
Extension Rules:
Description Rules for Safely Composable Aspects

Technical Report AIST01-J00002-4, Feb 2003

Yuuji ICHISUGI
National Institute of Advanced

Industrial Science and
Technology

AIST Tsukuba Central 2,
Tsukuba,Ibaraki 305-8568,

Japan

y-ichisugi@aist.go.jp

Akira TANAKA
National Institute of Advanced

Industrial Science and
Technology

AIST Tsukuba Central 2,
Tsukuba,Ibaraki 305-8568,

Japan

akr@m17n.org

Takuo WATANABE
National Institute of

Informatics /
Tokyo Institute of Technology

2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo 101-8430,

Japan

takuo@acm.org

ABSTRACT
Aspect composition — application of two or more separately
developed aspects to a single target code — generally re-
quires great skills and knowledge on both aspects and the
target. We give a collection of rules, called extension rules,
for safely composable aspects. If all the member of a set of
aspects obey the extension rules, they can be safely com-
posable, even if independent programmers implement them.
Our extension rules restrict how aspects extend the behavior
of existing methods in the target. In this paper, we say how
the extension rules can be applied to the diamond inheri-
tance case of mixins and then MixJuice language modules.
We describe a method of verifying extension rules in those
cases. We use the notion of pre- and post-conditions and be-
havioral subtyping to define the composability criterion for
mixins and MixJuice modules. Four specific extension rules
(the After Rule, the Plus Rule, the Functional Protocol Rule
and the Disjoint Branch Rule) and their verification method
are presented. We also mention the future direction of our
research needed to realize safe and easy aspect-oriented pro-
gramming.

1. INTRODUCTION
The following questions are often asked about aspect-oriented
programming languages.

• Isn’t it dangerous to alter the behavior of existing
classes?

• Is it possible to understand the source code without
seeing the whole program?

This paper is a first step to answering these questions.

One important purpose of the modularization of programs is
to enable the separate development of each module. When
composing modules, developers hope that each module will
work as well in concert with other modules as on its own.
We call this property of modules safely composable or merely
composable. On the other hand, when developing each mod-
ule, ideally the programmer of the module can understand
how the module works without needing to know the whole
source code of modules to be composed. If this is possible,
we say “modular reasoning is possible.” These two proper-
ties of modules are actually the same thing but viewed from
a different viewpoint.

In the case of a programming language that supports ab-
stract data types (ADTs), rigorous Design by Contract[11]
is required to make modules composable. (In this case, a
module is an ADT definition.) In short, all programmers are
required to obey the following rule: “The implementer of an
ADT should implement the external interface of the ADT
correctly, whereas the user of an ADT should not depend on
the specific implementation of the ADT but depend only on
the external interface of the ADT. ” One way to represent
the specifications of ADTs is as pre- and post-conditions.
If programmers rigorously apply Design by Contract, the
change of an internal implementation of an ADT does not
change the correctness of other code that uses the ADT.

In the case of object-oriented languages with static type
checking, another rule is required to make modules compos-
able. (In this case, a module is a class definition.) The pro-
grammers of a subclass should guarantee that “A subclass
instance is substitutable for a superclass instance.” This
rule can also be expressed as “When a subclass overrides
the superclass method, the subclass may weaken the pre-
condition and strengthen the post-condition of the method.”
If a subclass is defined in this way, we say that the subclass
is a behavioral subtype[9] of the superclass. If programmers
rigorously obey this rule, extensions of the behavior by a
subclass will not change the correctness of other codes that
use the superclass type, because the change in behavior does



not violate the external specification of the superclass.

In the case of object-oriented languages that support mixins,
more rules are required to make modules composable. (In
this case, a module is a class or a mixin definition; com-
position is multiple inheritance of mixins.) No previous
research has formally discussed the rules needed to make
mixins safely composable; however, empirical knowledge has
been acquired. In this paper, we define a “mixin” as a class
that is defined such that it will be multiply-inherited by
other classes. If sets of method names defined by mixins are
disjoint, these mixins are safely composable. On the other
hand, it is usually dangerous for more than one mixin to
override the same method. To support safe composition for
the latter case, CLOS[16] and its predecessor, Flavors[12],
provide a mechanism called method combinations. Never-
theless, the safety of method combinations has not been for-
mally verified; in fact, they are not completely safe. Worse,
there are no clear guidelines for designing new safe method
combinations.

In this paper, we first propose a method for guaranteeing
the safe composition of mixins by applying extension rules,
which are generalizations of method combinations. We also
explain how to formally verify extension rules. Extension
rules restrict how mixins extend the behavior of superclass
methods. If two mixins extend the behavior of superclass
methods obeying an extension rule, two mixins are safely
composable. In other words, extension rules guarantee that
the behavior of a class that multiply-inherits mixins does
not violate the external specification of each ancestor class.

Second, we apply our idea to MixJuice[6, 5], a kind of aspect-
oriented language[4]. Making aspects safely composable has,
up to now, been a problem remaining to be solved[4]. We
believe our idea to be applicable to not only MixJuice, but
also to other aspect-oriented languages, because some parts
of the mechanisms of aspect-oriented languages inherently
resembles mixins. For example, “before/after/around ad-
vice” of AspectJ[8] is originally a part of the method com-
bination mechanism of Flavors. Our idea may increase the
safety of this mechanism of AspectJ.

All the extension rules described in this paper have been
verified in the case of diamond inheritance of mixins and
MixJuice modules so far; however, we expect these rules to
be safe even in cases of general inheritance graphs.

This paper is intentionally written in a descriptive and infor-
mal style. We assume that readers have a basic knowledge
of object-oriented languages and first-order predicate logic.

We do not think that all programmers need to follow rig-
orous programming rules taking account of pre- and post-
conditions to make aspects safely composable; instead, we
believe it is possible to support adequately safe and easy
aspect-oriented programming for programmers without know-
ing pre- and post-conditions, by enhancing the method com-
bination mechanism of Flavors. In the final section, we cover
the future direction of research needed to realize safe and
easy aspect-oriented programming.

The rest of this paper is organized as follows. In Section 2,
we briefly explain the notion of behavioral subtyping. In
Section 3 and Section 4, extension rules for mixins and
MixJuice modules are described respectively. In Section 5,
we show a simple verification support tool. Section 6 covers
related work. We conclude with Section 7.

2. BEHAVIORAL SUBTYPING
In this section, we briefly explain the notion of behavioral
subtyping[9], which is used for our definition of composabil-
ity.

Behavioral subtyping is a relationship that takes both sig-
natures and behavior into consideration.

In many languages, such as C++ and Java, superclass dec-
larations are combined with supertype declarations. For
example, if a class C2 inherits another class C1, type C2
becomes a subtype of type C1. Because a subclass inherits
all instance variables and methods from its superclass, all
operations applicable to the superclass are also applicable
to the subclass. In this sense, this subtype relation is safe.

This subtyping mechanism guarantees that the “method not
found error” will never occur; however, it does not guarantee
more than that. Needless to say, many programs do not
work as expected even if the “method not found error” does
not occur.

This problem surfaces if different programmers implement
classes. For example, suppose that a method m of class A
receives a parameter of type Vector.

class A {
void m(Vector v){

...
int s = v.size();
...
Object x = v.elementAt(i);
...

}
}

Usually, the implementer A of the class A assumes that the
received parameter is an instance of the class Vector. If
another programmer B defines a subclass of Vector whose
behavior is completely different from Vector, and passes it
to m, m does not work correctly. For example, an ArrayIn-
dexOutOfBoundsException may occur.

To avoid such situations, a programming rule: “Instances of
a subclass should be substitutable for instances of the super-
class”, is required1. That is to say, a programmer defining
a new subclass is obliged to guarantee that instances of the
subclass behave as instances of the superclass. If this rule is
satisfied, the type of subclass is a behavioral subtype of the
type of superclass.

The relation of behavioral subtyping can be defined more
strictly by using logical formulas. The specification of a

1This requirement is also called the Liskov Substitution
Principle[10].



method m is expressed as two logical formulas, a pre-condition
and a post-condition. A pre-condition is expected to be sat-
isfied before calling the method m. A post-condition is ex-
pected to be satisfied after returning from the method m.
The following logical formulas need to show tautology2 to
make a class C2, whose pre- and post-conditions of method
m are R2 and E2, a behavioral subtype of a class C1, whose
pre- and post-conditions of method m are R1 and E1. (R
and E mean “require” and “ensure”, respectively.)

(R1 ⇒ R2) ∧ (R1 ⇒ (E2 ⇒ E1))

Note that class C2 needs to strengthen its post-condition
only when the pre-condition R1 is satisfied3.

For example, consider the following method m.

class C1 {
double m(double p) { return Math.sqrt(p); }

}

This method receives a non-negative real number and re-
turns its square root. The pre- and post-condition can be
expressed as follows using parameter p and return value r
of method m.

R1(p) ≡ p ≥ 0
E1(p, r) ≡ r =

√
p

On the other hand, suppose that another class C2 has the
following method.

class C2 {
double m(double p) {

if (p >= 0){
return Math.sqrt(p);

} else {
return -1;

}
}

}

The specification of method m may be as follows.

R2(p) ≡ true
E2(p, r) ≡ (p ≥ 0 ⇒ r =

√
p) ∧ (p < 0 ⇒ r = −1)

In this case, type C2 is a behavioral subtype of type C1 be-
cause the logical formula (R1 ⇒ R2) ∧ (R1 ⇒ (E2 ⇒ E1)),
that is

(p ≥ 0 ⇒ true)
∧ (p ≥ 0 ⇒ ((p ≥ 0 ⇒ r =

√
p) ∧ (p < 0 ⇒ r = −1)

⇒ r =
√

p))
is tautological.

2As described in [9], other properties concerning invariants
and constraints are required. The investigation of these
properties is a future work.
3As pointed out in [3], the requirement (R1 ⇒ R2)∧ (E2 ⇒
E1) defined by [11] and [9] is too strong. In [3], a more
weakened requirement (R1 ⇒ R2) ∧ ((R2 ⇒ E2) ⇒ (R1 ⇒
E1)) is used, which is equivalent to the requirement used in
this paper.

Indeed, even if an instance of C2 is assigned to a variable
of type C1, the return value of the method m is always
equivalent to the value that C1 might return because the
parameter passed to the method m is always a non-negative
value.

Conversely, users of type C1 can program as if the values of
variables of type C1 are always instances of C1. They need
not be aware that the values may be instances of C2. That
is to say, modular reasoning is possible.

We have assumed that the user of the type C1 rigorously
applies Design by Contract. In other words, the user should
not assume anything more than what is written in the ex-
ternal specification of C1. For example, the user should not
expect the return value NaN (Not a Number) as a result
of the method invocation of m with a negative parameter.
Although the implementation of C1 happens to behave this
way, this type of behavior is not included in the specification
of C1.

Although it is not easy to apply Design by Contract and be-
havioral subtyping rigorously during actual programming,
it is well known that they effectively enhance software reli-
ability[11].

3. EXTENSION RULES FOR COMPOSABLE
MIXINS

In this section, we consider, as a first step, diamond inheri-
tance of mixins. (In the next section, we consider diamond
inheritance of MixJuice modules by using notations and the
verification method described in this section.)

3.1 Diamond Inheritance of Mixins
For consideration in this section, we will assume an object-
oriented language with static typing, multiple inheritance
and class linearization mechanisms.

Figure 1(a) is an example of diamond inheritance. Both
class C2 and C3 inherit C1. Class C4 inherits both C2 and
C3. We assume C4 itself defines no methods.

This language linearizes classes. The behavior of instances
of class C4 is equivalent to the behavior of the instances of a
class that is defined as shown in Figure 1(b). In this paper,
we assume that no other results of linearization occur.

This language permits assignments of instances of subclasses
to variables of type of superclasses.

A subclass may override its superclass’s methods. The over-
riding method may invoke a superclass’s overridden method
by using a super-invocation language construct. Which method
is actually invoked during runtime is determined by the re-
sult of linearization. For example, super invocation within
class C3 in Figure 1(b) invokes the overridden method of
class C2.

We assume that one method invocation of object O does not
cause another method invocation of O. In other words, we
do not examine the downcall problem[14].



Figure 1: (a) The diamond inheritance of mixins C2
and C3. (b) The result of linearization of C4.

3.2 Notation for Behavior of Instances
We sometimes use a list of linearized classes to denote the
behavior of an instance of a class because the precise be-
havior of an instance depends on the behavior of the super
invocation within the instance, and the behavior of the su-
per invocation is determined by the result of linearization.
For example, the behavior of instances of classes C1, C2,
C3 and C4 are denoted as (C1), (C1 C2), (C1 C3) and
(C1 C2 C3 C4) respectively.

The notation o2 ↪→ o1 means the behavior of an instance
o2 is a behavioral subtype of the behavior of an instance
o1. For example, the following expression denotes that the
instance of C2 is a behavioral subtype of the instance of C1.

(C1 C2) ↪→ (C1)

The above relation requires the following logical formula to
be tautological for each method of class C1, as described in
the previous section. (R(C1), E(C1), R(C1C2) and E(C1C2)

are the pre- and post-conditions of (C1) and the pre- and
post-conditions of (C1 C2) respectively.)

(R(C1) ⇒ R(C1C2)) ∧ (R(C1) ⇒ (E(C1C2) ⇒ E(C1)))

3.3 The Composability Criterion
In this section, we define a criterion that judges whether C2
and C3 are safely composable or not.

This criterion consists of two sets of requirements. The first
requires a behavioral subtyping relationship between super-
classes and subclasses. The second requires a behavioral
subtyping relationship between the behavior of the super
invocations before and after linearization.

For example, in the first set of requirements, the instance of
C4 needs to be a behavioral subtype of the instance of C3.
This requirement is expressed as follows.

(C1 C2 C3 C4) ↪→ (C1 C3)

Another set of requirements is necessary for modular reason-
ing concerning super invocations. For example, the proper-
ties of the super invocation expected by the programmer of
C3 should be satisfied even if C3 becomes one of the lin-
earized classes of C4. The programmer of C3 assumes the
behavior of the super to be (C1) as shown in Figure 1(a).
On the other hand, the behavior of the super of C3 within

C2 is a behavioral subtype of C1:

(C1 C2) ↪→ (C1)

C3 is a behavioral subtype of C1:

(C1 C3) ↪→ (C1)

C4 is a behavioral subtype of C1:

(C1 C2 C3 C4) ↪→ (C1)

C4 is a behavioral subtype of C2:

(C1 C2 C3 C4) ↪→ (C1 C2)

C4 is a behavioral subtype of C3:

(C1 C2 C3 C4) ↪→ (C1 C3)

The super of C2 after linearization is a behavioral sub-
type of the super of C2 before linearization:

(C1) ↪→ (C1)

The super of C3 after linearization is a behavioral sub-
type of the super of C3 before linearization:

(C1 C2) ↪→ (C1)

Figure 2: The composability criterion.

instances of C4 is (C1 C2) as shown in Figure 1(b). There-
fore, this requirement is expressed as follows.

(C1 C2) ↪→ (C1)

All of these two kinds of requirements are listed in Figure 2.
The composability criterion requires that all of these require-
ments be satisfied. If different programmers implement C2
and C3 without any restrictions, we cannot expect these re-
quirements to be satisfied. Extension rules guarantee the
composability criterion to be satisfied by restricting the be-
havior specifications of C2 and C3. If the composability
criterion is satisfied, C4 can safely inherit C2 and C3 simul-
taneously. In other words, all assumptions about method
invocations at the coding-time of each class are guaranteed
to hold even after linearization.

3.4 The Representation of Specifications of Meth-
ods

In this section, we explain the representation of specifica-
tions of methods. (In the next section, we explain extension
rules and their validity using this representation.)

Class C1, C2 and C3 introduce internal states s1, s2 and s3
respectively. (The internal state of the instance of C2 is a
direct product of s1 and s2.)

The pre-condition of each method of class C1 is expressed
as a logical formula containing state s1 before the invoca-
tion and parameter p. The post-condition of each method
is expressed as a logical formula containing state s1 before
the invocation, state s1’ after the invocation, parameter p
and return value r. The following is an example of pre-
condition R1 and post-condition E1 of a method m and an
implementation of the specification.



R1(s1, p) ≡ true
E1(s1, s1′, p, r) ≡ (s1′ = p) ∧ (r = p)

class C1 {
int s1;
int m(int p) { s1 = p; return p; }

}

When representing the specifications of C2 and C3, lin-
earization should be taken into account, since the precise
behaviors of instances depend on the results of linearization.
More accurately, linearization affects the behavior of the su-
per invocation. We use RO, EO and sO to denote the pre-
and post-conditions and the state of the super respectively
when writing the specifications of C2 and C3.

RO(s1, sO, p)
EO(s1, s1′, sO, sO′, p, r)

The state sO is introduced by other mixins that are in-
serted before the current class and the class C1 as a result
of linearization. For example, sO seen from C2 within an
instance (C1 C2) is empty; sO seen from C3 within an in-
stance (C1 C2 C3) is s2.

The following is an example of specification and implemen-
tation of C2 and C3. In this example, C2 invokes super and
C3 does not.

R2(s1, sO, s2, p) ≡ RO(s1, sO, p)
E2(s1, s1′, sO, sO′, s2, s2′, p, r) ≡

EO(s1, s1′, sO, sO′, p, r) ∧ (s2′ = p)

class C2 extends C1 {
int s2;
int m(int p){ s2 = p; return super.m(p); }

}

R3(s1, sO, s3, p) ≡ true
E3(s1, s1′, sO, sO′, s3, s3′, p, r) ≡

(s1′ = p) ∧ (sO′ = sO) ∧ (s3′ = s3) ∧ (r = p)

class C3 extends C1 {
int m(int p){ s1 = p; return p; }

}

After linearization, the behavior of each instance can be ex-
pressed without using RO, EO or sO, because the behavior
of the super is determined. In general, the behavior of an
instance (C1 · · · Cn Cn+1) is obtained by substituting the
behavior of an instance (C1 · · · Cn) for RO and EO of the
specification of class Cn+1. The behavior of an instance (C1)
is the behavior of class C1.

For example, the post-condition of a method m of an in-
stance of C2, E(C1C2) is obtained as follows, by substituting
the post-condition of class C1 for EO in the post-condition
of class C2.

E(C1C2)(s1, s1′, s2, s2′, p, r) ≡
(s1′ = p) ∧ (r = p) ∧ (s2′ = p)

The post-condition of a method m of an instance of C4,
E(C1C2C3C4), is as follows. (Because C4 itself does not have
any method definitions, it inherits C3’s methods. The state
sO in the specification of C3 is substituted by s2.)

E(C1C2C3C4)(s1, s1′, s2, s2′, s3, s3′, p, r) ≡
(s1′ = p) ∧ (s2′ = s2) ∧ (s3′ = s3) ∧ (r = p)

The set of specifications of C1, C2, C3 and C4 described
in this section is an example that causes a problem of mul-
tiple inheritance. Because C3 does not invoke super, the
C2’s method that should update s2’s value is not invoked.
In fact, these specifications do not satisfy the composabil-
ity criterion. One of the requirements listed in Figure 2,
(C1 C2 C3 C4) ↪→ (C1 C2), is not satisfied, since
E(C1C2C3C4) ⇒ E(C1C2) is not tautological.

3.5 Extension Rules and Their Verification
In this section, we describe extension rules that restrict the
specification of each class. We also explain the validity of
the extension rules based on the composability criterion.

3.5.1 Roles of Framework and Extension Modules
We assume that C1 plays the role of a framework and that
C2 and C3 act as extension modules.

There are probably an infinite number of extension rules
that satisfy the composability criterion. The programmer
who defines C1 should declare one extension rule for each
method defined at C1. (It will be declared by a language
construct provided by the programming language in the fu-
ture, or by documents written in a natural language.) Both
C2 and C3 override each method according to the extension
rule declared at C1.

This style follows the programming style of Flavors using
method combinations.

3.5.2 The After Rule
In this section, we describe one of the specific extension rules
that satisfy the composability criterion.

We have designed the extension rule, which we’ll call the
After Rule, based on our programming experience. This rule
is similar to the “after daemon”, part of Flavors’ method
combination mechanism.

This rule compels the methods of the linearized classes to
be executed from the top to the bottom of the linearized list
and requires that each method preserves the super’s post-
condition.



The After Rule:
When a mixin overrides the superclass’s method,

• it must not change the pre-condition of the method.

• it must invoke super exactly once at the beginning
of the method execution.

• it must pass the parameters of the method to the
super without changing them.

• it must return the super’s return value without
changing it.

• it may refer to the inherited state but must not
update it.

• it may refer to and update the state introduced by
itself.

This After Rule can be formally written as follows:

The After Rule:
The pre- and post-conditions of the method m of each
mixin Ci (i = 2,3) that extends C1’s m should be written
in the following form.

Ri(· · · ) ≡ RO(s1, sO, p)
Ei(· · · ) ≡

EO(s1, s1′, sO, sO′, p, r) ∧ E′
i(s1

′, si, si′, p, r)

E′
i is an arbitrary logical formula that contains s1′, si, si′, p

and r.

It is easy to confirm that the After Rule enforces the compos-
ability criterion on C2 and C3. For example, one of the re-
quirements of the composability criterion (C1 C2 C3 C4) ↪→
(C1 C2), is satisfied as follows.

The pre- and post-conditions of an instance (C1 C2 C3 C4)
are as follows.

R(C1 C2 C3 C4) ≡ R1
E(C1 C2 C3 C4) ≡ E1 ∧ E2′ ∧ E3′

The pre- and post-conditions of an instance (C1 C2) are as
follows.

R(C1 C2) ≡ R1
E(C1 C2) ≡ E1 ∧ E2′

In this case, the requirement (C1 C2 C3 C4) ↪→ (C1 C2),
which is the following logical formula, is clearly tautological.

(R(C1 C2) ⇒ R(C1 C2 C3 C4))
∧ (R(C1 C2) ⇒ (E(C1 C2 C3 C4) ⇒ E(C1 C2)))

= (R1 ⇒ R1) ∧ (R1 ⇒ (E1 ∧ E2′ ∧ E3′ ⇒ E1 ∧ E2′))
= true

3.5.3 The Plus Rule
In this section, another example of an extension rule, the
Plus Rule, is explained. This rule is similar to the “+”
method combination of Flavors.

The Plus Rule is almost the same as the After Rule; meth-
ods of the linearized classes are executed from the top to
the bottom; however, they differ in the following ways. Al-
though the After Rule prohibits changing the return value of

the super, the Plus Rule allows mixins to return a value that
is the sum of the return value of the super and an arbitrary
non-negative value. In compensation for this, each method
cannot guarantee an exact return value; it only guarantees
the minimum value of the return value.

The following program is an example of obeying the plus-
rule.

class C1 {
Vector v1;
int m(){ return v1.size(); }

}
class C2 extends C1 {
Vector v2;
int m(){ return super.m() + v2.size(); }

}
class C3 extends C1 {
Vector v3;
int m(){ return super.m() + v3.size(); }

}

The Plus Rule can be formally written as follows:

The Plus Rule:
The post-condition of a method m of the class C1 and
the pre- and post-conditions of m of each mixin Ci (i =
2,3) that extends C1 should be written in the following
form.

E1(· · · ) ≡ ∃r1 . E1′(s1, s1′, p, r1) ∧ (r ≥ r1)
Ri(· · · ) ≡ RO(s1, sO, p)
Ei(· · · ) ≡ ∃rO, ri . EO(· · · , rO)

∧ Ei′(s1′, si, si′, p, ri) ∧ (ri ≥ 0) ∧ (r ≥ rO + ri)

It is easy to confirm that the Plus Rule enforces the compos-
ability criterion on C2 and C3. For example, one of the re-
quirements of the composability criterion, (C1 C2 C3 C4) ↪→
(C1 C2), is satisfied as follows.

The pre- and post-conditions of an instance (C1 C2 C3 C4)
are as follows.

R(C1 C2 C3 C4) ≡ R1
E(C1 C2 C3 C4) ≡

∃r1, r2, r3 . E1′ ∧ E2′ ∧ E3′

∧ (r2 ≥ 0)∧ (r3 ≥ 0)∧ (r ≥ r1 + r2 + r3)

The pre- and post-conditions of an instance (C1 C2) are as
follows.

R(C1 C2) ≡ R1
E(C1 C2) ≡ ∃r1, r2 . E1′ ∧E2′ ∧ (r2 ≥ 0)∧ (r ≥ r1+ r2)

In this case, the requirement (C1 C2 C3 C4) ↪→ (C1 C2),
which is the following logical formula, is clearly tautological.

(R(C1 C2) ⇒ R(C1 C2 C3 C4))
∧ (R(C1 C2) ⇒ (E(C1 C2 C3 C4) ⇒ E(C1 C2)))

= (R1 ⇒ R1) ∧
(R1 ⇒ (∃r1, r2, r3 . E1′ ∧E2′∧E3′∧ (r2 ≥ 0)∧ (r3 ≥ 0)

∧ (r ≥ r1 + r2 + r3)
⇒ ∃r1, r2 . E1′ ∧E2′ ∧ (r2 ≥ 0)∧ (r ≥ r1+r2)))

= true



We can easily think up variations of the Plus Rule. In
general, extension rules that monotonically increase (or de-
crease) the return value of the super in certain meanings will
satisfy the composability criterion. For example, an exten-
sion rule that permits the addition of elements to a set will
satisfy the composability criterion. More practical examples
include the rule for methods adding entries to hash tables
and the rule for initialization methods of GUI menu entries.

The Plus Rule is an example of a “domain-specific” exten-
sion rule. This rule uses predicates of number theory, and its
proof is based on the following theorem in number theory.

(a ≥ b + c) ∧ (c ≥ 0) ⇒ (a ≥ b)
Likewise, actual programming of practical applications will
require extension rules that use predicates of their domain.
For example, an extensible compiler framework will require
extension rules that use predicates of language semantics.

3.5.4 The Functional Protocol Rule
We have found an extension rule that permits changing the
algorithm of calculation of the return value. We call this rule
the Functional Protocol Rule because these kinds of methods
are classified with functional protocols in [7]4.

Although all extension rules described so far force super in-
vocations, the Functional Protocol Rule does not.

The following program is an example of obeying this rule.
Two mixins independently cache the return value with a
different algorithm.

class C1 {
String m(String s){ ...; return r; }

}
class C2 extends C1 {
Hashtable cache = new Hashtable();
String m(String s){

String r = (String)cache.get(s);
if (r == null){
r = super.m(s);
cache.put(s, r);

}
return r;

}
}
class C3 extends C1 {
String lastS = null;
String lastR = null;
String m(String s){

if (! (lastS != null && s.equals(lastS))){
lastS = s; lastR = super.m(s);

}
return lastR;

}
}

The Functional Protocol Rule can be formally written by ex-
pressing the fact that “side effects of methods may or may

4To be precise, an overrider of a method following a func-
tional protocol in [7] is assumed to change not only the al-
gorithm, but also the value to be returned. This kind of
change is safe if done by one subclass; however, it is unsafe
if done by mixins. Therefore, the extension rule described
in this section prohibits changing the return value of the
method.

not occur.” E1′ is a logical formula for determining the re-
turn value. E1′′ and E′′

i are logical formulas for determining
side effects. The side effects of C1 may or may not occur. C2
and C3 may or may not invoke super; their side effects may
or may not occur. In any case, E1′ determines the return
value.

The Functional Protocol Rule:
The post-condition of a method m of the class C1 and
the pre- and post-conditions of m of each mixin Ci (i =
2,3) that extends C1 should be written in the following
form.

E1(s1, s1′, p, r) ≡
(s1 = s1′ ∨ E1′′(s1, s1′, p)) ∧ E1′(s1, p, r)

Ri(s1, sO, si, p) ≡ RO(s1, sO, p)
Ei(s1, s1′, sO, sO′, si, si′, p, r) ≡

(EO(s1, s1′, sO, sO′, p, r)
∨ (s1 = s1′ ∧ sO = sO′ ∧ E1′(s1, p, r)))

∧ (si = si′ ∨ E′′
i (s1′, si, si′, p))

3.5.5 The Disjoint Branch Rule
Another extension rule, which we call the Disjoint Branch
Rule, permits extension of domain of the method. This ex-
tension rule assumes that all domains processed by mixins
are disjoint.

The following program is an example of obeying this rule.

class C1 {
void m(String s){}

}
class C2 extends C1 {
void m(String s){

if (s.equals("A")){...}
else { super.m(s); }

}
}
class C3 extends C1 {
void m(String s){

if (s.equals("B")){...}
else { super.m(s); }

}
}

One of the possible applications of this extension rule is a
method that processes XML. If each tag processed by each
mixin belongs to the name-space managed by the program-
mer of the mixin, the disjointness of each domain is guaran-
teed.

The Disjoint Branch Rule can be formally written as follows:

The Disjoint Branch Rule:
The pre- and post-conditions of C1’s method m and the
method m of each mixin Ci (i = 2,3) that extends C1’s
m should be written in the following form. (Each ei is a
constant, ∀i, j(i 
= j) . ei 
= ej .)

R1(s1, p) ≡ false
E1(s1, s1′, p, r) ≡ true
Ri(s1, sO, si, p) ≡ RO(s1, sO, p) ∨ p = ei

Ei(s1, s1′, sO, sO′, si, si′, p, r) ≡
((p = ei) ⇒ E′

i(s1, s1′, si, si′, p, r))
∧ ((p 
= ei) ⇒ EO(s1, s1′, sO, sO′, p, r))



Figure 3: The diamond inheritance of MixJuice
modules.

4. EXTENSION RULES FOR COMPOSABLE
MIXJUICE MODULES

In this section, we describe extension rules for composable
MixJuice modules using the representation and the verifica-
tion method described in the previous section.

4.1 Overview of MixJuice Language
MixJuice[6, 5] is an object-oriented language that adopts
a difference-based module mechanism instead of the class-
based module mechanism of Java language.

Modules may inherit other modules. In MixJuice, both
the module-inheritance mechanism and the traditional class-
inheritance mechanism can be used independently. Class in-
heritance and module inheritance are different, as described
next. Class inheritance is a mechanism for describing the
difference between classes. Module Inheritance is a mech-
anism for describing the difference between two programs
consisting of zero or more classes. Using class inheritance,
the programmers can only define a new class that has a
different name from that of the original class. By module
inheritance, the programmers can modify the definitions of
existing classes and methods without changing their names.
Class inheritance is a mechanism for subtyping and safe late
binding. Module inheritance is a mechanism for static reuse
and information hiding.

Each module can be separately compiled. Although each
module contains fragments of classes, such fragments are
type-checked by the compiler. When compiling a module,
the compiler requires only the ancestor modules of the mod-
ule. Therefore, sibling modules can be developed by dif-
ferent programmers. End-users can compose independently
developed modules, without requiring detailed knowledge of
implementation of the modules.

Our aim is to guarantee the safety of the composition done
by not only programmers, but also end-users.

4.2 Diamond Inheritance of MixJuice Mod-
ules

We now consider diamond inheritance of MixJuice modules,
as in Figure 3. Two modules, m2 and m3, inherit the module
m1, which have two class definitions of C1 and C2. The
module m4 inherits both m3 and m4. Figure 4 is a MixJuice
program corresponding to Figure 3.

An executable program is constructed by linking MixJuice

module m1 {
define class C1 { define int m(int p){...}} // f1
define class C2 extends C1 { int m(int p){...}}// f4

}
module m2 extends m1 {
class C1 { int m(int p){...}} // f2
class C2 { int m(int p){...}} // f5

}
module m3 extends m1 {
class C1 { int m(int p){...}} // f3
class C2 { int m(int p){...}} // f6

}
module m4 extends m2, m3 {}

Figure 4: Definitions of MixJuice modules.

modules. Before linking, the MixJuice linker linearizes mod-
ules in a certain algorithm. We express a linked program as
a linearized list of module names. Programs produced from
possible combinations of the four modules in Figure 3 are
listed below. (We assume that no other results of lineariza-
tion occur.)

(m1)
(m1 m2)
(m1 m3)
(m1 m2 m3 m4)

In Figure 3 and Figure 4, f1, f2, ... , f6 mean “class frag-
ments.” Fragments f1 and f4 are class definitions of C1
and C2, respectively. Fragments f2 and f3 are extensions
of class C1; f5 and f6 are extensions of class C2.

The behavior of an instance of each class in a linked pro-
gram is denoted as a list of fragments. For example, in the
program (m1 m2), the behavior of instances of C1 and C2
are (f1 f2) and (f1 f2 f4 f5) respectively; in the program
(m1 m2 m3 m4), the behavior of instances of C1 and C2
are (f1 f2 f3) and (f1 f2 f3 f4 f5 f6) respectively.

4.3 The Composability Criterion
In this section, we describe the composability criterion for
diamond inheritance as shown in Figure 3.

The basic approach is the same as in Section 3. The compos-
ability criterion consists of two kinds of requirements. The
first kind of requirement is for modular reasoning concern-
ing method invocations for objects, and the second kind of
requirement is for modular reasoning concerning super in-
vocations.

Determining the first kind of requirement is more complex
than in the case of mixins because both class-inheritance
and module-inheritance mechanisms are used. For example,
the programmer of the module m2 assumes that the be-
havior of the instance is assigned to the variable of type
C2 is (f1 f2 f4 f5). Nevertheless, when the program
(m1 m2 m3 m4) is executed, the behavior of the instance
of C2 is (f1 f2 f3 f4 f5 f6). Therefore, the following
requirements should be satisfied.

(f1 f2 f3 f4 f5 f6) ↪→ (f1 f2 f4 f5)



Determining another kind of requirement is also more com-
plex. In MixJuice, there are two kinds of super invocations.
One invokes the method overridden by class-inheritance,
and the other invokes the method overridden by module-
inheritance. These two kinds of super invocations are ac-
tually the same mechanism, since both of them invoke a
method of a previous class fragment in the list of linearized
fragments5. For example, in the program (m1 m2), the su-
per invocation from f5 invokes f4, not f2.

Taking these into account, we have listed the requirements
of the composability criterion in Figure 5. Cj@mi is an
abbreviation for the behavior of the instance of the class Cj

in the module mi. sj@mi is an abbreviation for the behavior
of the super seen from fj in the module mi.

Note that the following properties of lists of linearized frag-
ments hold.

• When f2 or f3 is in a list, f1 is present to the left of
them.

• When f5 or f6 is in a list, f4 is present to the left of
them and f1 is present to the left of f4.

These properties are caused by the MixJuice language spec-
ification. In MixJuice, each class needs to be defined at
a module m and may be extended at other modules that
extend m. The super class of the class is declared at the
module m and cannot be changed by the other modules.

Because of these properties, these class fragments are not
necessarily symmetric. For example, although f5 and f6 are
symmetric, f4 and f5 are not. This asymmetry is reflected
in the extension rule described in the next section.

4.4 The MixJuice After Rule
We have defined the MixJuice After Rule listed in Figure 6
by modifying the After Rule for mixins. One example of
“method extension by subclass” is method overriding done
by f4. Examples of “method extension by sub-module” are
method overriding done by f2, f3, f5 and f6.

Please note the following:

Note 1: In traditional object-oriented languages, subclasses
do not have to invoke super as long as subclasses obey the
rule, “The pre-condition may be weakened and the post-
condition may be strengthened.” On the other hand, in
the case of MixJuice languages, super invocation is manda-
tory because sub-module may extend the behavior of the
super-class. For example, if f4 does not invoke super, the
post-condition of super extended by f2 and f3 may not be
satisfied, because the programmer of f4 does not know the
specifications of f2 and f3.

Note 2: Access rules for the inherited state in the MixJuice
After Rule are different from those of the Mixin After Rule.

5Actual MixJuice language uses original-invocation lan-
guage constructs for both kinds of invocations, instead of
Java’s super-invocation language construct.

In the case of the Mixin After Rule, the inherited state is al-
lowed to be referred to but not to be updated. On the other
hand, we have designed the MixJuice After Rule so that sub-
classes may refer to and/or update the inherited state and
sub-modules must neither refer to nor update the inherited
state. (Although there may be other possible design choices,
we selected this choice because we want to create freedom of
extension by subclass in MixJuice as in traditional object-
oriented languages.)

If the rule “The sub-module must not refer to the inherited
state” were absent, the following problem will occur. As-
sume that the post-condition of a method m of each fi in
modules m1 and m2 is as follows.

• The post-condition of f1 : (s1′ > 0)

• The post-condition of f2 : (s2′ = s1′)
(Corresponding to the execution of an assignment:
“s2 = s1;”)

• The post-condition of f4 : (s1′ = 1)
(Corresponding to the execution of an assignment:
“s1 = 1;”)

In this case, if the implementation of f1 happen to be
“s1 = 2;”, the program (m1 m2) may not work correctly.
Although the module m2 is implemented on the assumption
that the result of the method invocation of C2 is (s2′ = s1′),
the actual result of the invocation is (s1′ = 1) and (s2′ = 2).

Nevertheless, if the exact value of the inherited state s1’
is predictable from the post-condition of the super-module,
the sub-module may refer to it. For example, if the post-
condition of f1 is (s1′ = 1), f2 and f3 may refer to s1’
because it is actually equivalent to the constant value 1.

Note 3: If f2 refers to the return value of the super, e.g.
“s2 = super.m();”, and f4 changes the return value, a
problem may occur. However, such references are allowed if
the exact return value is predictable from the post-condition
of the super-module, as well as Note 2.

The MixJuice After Rule can be formally written as follows:

The MixJuice After Rule:
1. When a subclass C2 extends a method m of a super-
class C1, the pre- and post-conditions of the method m
of C2 should be written in the following form.

R2(s1, sO, s2, p) ≡ RO(s1, sO, p) ∨ R2′(s1, s2, p)
E2(. . . , r) ≡

(RO(s1, sO, p) ⇒ ∃s1′′, r′′ .
(EO(s1, s1′′, sO, sO′, p, r′′)
∧ E2′(s1′′, s1′, s2, s2′, p, r′′, r)
∧ E1(s1, s1′, p, r)))

∧ (¬RO(s1, sO, p) ⇒ E2′′(s1, s1′, s2, s2′, p, r))

2. When a sub-module mi (i = 2,3) extends a method
m of a super-module m1, the pre- and post-conditions of
the method m of mi should be written in the following
form.

Ri(s1, sO, si, p) ≡ RO(s1, sO, p)
Ei(s1, s1′, sO, sO′, si, si′, p, r) ≡

EO(s1, s1′, sO, sO′, p, r) ∧ E′
i(si, s

′
i, p)



Requirements for the program (m1):

C2@m1 ↪→ C1@m1, that is: (f1 f4) ↪→ (f1)

Requirements for the program (m1 m2):

C1@m2 ↪→ C1@m1, that is: (f1 f2) ↪→ (f1)

C2@m2 ↪→ C1@m1, that is: (f1 f2 f4 f5) ↪→ (f1)
C2@m2 ↪→ C1@m2, that is: (f1 f2 f4 f5) ↪→ (f1 f2)
C2@m2 ↪→ C2@m1, that is: (f1 f2 f4 f5) ↪→ (f1 f2 f4)

s4@m2 ↪→ s4@m1, that is: (f1 f2 f4) ↪→ (f1)

Requirements for the program (m1 m3):

Similar to the requirements for (m1 m2).

Requirements for the program (m1 m2 m3 m4):

C1@m4 ↪→ C1@m1, that is: (f1 f2 f3) ↪→ (f1)
C1@m4 ↪→ C1@m2, that is: (f1 f2 f3) ↪→ (f1 f2)
C1@m4 ↪→ C1@m3, that is: (f1 f2 f3) ↪→ (f1 f3)

C2@m4 ↪→ C1@m1, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1)
C2@m4 ↪→ C1@m2, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1 f2)
C2@m4 ↪→ C1@m3, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1 f3)
C2@m4 ↪→ C2@m1, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1 f4)
C2@m4 ↪→ C2@m2, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1 f2 f4 f5)
C2@m4 ↪→ C2@m3, that is: (f1 f2 f3 f4 f5 f6) ↪→ (f1 f3 f4 f6)

s2@m4 ↪→ s2@m2, that is: (f1) ↪→ (f1)
s3@m4 ↪→ s3@m3, that is: (f1 f2) ↪→ (f1)
s4@m4 ↪→ s4@m1, that is: (f1 f2 f3) ↪→ (f1)
s5@m4 ↪→ s5@m2, that is: (f1 f2 f3 f4) ↪→ (f1 f2 f4)
s6@m4 ↪→ s6@m3, that is: (f1 f2 f3 f4 f5) ↪→ (f1 f3 f4)

Figure 5: The composability criterion for the diamond inheritance of MixJuice modules.



The MixJuice After Rule:

1. In the case of method extension by subclass:

• It may weaken the pre-condition of the method.

• If the received parameters satisfy the pre-condition of the super,

– it may strengthen the post-condition of the method.
– it must invoke super exactly once at the beginning of the method execution. (Note 1)
– it must pass the parameters of the method to the super without changing them.
– it may return a value different from the super’s return value.
– it may refer to the inherited state.
– it may update the inherited state. (Note 2)
– it may refer to and update the state introduced by itself.

• If the received parameters do not satisfy the pre-condition of the super,

– there are no restrictions on the post-condition of the method.
– it must not invoke super.

2. In the case of method extension by sub-module:

• It must not change the pre-condition of the method.

• It must invoke super exactly once at the beginning of the method execution.

• It must pass the parameters of the method to the super without changing them.

• It must return the super’s return value without changing it.

• It must not refer to the super’s return value. (Note 3)

• It must not refer to the inherited state. (Note 2)

• It must not update the inherited state.

• It may refer to and update the state introduced by itself.

Figure 6: The MixJuice After Rule.

4.5 Other extension rules for MixJuice mod-
ules

Other extension rules for mixins described in this paper,
the Plus Rule, the Functional Protocol Rule, and the Dis-
joint Branch Rule, can be naively modified to adapt to the
MixJuice modules. All rules for mixins restrict “method
extensions by mixins”, which are modified to “method ex-
tensions by subclasses or sub-modules” for MixJuice.

We have already verified the three formally written modified
extension rules for MixJuice.

5. THE VERIFICATION SUPPORT TOOL
We have verified eight extension rules described in this pa-
per (four for mixins, four for MixJuice) by using a simple
verification support tool written in Common Lisp. The tool
generates logical formulas that should be tautological if the
specifications of methods and a composability criterion are
given.

Figure 7 is an example of input and output of the Plus Rule
for mixins. The generated five logical formulas have been
confirmed to be tautological by human examination.

Each pre- or post-condition of a method is represented as a
lambda-expression, whose parameters are linearized specifi-
cations of supers and parameter names, and whose return
value is a logical formula represented by an S-expression.

6. RELATED WORK

No previous research applies the notion of behavioral sub-
typing to the composability of mixins and aspects.

In [1], harmless aspect composition is defined from the view-
point of data-flow dependency between an aspect and the
original code. This definition is conservative. For example,
the composition of mixins obeying the Plus Rule is judged
as interference because the return value depends on all the
mixins.

In [15], another noninterference criterion is defined. This
criterion detects interference when class hierarchies are com-
posed using a system like Hyper/J[13]. According to the def-
inition of [15], interference means there is present a method
invocation code where the method to be dispatched may be
changed by the composition. This definition is conservative,
because method overriding (as considered by us) may be re-
garded as interference even if it is the programmer’s inten-
tion. On the other hand, [15] allows the change of behavior
of a method if the method is known to be never invoked.
From this point of view, our criterion is conservative, since
we require compatibility of behavior for all methods even if
they will never be invoked.

In [2], a small language modification for AspectJ is proposed
to support modular reasoning. This proposition requires
accept declarations at the place where a type of aspect called
an assistant will be added. Therefore, existing source code
should be invasively modified to add these types of aspects.

In [17], a method is described for verifying programs writ-



Input:

(setq plus-c1
(list #’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘(R1 ,s1 ,p))
#’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘(and (E1 ,s1 ,s1d ,p r1) (>= ,r r1)))))
(setq plus-c2
(list #’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘,(funcall (car ROs) (cdr ROs) (cdr EOs) s1 s1d s2 s2d s3 s3d p r))
#’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘(and
,(funcall (car EOs)(cdr ROs)(cdr EOs) s1 s1d s2 s2d s3 s3d p

’rO2)
(E2d ,s1d ,s2 ,s2d ,p r2)
(>= r2 0)
(>= ,r (+ rO2 r2))))))

(setq plus-c3
(list #’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘,(funcall (car ROs) (cdr ROs) (cdr EOs) s1 s1d s2 s2d s3 s3d p r))
#’(lambda (ROs EOs s1 s1d s2 s2d s3 s3d p r)

‘(and
,(funcall (car EOs)(cdr ROs)(cdr EOs) s1 s1d s2 s2d s3 s3d p

’rO3)
(E3d ,s1d ,s3 ,s3d ,p r3)
(>= r3 0)
(>= ,r (+ rO3 r3))))))

(setq mixin-criteria
‘(((1 2)(1))
((1 3)(1))
((1 2 3)(1))
((1 2 3)(1 2))
((1 2 3)(1 3))
))

(dolist (c mixin-criteria)
(print (expand-criterion (list plus-c1 plus-c2 plus-c3)

c
’(s1 s1d s2 s2d s3 s3d p r))))

Output:

(AND (-> P1 P1)
(-> P1

(-> (AND P2 (>= RO2 R1) P3 (>= R2 0) (>= R (+ RO2 R2)))
(AND P2 (>= R R1)))))

(AND (-> P1 P1)
(-> P1

(-> (AND P2 (>= RO3 R1) P3 (>= R3 0) (>= R (+ RO3 R3)))
(AND P2 (>= R R1)))))

(AND (-> P1 P1)
(-> P1

(-> (AND P2 (>= RO2 R1) P3 (>= R2 0) (>= RO3 (+ RO2 R2)) P4
(>= R3 0) (>= R (+ RO3 R3)))

(AND P2 (>= R R1)))))
(AND (-> P1 P1)

(-> P1
(-> (AND P2 (>= RO2 R1) P3 (>= R2 0) (>= RO3 (+ RO2 R2)) P4

(>= R3 0) (>= R (+ RO3 R3)))
(AND P2 (>= RO2 R1) P3 (>= R2 0) (>= R (+ RO2 R2))))))

(AND (-> P1 P1)
(-> P1

(-> (AND P2 (>= RO2 R1) P3 (>= R2 0) (>= RO3 (+ RO2 R2)) P4
(>= R3 0) (>= R (+ RO3 R3)))

(AND P2 (>= RO3 R1) P4 (>= R3 0) (>= R (+ RO3 R3))))))

Figure 7: An example of input and output of the verification support tool.



ten in AspectJ by applying model-checking tools to woven
programs.

7. CONCLUSION AND FUTURE WORK
We have defined the composability criterion by using the
notion of pre- and post-conditions and behavioral subtyp-
ing. Briefly, provided the behavior of each class after the
composition is a behavioral subtype of the behavior of the
class before the composition, the composition is safe.

By applying this definition, we have proved the validity of
four extension rules in the case of diamond inheritance of
mixins and MixJuice modules. Extension rules guarantee
the composability of two mixins or modules even if they
override the same method.

We have shown that mixins and MixJuice modules can si-
multaneously achieve a high degree of safety and a high de-
gree of extensibility.

The following future direction of research will realize safe
and easy aspect-oriented programming.

• Making a catalog of practical extension rules. It is
not easy for programmers to think up and verify their
own extension rules; however, selecting rules from the
provided catalog will be easy. The rule catalog will
contain generalized versions of the four rules described
in this paper.

• Introducing new language constructs for declaring and
enforcing extension rules in aspect-oriented languages.
In the case of four rules described in this paper, the
compiler can enforce most parts of the restrictions on
method implementations. For example, restrictions
about reference and updating of states can be checked
by the compiler.

• Designing assertion-checking mechanisms that detect
interference of aspects during runtime. Introducing
assertion-checking mechanisms as in Eiffel[11] to aspect-
oriented languages will enable runtime detection of vi-
olation of declared extension rules.

• Consideration of other linearization algorithms. For
example, introduction of local precedence order or final
methods will increase freedom of method extensions;
however, they may cause link-time errors.

• Verifying extension rules in general cases that are not
restricted to the diamond inheritance case studied in
this paper. This proof may be implemented by induc-
tion of the number of classes and modules.

8. REFERENCES
[1] U. Aßmann. AOP with design patterns as

meta-programming operators. Technical Report 28,
Universität Karlsruhe, Oct. 1997.

[2] C. Clifton and G. T. Leavens. Observers and
Assistants: A proposal for modular aspect-oriented
reasoning. In G. T. Leavens and R. Cytron, editors,
FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Langauges Workshop at AOSD 2002,

number 02-06 in Technical Report, pages 33–44.
Department of Computer Science, Iowa State
University, Apr. 2002.

[3] K. K. Dhara and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. In
Proceedings of the 18th international conference on
Software engineering, pages 258–267. IEEE Computer
Society Press, 1996.

[4] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and
H. Ossher. Discussing aspects of AOP.
Communications of the ACM, 44(10):33–38, 2001.

[5] Y. Ichisugi. MixJuice home page.
http://staff.aist.go.jp/y-ichisugi/mj/.

[6] Y. Ichisugi and A. Tanaka. Difference-based modules:
A class-independent module mechanism. In Proc. of
the ECOOP2002, LNCS 2374, pages 62–88, 2002.

[7] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The
Art of Metaobject Protocol. MIT Press, 1991.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proc. of the
ECOOP’97, LNCS 1241, pages 220–242, 1997. Invited
Talk.

[9] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(6):1811–1841,
1994.

[10] R. C. Martin. The Liskov Substitution Principle. C++
Report, Mar 1996.

[11] B. Meyer. Object-Oriented Software Construction, 2nd
Ed. Prentice-Hall, Inc., 1997.

[12] D. A. Moon. Object-oriented programming with
Flavors. In Conference proceedings on Object-oriented
programming systems, languages and applications,
pages 1–8. ACM Press, 1986.

[13] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns and the hyperspace approach. In Proc. of
the Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development, Kluwer, 2000.

[14] C. Ruby and G. T. Leavens. Safely creating correct
subclasses without seeing superclass code. In
Proceedings of the conference on Object-oriented
programming, systems, languages, and applications,
pages 208–228. ACM Press, 2000.

[15] G. Snelting and F. Tip. Semantic-based composition
of class hierarchies. In Proc. of the ECOOP2002,
LNCS 2374, pages 562–584, 2002.

[16] G. Steele. Common Lisp the Language, 2nd edition.
Digital Press, 1990.

[17] N. Ubayashi and T. Tamai. Aspect oriented
programming with model checking. In Proc. of AOSD
2002(1st International Conference on Aspect-Oriented
Software Development), pages 148–154, Apr. 2002.


