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Abstract. We describe a module mechanism, which we call difference-
based modules, and an object-oriented language we call MixJuice. MixJuice
is an enhancement to the Java language that adopts difference-based
modules instead of Java’s original module mechanism. Modules are units
of information hiding, reuse and separate compilation. We have com-
pletely separated the class mechanism and the module mechanism, and
then unified the module mechanism and the differential programming
mechanism. Although this module mechanism is simpler than that of
Java, it enhances ease with which programs can be extended, reused and
maintained. Collaborations that crosscut several classes can be separated
into different modules. Modules are composable in the same way as mix-
ins. The composition of modules sometimes causes name collision and
an interesting phenomenon, which we call implementation defects. We
describe solutions to these problems.

1 Introduction

Modules are units of information hiding and reuse. Classes are templates of
objects. These two notions are inherently different. However, in current object-
oriented languages such as C++ and Java, the language construct “class” has
the functions of a module. We call this type of module mechanism class-based
modules. In large-scale programs, various problems occur when classes are used
as modules.

One problem, pointed out by Szyperski[30], is that classes are inappropriate
as units of information hiding. A class is appropriate as a unit of information
hiding only if it is a simple abstract data type such as a stack. If one or more
classes collaborate closely to realize a function, these classes are not appropriate
as units of information hiding. In order to alleviate this problem, mechanisms
such as packages and nested classes[10] have been introduced into Java. Even
though these mechanisms have been introduced, class-based modules suffer a
major problem. If the number of functions possessed by the software increases,
the fields and methods needed for each class will also increase. This enlarges the
size of the class, more specifically its scope, thus making system maintenance



more difficult. For example, the size of the source file of the class TreeMap, which
is in the standard Java library, is about 1,000 lines, not including comment lines.
Because all lines share a single name space, it is difficult to predict which parts
of the source file will be influenced if a part of it is modified.

Another problem is that classes are inappropriate as units of reuse. Over the
past few years, several studies have been made on this problem. The source-code
related to a concern may crosscut more than one class[17]. In order to increase the
reusability of the programs, such crosscutting concerns should be separated from
the other parts of the program. Some systems such as AspectJ[16], Hyper/J[26],
Demeter/Java[19] and DJ[25] have been proposed to support separation of cross-
cutting concerns.

Other than these, some studies have focused on collaborations instead of
classes as units of reuse[11, 31, 27, 14, 22, 23]. A collaboration is a set of the fields
and methods of two or more classes in relation to a certain function. In order
to make collaborations into reusable units, the programming language should
feature a mixin[3] or similar mechanism.

Mixins are fragments of classes. The programmers can define a new class
by composing existing mixins. The use of mixins is a common programming
technique used in programming languages that support multiple inheritance with
class linearization, such as CLOS[28]. Mixins increase the reusability of programs
because each mixin can be used as a part of more than one class.

VanHilst and Notkin have proposed a programming technique to implement
mixins using C++ template mechanisms, in order to support collaboration-based
design[31]. Mixin layers[27], however, are an improved programming technique
that make the composition of the reusable parts much easier than in the Van-
Hilst and Notkin method. Mixin layers are sets of mixins belonging to certain
collaborations.

Independently, we have designed and implemented a mechanism named Sys-
temMixins[14] on top of Java. SystemMixins are similar to mixin layers, which
are sets of mixins belonging to certain collaborations. We have implemented an
extensible Java pre-processor(EPP)[14, 12] using this mechanism. The user can
extend the language specification of Java by adding new collaborations to the
pre-processor using the SystemMixin mechanism. A wide variety of language ex-
tensions have been implemented, including a data-parallel language[14], thread
migration[2], parameterized types[12] and SystemMixin mechanism itself.

As a result of our experience with EPP implementation, we are convinced
that collaborations are appropriate as units of reuse, especially for applications
with extremely high extensibility, such as EPP.

As pointed out in [11, 31], in collaborations, groups of objects cooperate to
perform a task or to maintain an invariant. Therefore, collaborations must be
suitable for not only units of reuse but also units of information hiding. However,
both mixin layers and SystemMixins lack the function of information hiding.

In this paper, we propose a module mechanism which we call difference-
based modules. We have designed and implemented an improved version of Java,
which we call the MixJuice language[13], which adopts difference-based mod-



ules instead of Java’s original module mechanism. We first completely sepa-
rated the class mechanism and the module mechanism, and then unified the
module mechanism and the differential programming mechanism. By applying
difference-based modules, we have resolved the problems associated with the
above-described conventional class-based modules. Using this module mecha-
nism, collaborations can become units of information hiding and reuse instead
of classes. This module mechanism is based on the three simple design principles:
difference definition, name-space inheritance and name-collision avoidance.

The rest of this paper is organized as follows. In Section 2, we describe
differential programming using this module mechanism. In Section 3, we describe
the other feature of this module mechanism, information hiding. In Section 4,
we explain an implementation defect phenomenon that may occur in highly
extensible systems. In Section 5 we describe an application of MixJuice. Section 6
covers related work. We conclude with Section 7.

2 Differential Programming Using Difference-Based
Modules

2.1 Principle and Merits

This module mechanism is based on the following design principle.

The principle of difference definition: A module is the difference
between the original program and the extended program. The difference
is a set of definitions of new names and modifications of definitions of
existing names1.

Modules are units of reuse, information hiding and separate compilation.
The executable application is constructed by linking of modules. In the case of
difference-based modules, linking of modules means adding all differences defined
by the modules to the empty program.

Difference-based modules can be applied to various programming languages.
In many programming languages, a program consists of names and their defini-
tions. For example, in the case of imperative languages, a program is a set of
definitions of procedures and data structures. In the case of Java, a program is
a set of definitions of classes, fields and methods. The MixJuice language is a
modified Java language, which adopts difference-based modules instead of Java’s
original module mechanism. In other words, in MixJuice, a module is a set of
additions and modifications of classes, fields and methods.

Modules may inherit other modules. In MixJuice, both the module-inheritance
mechanism and the traditional class-inheritance mechanism can be indepen-
dently available. Class inheritance and module inheritance are different, as de-
scribed next. Class inheritance is a mechanism for describing the difference be-
tween classes. Module Inheritance is a mechanism for describing the difference
1 Currently, the difference includes neither the renaming nor deletion of names.



between two programs consisting of one or more classes. Using class inheritance,
the programmers can only define a new class which has a different name from
that of the original class. By module inheritance, the programmers can modify
the definitions of existing classes and methods without changing their names.
Class inheritance is a mechanism for subtyping and safe late binding. Module
inheritance is a mechanism for static reuse and information hiding as described
in Section 3.

Classes no longer have the functions of modules. In other words, classes are
no longer units of reuse, information hiding, or separate compilation.

Difference-based modules have the following merits compared with class-
based modules.

– High extensibility of applications
It is easy to write highly extensible applications. There are two reasons for
this. One is that all class and method names act as “hooks” for programmers
of extension modules. The other reason is that each extension module is
composable as a mixin, using multiple inheritance of modules. (Details are
described in Section 2.3.)

– Class-independency of units of reuse
Programmers can define the units of reuse completely independently of
boundaries of classes. The programmers can make codes that crosscut some
classes, namely collaborations, units of reuse (Figure 1).

Module A

Module B

Module C

Fig. 1. Separation of crosscutting code.

– Extensibility by third party programmers
Third party programmers can provide extension modules to extend exist-
ing applications. The programmers do not need to have the source-code of
the original programs. (We give a more detailed account of this process in
Section 2.5.)

– Module-composability by end-users
End users can compose existing modules that provide selected functions to
create their own customized applications. The composition of modules does



not require any lines of “glue code”. It only requires a set of module names.
(Details are included in Section 2.5.)

– Flexibility of module grouping
The programmers can make groups of modules and give names to them to
simplify their use. In the case of Java, a certain degree of grouping is possible
due to the package mechanism and the use of an “import” declaration in
the form of “import p.*;”. For difference-based modules, however, more
flexible grouping is possible. (Details are included in Section 2.3.)

The rest of this section describes differential programming using difference-
based modules in greater detail.

2.2 Syntax of Module Definitions

module m1 {

define class S {

define S(){}

define int foo(){ return 1; }

}

define class A extends S {

define A(){}

int foo(){ return original() + 10; }

}

class SS {

void main(String[] args){

A a = new A();

System.out.println(a.foo());

}

}

}

module m2 extends m1 {

class S { int foo(){ return original() + 2; } }

class A { int foo(){ return original() + 20; } }

}

Fig. 2. Definitions of module m1 and module m2.

Modules are defined as illustrated in Figure 2. The modules m1 and m2 are
defined in Figure 2.

An “extends” declaration at the top of the module definition specifies the
module to which the difference is intended to be added. The declared module is
called a super-module. In Figure 2, the module m2 declares the module m1 to be
a super-module of m2. At this time, we can say that “m2 is a sub-module of m1”;
or “m2 inherits m1”.



class $S1$ { int foo(){ return 1; } }

class S extends $S1$ { int foo(){ return super.foo() + 2; } }

class $A1$ extends S { int foo(){ return super.foo() + 10; } }

class A extends $A1$ { int foo(){ return super.foo() + 20; } }

class SS {

void main(String[] args){

A a = new A();

System.out.println(a.foo());

}

}

Fig. 3. A Java program almost equivalent to the program defined by module m2.

A module definition without an “extends” declaration, like module m1, de-
notes that the difference is assumed to be added to the empty program.

The module body, enclosed by braces, is the definition of the difference be-
tween the original program and the extended program. Specifically, a module
can modify the program defined by its super-module as follows:

– Addition of new classes2 .
– Addition of fields to existing classes.
– Addition of methods to existing classes.
– Modification of existing methods by overriding.

In Figure 2, the module m2 extends the behavior of the method foo of class
S and the method foo of class A by overriding those methods originally defined
in the module m1.

The syntax of the inside of the module body is closely similar to Java; how-
ever, it differs from Java in the following ways.

The definitions of new names require the keywords “define”. More accu-
rately, the declarations of classes, fields, constructors and methods preceded by
“define” denote they are the new definitions. The declarations of classes, con-
structors and methods without “define” denote them to be modifications of
existing definitions. (Because the class SS and its method main are pre-defined
names, they do not require “define”.)

An expression “original()” is used when an overriding method invokes the
overridden method. This is a similar mechanism to the method invocation of
“super” in Java. In MixJuice, there are two kinds of method overriding. One
is overriding by class inheritance, and the other is by module inheritance. In
case of Figure 2, an “original()” in the module m1 is for the former, and two
“original()” in the module m2 are for the latter.

2 In this paper, we do not mention “interfaces”. Actually, the current implementa-
tion of MixJuice allows both extension of existing interfaces and addition of super
interfaces to existing classes.



In MixJuice, there is no use of package mechanisms or access modifiers
(public, protected or private). How information hiding is achieved in MixJuice
is described in Section 3.

The MixJuice program defined by module m2 is closely equivalent to the Java
program as seen in Figure 3.

2.3 Multiple Inheritance of Modules

module m3 extends m1 {

class S { int foo(){ return original() + 3; } }

class A { int foo(){ return original() + 30; } }

}

module m4 extends m2, m3 {

class S { int foo(){ return original() + 4; } }

class A { int foo(){ return original() + 40; } }

}

Fig. 4. Multiple inheritance of modules.

A module can inherit more than one super-module.
Figure 4 is an example of multiple inheritance of modules. The module m3

defines, as well as m2, the difference between the extended program and the
program defined by m1. The module m4 inherits both m2 and m3. In this case, the
modules form a so-called “diamond inheritance” because both m2 and m3 inherit
m1.

All modules are linearized by topological sort. This is similar to the class
linearization done in some object-oriented languages with multiple-inheritance
mechanisms such as CLOS[28].

For example, the program defined by the module m4 is constructed as follows.
First of all, the set of the module m4 itself and the ancestor modules of m4 are
found. The set is {m1, m2, m3, m4}. The set is then linearized by topological sort so
that it preserves the order between super-modules and sub-modules. The result
of this topological sort is called a linearized list. In this case, the linearized list
may be (m1 m2 m3 m4). Finally, all differences defined by the modules are applied
to the empty program φ, from the beginning of the linearized list to the end.
That is, if the notation “a� b” expresses the result of addition of a difference “b”
to “a”, the constructed program is expressed as:

((((φ � m1) � m2) � m3) � m4)

A serious problem incurred by multiple inheritance is name collision. In
MixJuice, this problem is completely resolved. The details are described in Sec-
tion 3.7.



The multiple-inheritance mechanism of modules can be used as a grouping
mechanism. To make the utilization of the group of modules more convenient,
the programmer can define a group of modules and name it. For example, the
following is the definition of a group named “m_x”.

module m_x extends m_a, m_b, m_c, m_d {}

This mechanism is more flexible than Java’s grouping mechanism using the
declarations like “import p.*;”, which is grouping based on packages. In addi-
tion, MixJuice allows definitions of groups of groups, which are not possible in
Java.

2.4 Programming Styles Specific to MixJuice

Using difference-based modules, programmers can write programs in modular
style, even if the programs cannot be written in modular style using traditional
class-based modules.

The programmer can add a new traversing code for the tree structure without
modifying the original source-code, because modules can add new methods to
existing classes. In traditional object-oriented languages, it is possible to add a
new traversing code using Visitor pattern[8]; however, the use of Visitor pattern
disables the addition of the new kind of nodes to the tree structure unless the
source-code is modified.

The programmer can split a nested if-statement as in Figure 5 into the mod-
ules shown in Figure 6, if each condition is disjoint. This programming style
enables the programmers to add new conditional clauses without modifying the
source-code. With this style, for example, recursive-descent parsers become mod-
ular and highly extensible[14]. Another application of this style is in programs
processing XML that normally have nested if-statements.

class F {

void branch(String s){

if (s.equals("a")){ ... }

else if (s.equals("b")){ ... }

else { throw new Error(); }

}

}

Fig. 5. Nested if-statements.

The programmer can split initialization codes, such as initialization of tables,
into modules. Moreover, when initializing tables, the programmer can add new
entries to a table without needing to modify the source-code, because the ini-
tialization method acts as a hook for the extension modules. These initialization
codes tend to be concentrated in a single method in traditional object-oriented
languages.



module framework {

define class F {

define void branch(String s){ throw new Error(); }

}

}

module case_a extends framework {

class F {

void branch(String s){

if (s.equals("a")){ ... } else { original(s); } }

}

}

module case_b extends framework {

class F {

void branch(String s){

if (s.equals("b")){ ... } else { original(s); } }

}

}

Fig. 6. Modularized nested if-statements.

2.5 Execution Environment

This section describes the characteristics of MixJuice with respect to compiling,
linking and execution.

Separate Compilation of Modules Each module can be separately com-
piled. Although each module contains fragments of classes, such fragments are
type-checked by the compiler. When compiling a module, the compiler requires
the ancestor modules of the modules. More accurately, the source-codes or the
compiled binaries3 of the ancestor modules should be accessible by the compiler.

Because units of separate compilation are independent of class, MixJuice is
ideal for realistic application development, which sometimes uses collaborations
as development and testing units. In MixJuice, each collaboration can be written
and tested by an independent development team.

Linking and Execution of Modules In order to execute a program, all the
modules that make up the program must be linked together. Current imple-
mentation of MixJuice features the mj command which links and executes the
modules.

To execute a program defined by a module, the module name should be
specified as an argument of the mj command. The mj command links the specified
module and produces a executable Java program4. The mj command then loads
3 In the current implementation, the result of compilation of a module is represented

by a set of class files of the Java language.
4 The current implementation performs byte-code translation to compose fragments

of classes.



the Java program to the JavaVM and executes it. The mj command invokes a
main method of the class SS by default.

The mj command automatically links all the ancestor modules of the specified
module5. For example, if the module m2 is specified as an argument, the module
m1 is automatically linked. Below is an example of execution of the modules m1,
m2, m3 and m4.

% mj m1
11
% mj m2
33
% mj m3
44
% mj m4
110

Actually, the mj command automatically links modules of a type other than
ancestor modules, complementary modules, which are described in Section 4.

Composition of Selected Modules The end-users of an application can select
specific modules and construct their own configured applications without having
to write any lines of code.

For example, end-users can compose the module m2 and m3, which might
be independently developed modules. To compose selected modules, the “-s”
option of the mj command is used as follows.

% mj -s m2 m3
66

The mj command makes a virtual module named “_bottom” which extends
all the selected modules specified as arguments. In the above case, the definition
of the module “_bottom” would look like the following.

module _bottom extends m2, m3 {}

The mj command then executes the program defined by the module “_bottom”.
That is, the program expressed as

(((φ � m1) � m2) � m3)

is executed.
End users can select more than two modules by specifying the “-s” option

more than once. (The current version of MixJuice does not permit the addition
of a difference defined by a module more than once.)
5 In the current implementation, the linker finds the required modules from the
CLASSPATH.



In this way, end-users can compose existing modules that provide chosen func-
tions in order to build their own customized applications. Traditionally, this type
of customization is achieved by the mechanism of conditional compilation, such
as “#ifdef”, or patching onto the source-code. These mechanisms are processed
at string level; difference-based modules, conversely, are more reliable because
they are processed at the language level. In addition, difference-based modules
have the advantage of not requiring the source-codes of extension modules to be
available to the public.

3 Information Hiding Using Difference-Based Modules

In this section, we describe how the module mechanism of MixJuice is more
powerful than that of Java with respect to information hiding.

3.1 Principle and Advantages

The module mechanism of MixJuice is based on the following design principle
concerning information hiding.

The principle of name space inheritance: All names that are de-
fined at a module are visible from the module itself and its descendant
modules, and are invisible from the other modules.

More specifically, “names” means the class, field and method names. The
module mechanism of MixJuice enables more flexible name space management
than that of Java by means of this simple rule concerning visibility.

Classes are no longer the units of information hiding in the source-code. All
fields in a class are accessible from the defining module and the descendant
modules of the module, even if the accessor class is different from the owner
of the fields. In MixJuice, there are no access modifiers (public, protected or
private), package mechanisms or nested class mechanisms6.

Difference-based modules have the following advantages with respect to in-
formation hiding compared with Java.

– Class-independency of units of information hiding
Programmers can make the boundaries of information hiding independent of
class boundaries. For example, programmers can make collaboration units
of information hiding. (Details are described in Section 3.6.) In addition, to
improve the maintainability of the source-code, a programmer can minimize
the size of the name space on which their source-code depends. This is es-
pecially effective if the number of functions of classes increases and the size
of the classes thus becomes bigger and bigger.

6 To be precise, MixJuice supports a kind of nested class, anonymous classes which
are often used for GUI programming in Java.



– Flexibility of name space structures
The name spaces can form nested structures and, giving a more general struc-
ture than nesting, overlapping structures. This characteristic makes Java’s
nested class mechanism unnecessary, with the result that the language spec-
ification is radically simplified. (Details are described in Section 3.4 and
Section 3.5.)

– Ease of code-moving
Programmers can easily move code between modules. This is due to a char-
acteristic of difference-based modules: moving code between a super-module
and a sub-module does not affect the semantics of the linked modules. As
a result, the programmer can perform a kind of refactoring[7] with a high
degree of flexibility and without changing the structure of the classes. For
example, inter-dependent classes can be split into non-inter-dependent mod-
ules without changing the structure of the classes. (Details are described in
Section 3.6.) Ease of code-moving enables smooth shifting from a monolithic
prototyping source-code to a modular and extensible source-code.

– Simplicity
Names are inherited only by one mechanism: module inheritance. On the
other hand, the specification of Java concerning names is extremely com-
plex. For example, four kinds of classes can be referred to by simple names:
(1) Classes belonging to the same package. (2) Classes declared by import
declarations. (3) Member classes of the outer classes. (4) Member classes of
the ancestor classes. The relation between these four mechanisms is far from
intuitive.

The rest of this section describes the details of information hiding using
difference-based modules.

3.2 Black-box Reuse

In MixJuice, the programmer can utilize existing classes in a manner called
black-box reuse. We define black-box reuse as a style of utilization of existing
classes only depending on the external interface of the classes.

A class can be defined as two separate modules. One module is called the
specification module, which only defines the external interface of the class using
abstract constructors and abstract methods; and the other is called the implemen-
tation module, which defines the internal implementation of the class. Abstract
constructors, which do not appear in Java, are introduced to separate the inter-
face and the implementation of constructors.

The program in Figure 7 is a definition of a class Point which consists of
two modules: a specification module, point and an implementation module,
point.implementation7. The module point defines the interfaces of the con-
7 The character “.” contained in the module name point.implementation is merely a

punctuator. In MixJuice, the hierarchical structure of module names does not affect
the semantics of the program.



module point {

define class Point {

// abstract constructor:

define abstract Point(int x, int y);

// abstract methods:

define abstract void move(int dx, int dy);

define abstract int getX();

define abstract int getY();

}

}

module point.implementation extends point {

class Point {

define int x;

define int y;

Point(int x, int y){ this.x = x; this.y = y; }

void move(int dx, int dy){ x += dx; y += dy; }

int getX(){ return x; }

int getY(){ return y; }

}

}

Fig. 7. The specification module and the implementation module.

structor and the methods of the class Point. The module point.implementation
implements the constructor and methods.

Other modules can utilize the class Point in the style of black-box reuse, by
means of inheriting the specification module of the class Point. In Figure 8, the
module point.test is an example of black-box reuse. The module point.test
inherits the module point, and does not inherit point.implementation.

module point.test extends point {

define class Test {

define void test(){

Point p = new Point(1, 2);

p.move(10, 10);

...

}

}

}

Fig. 8. An example of black-box reuse.



3.3 White-box Reuse

In MixJuice, programmers can utilize existing classes in the manner of white-box
reuse, in addition to black-box. We define white-box reuse as a style of utilization
of existing classes depending not only on the external interface of the classes,
but also on the internal implementation of the classes.

In Java, a class can serve for both black-box reuse and white-box reuse due to
the protected access modifier. By defining the internal implementation of a class
with the protected modifiers, a programmer can make internal implementation
accessible by the subclasses of the class, but inaccessible by classes other than
the subclasses.

module colorPoint extends point {

define class ColorPoint extends Point {

define abstract ColorPoint(Color c, int x, int y);

}

define class Color {...}

}

module colorPoint.implementation extends colorPoint, point.implementation{

class ColorPoint {

define Color c;

ColorPoint(Color c, int x, int y){ super(x, y); this.c = c; }

...

}

}

Fig. 9. The definition of the class ColorPoint.

In MixJuice, the programmer utilizes a class in the style of white-box reuse
by inheriting the implementation module of the class. protected modifiers are
no longer used in MixJuice. Figure 9 is an example of white-box reuse. The
ColorPoint class is a subclass of the class Point defined in the program illus-
trated in Figure 7. The module colorPoint.implementation inherits not only
the module colorPoint, but also the module point.implementation. The in-
heritance graph of these modules is illustrated in Figure 10. This inheritance
structure enables the programmer to utilize the internal implementation of the
class Point when implementing the class ColorPoint.

In MixJuice, the programmer can choose either black-box reuse or white-
box reuse when implementing a class, independently of the inheritance rela-
tion of classes. For example, if the module point.test in Figure 8 inherits
the module point.implementation, the style is white-box reuse; if the module
colorPoint.implementation in Figure 9 does not inherit the module
point.implementation, the style is black-box reuse.

With white-box reuse, the programmer can utilize the internal implementa-
tion of other classes; however, white-box reuse has the following disadvantages.



point

point.implementation
colorPoint

colorPoint.implementation

Fig. 10. The module diagram of the class Point and ColorPoint.

If the internal implementation on which a module written by a programmer de-
pends is modified, the programmer must rewrite the module. In addition, if the
programmer accesses the internal implementation of other classes, the program-
ming needs to be done more carefully in order to preserve the class invariants of
the classes.

Currently, MixJuice does not have a mechanism for preventing careless inher-
itance of implementation modules: such mistakes are prevented by the naming
convention, in which the implementation modules are given long names such as
point.implementation.

3.4 Nested Name Spaces

Nested name spaces, which are expressed by nested classes in Java, are expressed
by module inheritance in MixJuice.

The Java program illustrated in Figure 11 is an example of nested name
space expressed as nested classes. The field x of class A is not accessible from
outside of class A because it is not a public field; it is, however, accessible from
class B which is a member of class A.

public class A {

protected static int x = 0;

public static class B {

public int getX(){ return x; }

}

}

Fig. 11. A Java program with nested classes.

The program illustrated in Figure 12 is almost the same program written
in MixJuice. The module A_B defines the public names of class A and class B.
The module A_B.implementation is the implementation module, which defines
the protected names of classes A and B. The method getX in class B directly



module A_B {

define class A { }

define class B {

define abstract int getX();

}

}

module A_B.implementation extends A_B {

class A { define static int x = 0; }

class B { int getX(){ return A.x; } }

}

Fig. 12. A MixJuice program that represents nested name spaces.

accesses the static field of class A, using the expression “A.x”. In this way, all
names defined in a module can be accessed from the inside of the module (and
the descendant modules of the module) even if the accessor class is a different
class.

Similarly, n-levels of nesting of name spaces can be expressed using n-levels
of module inheritance(Figure 13).

Fig. 13. The nested name spaces formed by inheritance of modules.

3.5 Overlapping Name Spaces

With multiple inheritance of modules, overlapping name spaces can be expressed,
which have a more general structure than nested name spaces.

For example, the programs in Figure 2 and Figure 4 form overlapping name
spaces as seen in Figure 14. That is to say, the lowest module, m4, is inside the
name spaces defined by the modules m1, m2 and m3.

In the case of class-based modules, programmers are often forced to make
names public to a greater extent than actually necessary because of the low de-
gree of flexibility of name spaces. For example, some method names are often
defined as public methods even though they are accessed by only members of
a collaboration. A programmer can sometimes encapsulate such names using



m1

m3m2

m4

Fig. 14. The overlapping name spaces formed by multiple inheritance of modules.

nested classes; however, the use of nested class mechanisms damages the main-
tainability of the classes because the scope of the field names defined by the
classes expands.

In the case of difference-based modules, the programmers can minimize the
size of scope of names. In addition, programmers can easily uncover the de-
pendency relation between the modules because it is explicitly declared by the
“extends” declaration.

3.6 Collaboration-Based Modularization

class A { // class A uses class B

void m1(B b){ ... b.m3(); ...}

void m2(){...}

}

class B { // class B uses class A

void m3(){...}

void m4(A a){ ... a.m2(); ...}

}

Fig. 15. Inter-dependent classes containing two collaborations.

The programmers can define a collaboration that crosscuts more than one
class as a separate module, since classes and modules are completely orthogonal
in MixJuice.

Consider the program in Figure 15 written in Java. Two classes, classes A and
B, depend on each other; however, these classes actually contain two independent
collaborations.

The program can be modularized as in Figure 16. The program contains two
unrelated modules, collaboration_m1_m3 and collaboration_m2_m4.

Modularization based on collaborations has the following advantages:

– The volume of the source-code on which each module depends decreases. In
general, this leads to increased maintainability.



module A_B {

define class A {}

define class B {}

}

module collaboration_m1_m3 extends A_B {

class A { define void m1(B b){ ... b.m3(); ...} }

class B { define void m3(){...} }

}

module collaboration_m2_m4 extends A_B {

class A { define void m2(){...} }

class B { define void m4(A a){ ... a.m2(); ...} }

}

Fig. 16. Modularized inter-dependent classes.

– Because collaboration_m1_m3 and collaboration_m2_m4 do not depend
on each other, one of the two modules can be compiled and executed even
if the other module does not exist. Therefore, these two modules can be
developed and tested by different development teams.

– Other variations of application can be provided by means of implementing
different versions of collaborations. For example, the module
collaboration_m1_m3 can be replaced by another module my_collaboration
which contains completely different methods. In this case, existing modules,
such as modules A_B and collaboration_m2_m4, need not be re-compiled.

3.7 Fully-Qualified-Names

The name-collision problem that is incurred by multiple inheritance is fully re-
solved in MixJuice. In Java, the name-collision problem caused by import dec-
larations is resolved by the idea of fully-qualified-names (FQNs) of classes. In
MixJuice, this idea is applied to all names including field and method names in
order to resolve the problem.

In difference-based modules, all names are processed based on the following
design principle.

The principle of name-collision avoidance: Each name has a unique
FQN. Each FQN consists of “the module name which first defined the
name” and “a simple name”. If a simple name is used at one point in
the source-code and more than one candidate which has the same simple
name is accessible at that point, the compiler will report an error because
the reference is ambiguous. Two names defined at different places are
never regarded as identical by the compiler. A name definition never
shadows another name. If an error is reported because of an ambiguous
reference to a name, the programmer can always avoid this error by using
the FQN of the name instead of the simple name.



We assume that the uniqueness of the module names is guaranteed by other
mechanisms or rules, such as the naming convention adding as a prefix the
domain name of the vendor, as in Java.

In MixJuice, an FQN which consists “the defining module name m” and “the
simple name n” is expressed as “FQN[m::n]”8.

The FQNs of methods are used not only for method invocations, but also for
method overriding. The program in Figure 17 is an example of overriding and
invocations of the two methods m independently defined at the module m2 and
m3.

Although a similar notation, “c::n” is used in C++[29] to resolve name-
collision, its semantics is quite different from that of MixJuice. In C++, the
expression “a.c::n()” is not a virtual function call. In MixJuice, the expression
“a.FQN[m2::m]()” is a normal method invocation with late binding. In addition,
in C++, it is impossible to override two virtual functions with the same name
as in Figure 17 because separately defined virtual functions with the same name
are regarded as identical by the C++ compiler.

4 Implementation Defects and Complementary Modules

4.1 Implementation Defects

When the end user composes two modules, an interesting phenomenon, which
we call an implementation defect, may occur. Consider the program in Figure 18.
The module m1 defines an abstract class S and its subclass A. The module m2 adds
a new subclass B. On the other hand, the module m3 adds a new abstract method
m to the class S and an implementation of the method m to the class A. Both
m2 and m3 are the complete program which will not result in a link-time error;
however, if the end user selects both modules simultaneously, the linker reports
a link-time error because the method m in the class B is not implemented. As
in this example, the phenomenon where the composition of two correct modules
produces un-implemented abstract methods is called an implementation defect.

4.2 Complementary Modules

In general, it is impossible to complement an implementation defect automati-
cally. Someone who understands the specification needs to implement abstract
methods to make the program executable. Modules that complement an imple-
mentation defect between other modules are called complementary modules.

The program in Figure 19 is an example of a complementary module m23
which complements the implementation defect between m2 and m3. The comple-
mentary module is defined as a module that has a “complements” declaration
8 The syntax of FQN shown in this paper is ugly. The reason is the parsing problem

caused by the character “.” used as both the punctuator of module names and the
access operator for fields and methods in Java. In actual programming in MixJuice,
FQNs are seldom used because the scope of names becomes smaller than that in
traditional object-oriented languages.



module m1 {

define class A { define A(){} }

}

module m2 extends m1 {

class A { define int m(){ return 1; } }

}

module m3 extends m1 {

class A { define int m(){ return 2; } }

}

module m4 extends m2, m3 {

class A {

int FQN[m2::m](){ return original() + 3; }

int FQN[m3::m](){ return original() + 4; }

}

class SS {

void main(String[] args){

A a = new A();

//System.out.println(a.m()); // ambiguous

System.out.println( a.FQN[m2::m]() ); // 4

System.out.println( a.FQN[m3::m]() ); // 6

}

}

}

Fig. 17. An example of FQNs.

module m1 {

// S and a subclass A.

define abstract class S { }

define class A extends S { }

}

module m2 extends m1 {

// Add a new subclass of S.

define class B extends S { }

}

module m3 extends m1 {

// Add a new method of S.

class S { define abstract int m(); }

class A { int m(){ return 1; } }

}

Fig. 18. An example of an implementation defect between two modules.

module m23 complements m2, m3 {

class B { int m(){ return 2; } }

}

Fig. 19. The complementary module.



that declares the modules that cause the implementation defect. The compiler
processes the “complements” declaration in the same way as an “extends” dec-
laration, except that the compiler adds information of module names to be com-
plemented to the compiled binary.

The linker of MixJuice supports automatic linking of complementary modules
in order to enhance the usability of end users who compose existing modules.
Suppose that the complementary module as in Figure 19 is implemented by
someone and the compiled binary is placed where the linker is able to access it.
If an end user tries to compose m2 and m3 as follows, the linker automatically finds
the complementary module m23 and links the complementary module together
with m2 and m3.

% mj -s m2 m3

As shown above, if the complementary modules are properly installed, the end
users do not have to be aware of the implementation defect problem when com-
posing modules. By this mechanism, the end users can customize applications
easily without requiring detailed knowledge of implementation of the modules.

4.3 Implementation Defect and Complementary Modules in Other
Systems

The implementation defect problem occurs not only in MixJuice, but also in
other highly extensible systems. To be precise, it occurs in extensible systems
that have two or more directions of extension (Figure 20).

Implementation
defect

Direction A

Direction B

Extension B

Extension AOriginal System

Fig. 20. Two directions of extension and their implementation defect.

One example can be seen in the extensible interpreter using monad trans-
formers[18], which are composable extension modules. Monads are abstract data
types which become extensible by a technique called monad transformers in or-
der to extend their data-structure and applicable operations. When composing
two monad transformers, “lifting of operators” are sometimes required to make
the monad complete. This is what we call a complementary module.



Another more familiar example can be seen in personal computers (PCs). The
users of a PC can choose their OS and peripherals; however, the device drivers
corresponding to the selected OS and the peripherals need to be obtained and
installed in order to make them work. These device drivers are what we call
complementary modules.

The latter case is a good example that shows the extensible systems which
cause implementation defects phenomena are not necessarily impractical. Not all
possible implementation defects have to be complemented by the vendors of the
extension modules. By implementing complementary modules between relatively
popular modules, vendors can satisfy most of the demand for customization by
the end users.

5 Application

As an example of a typical object-oriented application, we now describe a draw-
ing tool 9. The source-code of the tool contains a class hierarchy: an abstract
class Figure and subclasses of the Figure corresponding to each kind of figure
such as circles and rectangles.

This program is extensible by adding extension modules. Extension modules
can add new kinds of figures or new kinds of operations to the figures.

The module that adds a new kind of figure contains the following code: (1) A
definition of a new subclass of the class Figure. (2) An extension of the method
that displays the buttons to select the figure to draw. The programmer can add a
new button without modifying the source-code because the method that displays
buttons is a “hook” for extension.

The module that adds a new kind of operation to the figures contains the
following code: (1) The definition of an abstract method of the class Figure and
the implementation of the method of all the subclasses of the class Figure. (2)
An extension of the method that displays the buttons to select the operation to
perform.

base

line rect elli tri oct select

delete move

dump area

Fig. 21. The module diagram of the drawing tool.

9 The source-code of this drawing tool and demonstration as Java applets are accessible
from the following URL. http://staff.aist.go.jp/y-ichisugi/mj/demo.html



Currently, the following 11 modules have been implemented.

base : Framework of the drawing tool
select : Selection of a figure
delete : Deletion of a selected figure
move : Moving of a selected figure
dump : Dumping of information of the displayed figures
area : Display of the total area of the displayed figures
line : Lines
rect : Rectangles
elli : Ellipses
tri : Triangles
oct : Octagons

The module base contains the definitions of a class Figure and a class that
displays a canvas, menus and buttons. The module base can itself be executed
as an application; however, it displays no buttons for selecting the figure to
draw or buttons to select the type of operation. All other modules are defined
as sub-modules of this module (Figure 21).

New operations

New figures

line

dump

rect elli tri octbase

area

Complementary modules

Fig. 22. Complementary modules for the drawing tool.

The combination of modules which add a figure and an operation causes im-
plementation defects that need to be complemented. We have implemented 10
complementary modules which complement defects between the modules which
add figures (line, rect, elli, tri and oct) and the modules which add opera-
tions (dump and area), as illustrated in Figure 22.

Although the modules select, delete and move are modules that add op-
erations to the figures, they do not require complementary modules, since these
operations are implemented as non-abstract methods of the class Figure.

More than 29 varieties of applications can be realized because all modules
except base and select can be arbitrarily selected.



6 Related Work

Some traditional languages including Modula-3[1] and Java have import dec-
larations, which incorporate names defined at other modules into the current
module. In difference-based modules, super-module declarations provide simi-
lar function. By traditional import declarations, the programmer can specify
individual names to be incorporated. By super-module declarations, all names
defined by the super-module are incorporated together. Traditional import dec-
larations only affect the inside of the declaring module, and do not affect the
clients of the declaring module. On the other hand, effect of super-module dec-
larations is inherited to all descendant modules. The reader may think these
characteristics of super-module declarations lead to the pollution of name space.
Actually it does not matter because difference-based modules can minimize the
scope of names, and the name collision can be avoided by fully-qualified-names.

Fragment system of BETA language[20] is a module mechanism that is in-
dependent from the language core. Fragments are units of reuse and separate
compilation. Fragments can inherit more than one fragment (with restrictions).
The inheritance relation between fragments determines visibility of names. Sep-
aration of specification modules and implementation modules enables informa-
tion hiding. All characteristics listed above are common with difference-based
modules. In fragment system, each language construct in the original program,
that is a syntactical notion, can become hook for extension. In difference-based
modules, behavior of classes and methods, that is a semantical notion, is the tar-
get of extension. In fragment system, the programmer should specify names of
hooks and their syntactic category explicitly. Therefore, if programmer wants to
provide many hooks, description becomes complicated somewhat. In difference-
based modules, the increase of hooks does not make the program complicated
because existing class and method names act as hooks.

Virtual classes[21] are mechanism of BETA, which enables extension of inner
classes of nested classes by means of overriding by the subclass of the outer
class. In order to make applications as extensible as MixJuice does, modules in
MixJuice may be expressed as outer classes in BETA and classes in MixJuice
may be expressed as inner classes in BETA. Virtual classes are covariant types,
which require runtime-check because it is not type safe. On the other hand,
MixJuice is type safe because the original class hierarchy and the extended class
hierarchy do not exist simultaneously in an application. Virtual classes in gbeta
language enable family polymorphism[6], which is polymorphism over a group
of objects, which is not supported by MixJuice.

A programming technique of mixin layers[27] supports collaboration-based
design. A mixin layer is a set of mixins that is related to a collaboration. The pro-
gramming technique does not require a special language, because it only uses the
standard C++ template mechanism. The programming style using mixin layers
is quite similar to that in MixJuice; however, mixin layers support neither infor-
mation hiding nor separate compilation. In addition, the ingenious programming
using the template mechanism makes debugging difficult. In MixJuice program-
ming, there are no essential difficulties with debugging.



AspectJ[16], Hyper/J[26], Demeter/Java[19], DJ[25], Adaptive Plug-and-Play
Components(AP&PC)[22] and Pluggable Composite Adapters(PCA)[23] are Java
based systems which supports separation of crosscutting concerns. All these sys-
tems inherit Java’s original information hiding mechanism and extend it. In
contrast, MixJuice removes it and successfully makes the language specification
simpler.

AspectJ[16] treats two kind of crosscutting concerns. One is about dynamic
concerns related to the call graph and the other is static concern supported
by a mechanism called introduction. The former is orthogonal to the MixJuice
features and the latter is basically the same as the differential programming
mechanism of MixJuice.

Hyper/J[26] is a tool that extracts more than one concern from compiled Java
programs and applies them to the other compiled programs. MixJuice solves the
problem of “the tyranny of the dominant decomposition”, that is pointed out
by [26], in a different way. If there are n-dimension of orthogonal concerns,
the programmer can divide the source-code into n orthogonal directions. For
example, the drawing tool in Section 5 has two dimensions of concerns: data
concern and operation concern. The source code of the drawing tool is divided
into two orthogonal directions as illustrated in Figure 22.

Hyper/J supports non-invasive extraction of concerns from existing appli-
cations; however, MixJuice does not. We think enhancing refactoring[7] tools
is more promising approach for extracting concerns from existing applications.
MixJuice is a suitable language for this approach because it makes refactoring
easier than languages with class-based modules.

Demeter/Java[19] and DJ[25] enables definition of traversing concerns which
is independent from concrete tree structures. As described in Section 2.4, it is
possible to separate traversing code in MixJuice too.

AP&PC[22] enables definition of collaborations that are independent from
concrete class structures. PCA[23] is an enhancement of AP&PC, which supports
dynamic application of collaborations. In contrast, current MixJuice does not
support dynamic loading of modules.

In mixin layers, Hyper/J and AP&PC, it is possible to apply a collaboration
to more than one class hierarchies. On the other hand, it is not possible in the
current MixJuice because module definitions include concrete class names to be
applied to. This restriction of reusability simplifies definition and composition
of modules compared with above systems.

BCA[15] is a system using byte-code translation to enhance the reusability of
existing class libraries. The programmers can modify the existing classes without
source-code by describing the difference, called delta files. This implementation
technique is similar to that of MixJuice. Separate type-checking of the delta files
has not yet been implemented.

In some object-oriented languages such as CLOS[28] and Smalltalk[9], it is a
common programming practice to add methods to existing classes; however, dif-
ferential extension of existing methods, as in MixJuice, is not common practice.
In addition, these languages do not support static type-checking.



Cecil[4], Dubious[24] and MultiJava[5] are object-oriented languages that
support multi-methods. They have class-independent module mechanisms that
support separate compilation. These languages support a feature called open
class that enables modules to add methods to existing classes[24]; however, they
do not support differential extension of existing methods.

7 Conclusion

We have described a module mechanism, which we call difference-based mod-
ules, and an object-oriented language MixJuice. MixJuice is an enhancement of
the Java language which adopts difference-based modules in preference to Java’s
original module mechanism. We have completely separated the class mecha-
nism and the module mechanism, and then unified the module mechanism and
the differential programming mechanism. This module mechanism enhances the
extensibility, reusability and maintainability of programs. In particular, collab-
orations, which crosscut several classes, can be separated into different modules
that can be developed and tested by independent development teams.

Java, C++ Functions MixJuice

class

module

Templates of objects
Subtyping

Reuse
Information hiding

Separate compilation
Differential programming
Conditional compilation

class

package, 
nested class

patch

#ifdef

Fig. 23. The functions of classes and modules.

Figure 23 shows how the functions in object-oriented languages are supported
by class-based modules and difference-based modules. As shown in Figure 23,
the responsibility of classes and modules is clearly separated in difference-based
modules. In addition, difference-based modules support differential programming
and conditional-compilation features, which are not supported by the language-
core of the traditional languages.

We have already written more than 20,000 lines of code in MixJuice. We
have not found any major problems with difference-based modules. Their only
disadvantage might be readability problems when the code of a class is split
into several modules. This problem is the same as the readability problem in the
current object-oriented languages that is incurred by code splitting into super-
classes and subclasses. Sometimes there is a tradeoff between readability and



reusability. These readability problems should be alleviated by documents using
UML or similar, as in current object-oriented languages. Actually, we found
that if the roles of classes and methods are made clear, the code becomes more
readable, because related codes are located in the same module.

Because the design principles of difference-based modules are very simple,
they can be applied to languages other than Java. In addition, because the
MixJuice language is still simple, there are numerous possibilities for language
extensions, such as introducing parameterized modules.
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