � P ′) |[X]| Q(x)))

� ((P |[X]| (?x : A → Q(x))) � (P ′ |[X]| (?x : A → Q(x)))). (|[X]|-�-input)

For example, instantiate the processes in (|[X]|-�-split) as follows: P = a → Stop,
P ′ = Stop, Q = Stop, Q ′ = b → Stop, and X = ∅, where a �= b. In this case, the
semantics of the left hand side of (|[X]|-�-split) does not contain the failure (〈a〉, b)

6

(Fix fun)(x) = !nat n • ((fun(n)(λ y .Div))(x)) (Tarski-fix)+

(Fix ! fun)(x) = !nat n • (((fun(n)(λ y .P))(x)) ↓ n) (Banach-fix)+

if P = (?x : A → P ′(x)) � P ′′ and Q = (?x : B → Q ′(x)) � Q ′′ then
P |[X]| Q
= (?x : ((X ∩ A ∩ B) ∪ (A − X) ∪ (B − X)) →

if (x ∈ X) then (P ′(x) |[X]| Q ′(x))
else if (x ∈ A ∩ B) then ((P ′(x) |[X]| Q) � (P |[X]| Q ′(x)))

else if (x ∈ A) then (P ′(x) |[X]| Q) else (P |[X]| Q ′(x)))
� ((P ′′ |[X]| Q) � (P |[X]| Q ′′)) (|[X]|-�-split)∗

if P = (?x : A → P ′(x)) � P ′′ and Q = ?x : B → Q ′(x) then
P |[X]| Q
= (?x : ((X ∩ A ∩ B) ∪ (A − X) ∪ (B − X)) →

if (x ∈ X) then (P ′(x) |[X]| Q ′(x))
else if (x ∈ A ∩ B) then ((P ′(x) |[X]| Q) � (P |[X]| Q ′(x)))

else if (x ∈ A) then (P ′(x) |[X]| Q) else (P |[X]| Q ′(x)))
� (P ′′ |[X]| Q) (|[X]|-�-input)∗

!! s : ∅ • P(s) = Div (!!-emptyset)+

if S �= ∅ and (∀ s ∈ S . P(s) = Q) then !! s : S • P(s) = Q (!!-const)∗

!! s : (S1 ∪ S2) • P(s) = (!! s : S1 • P(s)) � (!! s : S2 • P(s)) (!!-union-�)∗

!! s : S • (? x : A(s) → P(s, x))
= !set X : {A(s) | s ∈ S}•

(? x : X → (!! s : {s ∈ S | x ∈ A(s)} • P(s, x))) (!!-input-!set)+

if ∀ s ∈ S .Q(s) ∈ {Skip,Div} then
!!s : S • (P(s) � Q(s)) = (!!s : S • P(s)) � (!!s : S • Q(s)) (!!-�-Dist)+

if Q ∈ {Skip,Div} then
(!set X : X • (?x : X → P(x))) � Q = (?x :

⋃X → P(x)) � Q (!!-input-Dist)+

P ↓ 0 = Div (↓-zero)+
(P ↓ n) ↓ m = P ↓ min(n,m) (↓-min)+

P = !nat n • (P ↓ n) (!nat-↓)+
(!! s : S • P(s)) ↓ n = !! s : S • (P(s) ↓ n) (↓-Dist)+

(P1 � P2) ↓ n = (P1 ↓ n) � (P2 ↓ n) (↓-dist)+

(P1 � P2) ↓ n = (P1 ↓ n) � (P2 ↓ n) (↓-�-dist)+

Skip ↓ (n + 1) = Skip (skip-↓)+
Div ↓ n = Div (div-↓)+
(? x : A → P(x)) ↓ (n + 1) =? x : A → (P(x) ↓ n) (↓-step)+

? x : A → P(x) = ((? x : A → P(x)) � Div) � (? x : A → Div) (?-div)+

!! s : S • (!set X : X (s) • (? x : X → Div))
= !set X :

⋃{X (s) | s ∈ S} • (? x : X → Div) (!!-!set-div)+

if X ⊆ Y and (∀Y ∈ Y. ∃X ∈ X .X ⊆ Y ⊆ A) then
((? x : A → P(x)) � Q) � (!set X : X • (? x : X → Div))
= ((? x : A → P(x)) � Q) � (!set X : Y • (? x : X → Div)) (?-!set-⊆)+

Fig. 2. The axiom system AF (differences from [8]).

7

because (Stop � (b → Stop)) can perform b even after P has performed a. On
the other hand, the semantics of the right hand side of (|[X]|-�-split) contains the
failure (〈a〉, b) because it has a subexpression ((a → Stop) |[∅]|Stop). Therefore,
the law (|[X]|-�-split) does not hold. Similarly, there is a counter example (e.g.
P = Stop, P ′ = b → Stop, A = {a}, Q(a) = Stop, and X = ∅) for the law
(|[X]|-�-input). Hence, we modified the laws (|[X]|-�-split) and (|[X]|-�-input) as
shown in Fig. 2. The modified laws are less generic than the original ones, but
they are expressive enough to gain completeness.

Thirdly, we added laws (!!-· · ·) for replicated internal choice !! s : S • P(s),
as shown in Fig. 2, by modifying the laws for the (generic) internal choice �.
The laws (!!-input-!set), (!!-�-Dist), and (!!-input-Dist) are used for replacing
replicated internal choice by (external) prefix choice, considering the effects of
Skip or Div . These laws were added instead of the following law for the binary
internal choice (P.289 in [8]): (P � Skip) � (Q � Skip) = (P � Q � Skip)

Furthermore, we added the laws (↓-· · ·) for the restriction operator as shown
in Fig. 2. The most important law is (!nat-↓) which is used for finitising the
depth of infinite processes.

Finally, we added the laws (?-div), (!!-!set-div), and (?-!set-⊆) for normalising
sequential processes. The law (?-!set-⊆) is used to satisfy the condition (N3) of
full normal forms, stated in Definition 2 in Section 5.

The presented axiom system AF is sound:

Theorem 2. Let P ,Q ∈ ProcΣ . Then AF � P = Q implies P =F Q.

4 Full Sequentialisation

In this section, we define a method to fully sequentialise a process. The purpose of
this transformation is to remove hiding. Hiding operators can cause a problem
when normalising processes with the help of depth restriction operators: P ↓
n =F Q ↓ n does not necessarily imply (P \ X) ↓ n =F (Q \ X) ↓ n due to
hidden communications.

First, we define the set SeqProcΣ of processes in full sequential forms. Pro-
cesses in full sequential form are built using the various Csp choice operators
and the basic processes Skip, Stop and Div only. More formally:

Definition 1. The set SeqProcΣ is defined as the smallest set satisfying

1. (? x : A → P(x)) � Q ∈ SeqProcΣ ,
if P(x) ∈ SeqProcΣ for all x ∈ A and Q ∈ {Skip, Div , Stop}.

2. !! s : S • P(s) ∈ SeqProcΣ ,
if P(s) ∈ SeqProcΣ for all s ∈ S , where S �= ∅.

If P ∈ SeqProcΣ , we say that P is in full sequential form.

As the set A in the first condition is allowed to be the empty set, we have for
example (? x : ∅ → Div) � Skip ∈ SeqProcΣ .

Next, we define for each Csp operator op a sequentialising function fop . Ap-
plying fop to a Csp process P which has op as its out-most operator, the function

8

will transform this process into a semantically equivalent Csp process fop(P) in
full sequential form, provided its subprocesses are already in full sequential form.
Here, we actually prove a stronger proposition, namely AF � P = fop(P). For
example, we have AF � P |[X]| Q = fpar (P |[X]| Q), which according to The-
orem 2 implies P |[X]| Q =F fpar (P |[X]| Q), and fpar (P |[X]| Q) ∈ SeqProcΣ

for P ,Q ∈ SeqProcΣ . For convenience, we use infix notation to write the func-
tions fop , for example we write P |[X]|seq Q instead of fpar (P |[X]|Q). Note the
inductive structure of the sequentialising functions presented in Fig. 3.

Finally, we define an overall sequentialisation function Seq : ProcΣ ⇒ SeqProcΣ

inductively on the syntactic structure of processes:

Seq(P) = (P)seq (P ∈ {Skip,Div ,Stop})
Seq(a → P) = a →seq Seq(P)

Seq(?x : A → P(x)) = ?x : A →seq Seq(P(x))
Seq(P ⊕ Q) = Seq(P) ⊕seq Seq(Q) (⊕ ∈ {�,�, |[X]|, o

9})
Seq(!! s : S • P(s)) = !! s : S •seq Seq(P(s)) · · ·

For this function Seq, Theorem 3 holds:

Theorem 3. Seq(P) ∈ SeqProcΣ and AF � P = Seq(P) for all P ∈ ProcΣ.

Proof sketch. First we show that each sequentialising function fop indeed sequen-
tialises processes, e.g., if P ,Q ∈ SeqProcΣ then AF � P |[X]| Q = P |[X]|seq Q
and P |[X]|seq Q ∈ SeqProcΣ , by induction on the structures of full sequential
forms P and Q . Equality can often be derived by using the distributive-laws and
step-laws taking into account the special role of Skip and Div . From this, the
result on Seq(P) follows easily. �

5 Full Normalisation

Semantically equivalent processes P =F Q in full sequential form can still be
different syntactically, e.g. if A �= B and R(x , y) = (x →seq y →seq (Skip)seq),

! x : A • (! y : B • R(x , y)) �= ! x : B • (! y : A • R(y, x)),

although both processes have the same semantics and are in full sequential form.
This is the reason why we have to study normalisation.

First, we define a new full normal form, which differs slightly from the full
normal form for finite processes presented in [8]:

Definition 2. A process P ∈ ProcΣ is said to be in full normal form if and only
if P has the form ((?x : A → P(x)) � Q) � (!set X : X • (?x : X → Div)) and
the following four conditions (N1), . . . , (N4) are satisfied: (N1) for all x , if x ∈ A
then P(x) is already in full normal form else P(x) is Div7, (N2)

⋃X ⊆ A,
(N3) ∀X . ((∃X0 ∈ X .X0 ⊆ X ⊆ A) ⇒ X ∈ X), and (N4) Q ∈ {Skip, Div}.

The set of full normal forms is denoted by NormProcΣ .
7 ? x : A → P(x) =F ? x : A → Q(x) implies P(x) =F Q(x) for all x ∈ A. However,

for x ∈ Σ\A we do not necessarily have P(x) =F Q(x). Since P(x) and Q(x) are
total functions over Σ, for values outside of A we need to fix them to some constant
as, e.g., Div in order to obtain uniqueness.

9

(Pr)seq = (? x : ∅ → Div) � Pr (Pr ∈ {Skip,Div ,Stop})
a →seq P1 = (? x : {a} → P1) � Stop

? x : A →seq P(x) = (? x : A → P(x)) � Stop

!! s : S •seq P ′(s) =

{
(Div)seq ; S = ∅
!! s : S • P ′(s) ; otherwise

P1 �seq P2 = !nat n : {0, 1} • (if (n = 0) then P1 else P2)

P1 �seq Pr = !! s : S1 • (R′
1(s) �seq Pr) (Pr ∈ {P2,R2})

R1 �seq P2 = !! s : S2 • (R1 �seq R′
2(s))

R1 �seq R2 = (? x : (A1 ∪ A2) →
if (x ∈ A1 ∩ A2) then P ′

1(x) �seq P ′
2(x)

else if (x ∈ A1) then P ′
1(x) else P ′

2(x))
� if (Q1 = Skip ∨ Q2 = Skip) then Skip

else if (Q1 = Div ∨ Q2 = Div) then Div else Stop
Pr1 �seq Pr2 = (Pr1 �seq (Stop)seq) �seq Pr2 (Pri ∈ {Pi ,Ri})

P1 |[X]|seq Pr = !! s : S1 • (R′
1(s) |[X]|seq Pr) (Pr ∈ {P2,R2,Skip,Div})

R1 |[X]|seq P2 = !! s : S2 • (R1 |[X]|seq R′
2(s))

R1 |[X]|seq Skip = ((? x : (A1 − X) → (P ′
1(x) |[X]|seq Skip)) � Q1)

R1 |[X]|seq Div = ((? x : (A1 − X) → (P ′
1(x) |[X]|seq Div)) � Div)

R1 |[X]|seq R2 = if (Q1 = Stop ∧ Q2 = Stop) then R1 |[X]|stepseq R2

else (R1 |[X]|stepseq R2)

�seq (if (Q1 = Stop) then (R1 |[X]|seq Q2)

else if (Q2 = Stop) then (R2 |[X]|seq Q1)

else (R1 |[X]|seq Q2) �seq (R2 |[X]|seq Q1))

R1 |[X]|stepseq R2 = ? x : ((X ∩ A1 ∩ A2) ∪ (A1 − X) ∪ (A2 − X)) →
(if (x ∈ X) then (P ′

1(x) |[X]|seq P ′
2(x))

else if (x ∈ A1 ∩ A2)
then ((P ′

1(x) |[X]|seq R2) �seq (R1 |[X]|seq P ′
2(x)))

else if (x ∈ A1)
then (P ′

1(x) |[X]|seq R2) else (R1 |[X]|seq P ′
2(x)))

� Stop
P1 \seq X = !! s : S1 • (R′

1(s) \seq X)
R1 \seq X = if (Q1 = Stop) then

if (A1 ∩ X = ∅)
then ((? x : A1 → (P ′

1(x) \seq X)) � Q1)
else ((? x : (A1 − X) → (P ′

1(x) \seq X)) � Q1)
�seq (! x : (A1 ∩ X) •seq (P ′

1(x) \seq X))
else (((? x : (A1 − X) → (P ′

1(x) \seq X)) � Q1)
�seq (! x : (A1 ∩ X) •seq (P ′

1(x) \seq X)))

In this figure, it is assumed that
P(x) ∈ SeqProcΣ for all x ∈ A,
P ′(s) ∈ SeqProcΣ for all s ∈ S ,
Pi = !! s : Si • R′

i(s) ∈ SeqProcΣ for each i ∈ {1, 2}, and
Ri = (? x : Ai → P ′

i (x)) � Qi ∈ SeqProcΣ for each i ∈ {1, 2}.

Fig. 3. Sequentialising functions (part).

10

Our definition 2 differs from [8] only in condition (N3). [8] requires all ele-
ments of X to be incomparable. In fact, if X is finite, we can replace our set X in
the full normal form by the incomparable set {⋂{X0 ∈ X | X0 ⊆ X } | X ∈ X}
without changing the semantics of the process. However, if X is infinite, the
semantics may change:

⋂{X0 ∈ X | X0 ⊆ X } is not always contained in X .
Therefore, we require (N3) instead of incomparability.

Next we prove that for processes in NormProcΣ syntactic and semantic equal-
ity are the same:

Theorem 4. For all P ,Q ∈ NormProcΣ, P =F Q if and only if P = Q.

Proof. Almost identical to the proof presented in [8]. �

While for every finitely nondeterministic process P with a finite alphabet,
there is a process P ′ in full normal form such that P =F P ′, this does not hold
for infinitely nondeterministic processes with an arbitrary alphabet as follows.

Theorem 5. For some P ∈ ProcΣ, for every P ′ ∈ NormProcΣ, P �=F P ′.

Proof. Let Loopa be a process defined as Loopa := (Fix funa)(A), where the
function funa is defined by funa(f)(A) := a → f (A), thus Loopa satisfies the
equation Loopa =F a → Loopa . Note that (Fix funa) is expressed by infinite
nondeterminism over Nat . Now, to prove this theorem by contradiction, assume
that for some P ′ ∈ NormProcΣ , Loopa =F P ′. Define P ′′ as:

P ′′ := ((? x : {a} → (if (x = a) then P ′ else Div)) � Div)
� (!set X : {{a}} • (? x : X → Div))

Then P ′′ ∈ NormProcΣ and P ′ =F P ′′. By Theorem 4, P ′ = P ′′. It contradicts
the definition of P ′′. Hence, for every P ′ ∈ NormProcΣ , Loopa �=F P ′. �

To deal with this weakness, we define an extended full normal form.

Definition 3. A process P is in extended full normal form iff P is of the form
!nat n •P ′(n), where the processes P ′(n) are in full normal form and P ′(n) =F
P ↓ n for all n ∈ Nat. We denote the set of extended full normal forms by
XNormProcΣ.

The extended full normal form consists of an infinite nondeterministic choice
between a family of fully normalised processes P(n), where the depth of the
processes P(n) is restricted to n by the restriction operator ↓.

First we give an example of extended full normal form of an infinite process.

Example 1. Let Inc(n) be a process (Fix funinc)(n), where funinc is given by
funinc(f)(n) := !nat m : GT (n) • m → f (m), where GT (n) = {m | n < m}.
This means that Inc(n) iteratively sends a natural number which increases at
each step but the increment is nondeterministic. Next, let Ninc(n) be a process
!nat i • Ninc(i ,n), where Ninc(i ,n) is inductively defined by:

Ninc(0, n) := (Div)norm

Ninc(i + 1, n) := ((?m : GT (n) → (if (n < m) then Ninc(i ,m) else Div)) � Div)
� (!set N : {N | N �= ∅,N ⊆ GT (n)} • (?m : N → Div))

11

!!s : S •(0)
norm P(s) = (Div)norm

!!s : S •(n+1)
norm P(s) = ((?x : A′ →

if (x ∈ A′) then (!!s : {s ∈ S | x ∈ A(s)} •(n)
norm P ′(s, x))

else Div)
� if (∃ s ∈ S .Q(s) = Skip) then Skip else Div)

� !set X : (complete(A′,X ′)) • (?x : X → Div)
where

(Div)norm = ((?x : ∅ → Div) � Div) � (!set X : ∅ • (?x : X → Div)),
complete(A′,X ′) = {X | ∃X0 ∈ X ′. X0 ⊆ X ⊆ A′},

∀ s ∈ S . P(s) = ((?x : A(s) → P ′(s, x)) � Q(s)) �
(!set X : X (s) • (?x : X → Div)) ∈ NormProcΣ ,

A′ =
⋃{A(s) | s ∈ S}, and X ′ =

⋃{X (s) | s ∈ S}.

Fig. 4. Normalising function for replicated internal choice.

where (Div)norm is the full normal form of Div and defined in Fig. 4. Then, it
can be proven that Ninc(n) is the extended full normal form of Inc(n) for every
n, thus Ninc(n) =F Inc(n) and Ninc(n) ∈ XNormProcNat .

Next we prove that for processes in XNormProcΣ syntactic and semantic
equality are the same:

Theorem 6. For all P ,Q ∈ XNormProcΣ, P =F Q if and only if P = Q.

Proof. Let P ,Q ∈ XNormProcΣ and P =F Q . Thus, for some P ′ and Q ′,
P = !nat n • P ′(n) and Q = !nat n • Q ′(n). Further, for all n, P ′(n) =F P ↓
n =F Q ↓ n =F Q ′(n). Thus, P ′(n) = Q ′(n) by Theorem 4. Hence, P = Q . �

Then we define a function that transforms processes of the form !! s : S •P(s)
into full normal form, see Fig. 4. Note that the function !! s : S •(n)

norm P(s) is
defined inductively on n (and not on the process structure). The reason for this
is that structural induction on processes is not possible over a family of processes
P(s). The following lemma shows that our transformation up to depth n indeed
yields a process in full normal form and is semantics preserving:

Lemma 1. If P(s) ∈ NormProcΣ for all s ∈ S, then for any n, !! s : S •(n)
norm

P(s) ∈ NormProcΣ, and AF � (!! s : S • P(s)) ↓ n = !! s : S •(n)
norm P(s) .

Proof sketch. By induction on n. The transformation by AF is established in
three steps: (1) for the first subexpression ((?x : A(s) → P(s , x)) � Q(s)) of
P(s), the nondeterminism over S can be rewritten to (external) prefix choice by
(!!-input-!set), (!!-�-Dist), and (!!-input-Dist). (2) for the second subexpression
(!set X : X (s)•(? x : X → Div)) of P(s), the two nondeterminism by S and X (s)
can be rewritten to one nondeterminism by (!!-!set-div). (3) Finally, (?-!set-⊆)
is applied for replacing X ′ by complete(A′,X ′). �

Finally, for each n ∈ Nat we define a function Norm(n)(P) inductively on the
structure of P , see Fig. 5. The following lemma shows that the function Norm(n)

12

Norm(0)(Pr) = (Div)norm (Pr ∈ SeqProcΣ)

Norm(n+1)(P) = !!s : S •(n+1)
norm Norm(n+1)(R

′(s))
Norm(n+1)(R) = (? x : A → (if x : A then Norm(n)(P

′(x)) else Div)
� (if (Q = Skip) then Skip else Div))

� (!set X : (if Q = Stop then {A} else ∅) • (? x : X → Div))
where P = !! s : S • R′(s) ∈ SeqProcΣ ,

R = ((?x : A → P ′(x)) � Q) ∈ SeqProcΣ ,

Fig. 5. Normalising function.

transforms a process in full sequential forms whose depth is restricted to n into
full normal form.

Lemma 2. Let P ∈ SeqProcΣ. Then for any n, Norm(n)(P) ∈ NormProcΣ and
AF � P ↓ n = Norm(n)(P).

Proof sketch. By induction on the structure of the full sequential form P . If P
has the form !! s : S • R′(s), it can be normalised by Lemma 1. Otherwise, P is
of the form (? x : A → P ′(x)) � Q . If Q �= Stop then it can be transformed to a
full normal form by (�-unit) and (!!-emptyset), otherwise by (?-div). �

With the function XNorm defined as

XNorm(P) = !nat n • (Norm(n)(Seq(P))),

we finally obtain the expected theorem:

Theorem 7. Let P ∈ ProcΣ. Then, XNorm(P) ∈ XNormProcΣ and AF �
P = XNorm(P).

Proof sketch. By the law (!nat-↓), Theorem 3, and Lemma 2, AF � P = !nat n •
(P ↓ n) = !nat n • (Seq(P) ↓ n) = !nat n • (Norm(n)(Seq(P))) = XNorm(P),
and for all n, Norm(n)(Seq(P)) =F XNorm(P) ↓ n. �

From this follows as a corollary that the axiom system AF is sound and
complete for stable-failures equivalence.

Corollary 1. Let P ,Q ∈ ProcΣ. Then, AF � P = Q if and only if P =F Q.

Proof. By Theorems 2, 6, and 7 �

At the end of this section, we give an example to show how to normalise
divergent infinite processes by the axiom system AF .

Example 2. We normalise the divergent infinite process (Fix count)(0) by AF ,
where the function count :: (Nat ⇒ ProcNat) ⇒ (Nat ⇒ ProcNat) is defined as:

count (f) (n) := (n → f (n + 1)) \ {n}
The process (Fix count)(0) increases the natural number n from the initial value
0 – which is hidden to the outside world. For (Fix count)(0), we can for example
prove the equality: (Fix count)(0) =F (0 → (1 → (Fix count)(2)) \ {1}) \ {0}.
To do so, first expand the fixed point by the law (Tarski-fix),

13

AF � (Fix count)(0) = !nat n • ((count (n)(λ y.Div))(0))

Next, we show by induction on n that AF � count (n)(λ y.Div)(m) = Div for
all n,m. The base case (n = 0) is trivial because AF � count (0)(λ y.Div)(m) =
(λ y.Div)(m) = Div . The induction case (n + 1) is proven as follows:

AF � count (n+1)(λ y.Div)(m)
= count(count (n)(λ y.Div))(m)
= (m → (count (n)(λ y.Div))(m + 1)) \ {m}
= (m → Div) \ {m} by induction
= (? x : ∅ → (Div \ {m})) � (! x : {m} • (Div \ {m})) by (hide-step)
= Stop � (! x : {m} • (Div \ {m})) by (stop-step)
= ! x : {m} • Div by (unit-laws)
= Div by (!!-const)

Finally, since AF � Div = (Div)norm ∈ NormProcΣ , we have

AF � (Fix count)(0) = !nat n • (Div)norm ∈ XNormProcΣ ,

where (Div)norm given in Fig. 4 and !nat n • (Div)norm are the full normal form
and the extended full normal form of Div , respectively. �

6 Verification by CSP-Prover

The tool Csp-Prover [3, 4] provides a deep encoding of Csp in the generic theo-
rem prover Isabelle [7]. Csp-Prover contains fundamental theorems such as fixed
point theorems on complete metric spaces and complete partial order, the def-
initions of Csp syntax and semantics, and many Csp-laws and semi-automatic
proof tactics for verification of refinement relation. Therefore, Csp-Prover can
be used for

1. Verification of infinite state systems. For example, we applied Csp-Prover to
verify a part of the specification of the EP2 system, which is a new industrial
standard of electronic payment systems, see [4].

2. Establishing new theorems on Csp. For example, Csp-Prover assisted us in
proving the theorems given in this paper.

All proofs (including the examples) given in this paper have been verified
by Csp-Prover. However, Csp-Prover also implements the axiom system AF ,
besides the verification of this paper. Therefore, it is possible to prove the stable-
failures equivalence over processes by syntactical rewriting with Csp-Prover.

In Isabelle, theorems, together with definitions and proof-scripts needed for
their proof, can be stored in theory-files. Currently, Csp-Prover consists of three
packages of theory-files: CSP, CSP T, and CSP F. The package CSP is the reusable
part independent of specific Csp models. For example, it contains fixed point the-
orems on cms and cpo, and the definition of Csp syntax. The packages CSP T and
CSP F are instantiated parts for the traces model and the stable failures model.
The packages have a hierarchical organisation as: CSP F on CSP T on CSP on

14

Isabelle/HOL-Complex. The total number of lines of theory-files in CSP, CSP T,
and CSP F are about 12,000 lines, 11,000 lines, and 18,000 lines, respectively.

The theorems for sequentialisation and normalisation given in this paper are
stored in a new package FNF F implemented on CSP F. The total line number of
theory-files in FNF F is about 6,000 lines. All the packages can be downloaded
from the web-site [3] of Csp-Prover.

7 Conclusion

We have shown that the Csp-dialect under discussion has the same expressive
power as full Csp. We also presented a sound and complete axiom system AF of
stable-failures equivalence for processes with unbounded nondeterminism over
an arbitrary (possibly infinite) alphabet. The theorems presented in this paper
have been verified by Csp-Prover.

Our results are of practical relevance for theorem proving for Csp in general:
besides having a complete axiom system available, it is also possible to base proof
rules and tactics on the extended full normal form. On the theoretical side, the
here presented axioms, transformations, and normal forms provide new insight
into the semantics of the process algebra Csp.

Acknowledgement. The authors are grateful to Erwin R. Catesbeiana Jr for
pointing out the incompleteness problem in the first place and for good advice
on how to avoid inconsistencies in the axiom system.

References

1. B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authen-
tication protocols. In E. L. Gunter and A. P. Felty, editors, TPHOL 1997, LNCS
1275, pages 121–136. Springer, 1997.

2. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
3. Y. Isobe and M. Roggenbach. Webpage on Csp-Prover.

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
4. Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In

N. Halbwachs and L. D. Zuck, editors, TACAS 2005, LNCS 3440, pages 108–123.
Springer, 2005.

5. Y. Isobe, M. Roggenbach, and S. Gruner. Extending CSP-Prover by deadlock-
analysis: Towards the verification of systolic arrays. In FOSE 2005, Japanese
Lecture Notes Series 31, pages 257–266. Kindai-kagaku-sha, 2005.

6. F. S. E. Limited. Failures-divergence refinement: FDR2. http://www.fsel.com/.
7. L. C. Paulson. A Generic Theorem Prover. LNCS 828. Springer, 1994.
8. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998. Or

No.68 in http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html.
9. S. Schneider. Verifying authentication protocol implementations. In B. Jacobs and

A. Rensink, editors, FMOODS 2002, volume 209 of IFIP Conference Proceedings,
pages 5–24. Kluwer, 2002.

10. H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. Fitzgerald, C. Jones, and P. Lucas, editors, FME’97, LNCS 1313, pages 318–
337. Springer, 1997.

15

