
Modular and Extensible Parser Implementation using Mixins

(DRAFT)

Yuuji ICHISUGI

Electrotechnical Laboratory

March 1, 1999

Abstract

This paper describes a method to construct high-

ly modular and extensible recursive descent pars-

er. This parser is used in an extensible Java pre-

processor, EPP. EPP can be extended by adding

plug-ins which extend Java syntax and add new lan-

guage features. The EPP's parser consists of small

mixins. A recursive descent parser class is construct-

ed by composing these mixins. The syntax accepted

by the parser can be extended by adding new mix-

ins.

1 Introduction

The author has developed an extensible pre-

processor for Java[GJS96], EPP[IR97, Ich] which can

be extended by adding new modules which extend

Java syntax, and added new language features. This

paper describes a method of constructing a high-

ly modular and extensible recursive descent parser,

which is the parser of EPP.

In designing EPP, we aimed at a wide-range of ex-

tensibility, highly
exible implementation of exten-

sion modules, and simultaneous usability of multiple

extension features - hereafter called composability.

Traditionally, extension of a system requires edit-

ing and direct modi�cation of the source code. This

has been considered the best method of realizing the

highest extensibility and
exibility in implementa-

tion. With this method, however, it is di�cult to

simultaneously use more than one independent ex-

tension: the user cannot achieve composability.

Many extensible languages de�ne a new syntax

and its semantics with a declarative description.

While this realizes high composability, descriptive-

ness of a descriptive language limits extensibility and

exibility.

EPP realizes as high extensibility as editing source

code and realizes as high composability as declara-

tive description. EPP's parser was implemented in

such a way as to treat its extension modules as ordi-

nary general-purpose programming language mod-

ules, using mixins, the feature of programming by

di�erence. The parser has the following features:

Plug-ins which de�ne new syntax, operators and

others can be added afterward. Because syntax ex-

tension plug-ins are programmed by di�erence, mul-

tiple plug-ins can be combined at the same time.

Because of high modularity, plug-ins can be sepa-

rately compiled one by one. Syntax extension plug-

ins can be distributed without source codes.

Because of its general-purpose language descrip-

tion, it is easy to perform such ad-hoc processes

as context sensibility and global escape, which are

rather awkward with the BNF method.

Error recovery and line number managing can be

implemented.

The EPP's architecture is applicable to any other

programming languages if the implementation lan-

guage has symbol and mixin features.

This paper consists of seven more sections.

Section2 outlines EPP, Section3 presents symbol-

s and mixins-language features necessary in pars-

er implementation, Sections4 and 5 explain how to

describe the extensible parser using mixins and to

implement ad-hoc processes, Section6 evaluates the

parser implementation, Section7 describes related s-

tudies, and Section8 is the conclusion.

2 Outline of Extensible Java

Pre-processor EPP

EPP is an extensible Java source-to-source pre-

processor which can introduce new language fea-

tures. The user can specify EPP plug-ins at the

top of the Java source code by writing #epp name

in order to incorporate various extensions of Java.

Multiple plug-ins can be retrieved simultaneously as

1

long as they do not collide with each other. Emit-

ted source codes can be compiled by ordinary Java

compilers and debugged by ordinary Java debuggers.

EPP works not only as an extensible Java pre-

processor but also as a language-experimenting tool

for language researchers; a framework for extensible

Java implementation; and a framework for a Java

source code parser/translator.

The EPP's source code is written in Java extend-

ed by EPP itself, and it was bootstrapped by EPP

written in Common Lisp[Ste90]. The byte-code is

available in any platform where Java is supported.

3 symbol and mixins

This section describes symbols and mixins, which are

the language features necessary in implementing the

extensible parser.

3.1 Symbol Implementation on Java

Symbols, a data-type as in languages like Lisp, have

the following features:

Symbols are similar to constants de�ned by C lan-

guage's enum statement. Unlike C constants, howev-

er, the user can use symbols having arbitrary names

(strings) as required in the source codes, without

de�ning a �nite number of elements beforehand.

Symbols are similar to string literals, but un-

like strings, the mere pointer comparison e�ciently

judges equality of symbols.

By specifying a name, a symbol can be generated

dynamically.

Fig.1 shows a program using the Symbol plug-in.

A Symbol literal is expressed by a colons followed by

an identi�er or a string literal.

The Symbol plug-in implements symbols on Ja-

va as follows: The symbol literals in the pro-

gram are translated into references to each in-

dividual private static �nal variable. The vari-

able is initialized by the return value of a stat-

ic method invocation : Symbol.intern("name").

Symbol.Intern("name") looks up a hashtable and

returns an instance of Symbol class having the spec-

i�ed name if it already exists. If it does not, a new

instance is generated, registered in the table and re-

turned. As a result, symbol literals having the same

name are guaranteed to reference the instances hav-

ing the same identity. The execution does not pro-

duce the overhead of hashtable retrieval because only

a static constant value is referenced.

#epp jp.go.etl.epp.Symbol

import jp.go.etl.epp.epp.Symbol;

public class TestSymbol {

public static void main(String args[]){

Symbol x = :foo;

Symbol y = :"+";

System.out.println(x == :foo); // true

System.out.println(y == :foo); // false

}

}

Figure 1: A program using Symbol plug-in

3.2 Mixin Implementation on Java

3.2.1 What is mixins?

Usually, in an object-oriented language, a particular

super class name is speci�ed when de�ning a sub-

class; a mixin is a subclass de�ned with no particular

super class speci�ed. A mixin is de�ned on the pre-

sumption that multiple inheritance and linearization

by another class will determine a super class after-

ward.

Bracha[BC90] showed that the mixin mechanis-

m can simulate the same inheritance mechanisms as

SmallTalk, BETA and CLOS. VanHilst[VN96] sug-

gested a variation of mixin-based inheritance which

enhances reusability of object-oriented programs.

C++ provides multiple inheritance, but does not

linearize super classes. Therefore, it is impossible to

do mixin-based inheritance with the C++'s multi-

ple inheritance mechanism. A class which does not

make a shared super class by multiple inheritance

is sometimes called a mixin by C++ programmers,

however, it should not be confused with the mixin

used in this paper.

A mixin is largely similar to decorator pattern in

Design Pattern[GRV95], with two di�erences: (1) a

mixin does not allow modules to be exchanged dur-

ing execution and (2) a mixin enables a new method

to be added to a class, while a decorator can only

have pre-�xed interface.

3.2.2 Program example using mixin

EPP's \SystemMixin plug-in" provides mixin-based

inheritance 1. The following describes the mixin

1
Unlike intrinsic mixins, SystemMixin plug-ins actually

provide programming by di�erence in the entire system con-

sists of multiple classes, not in each class. However, this paper

regards SystemMixins and intrinsic mixins as the same thing

because EPP's parser consists of only one class.

2

class Foo {

void m(char c){

if (c == 'B') {

doB();

} else if (c == 'A') {

doA();

} else {

doDefault();

}

}

}

Figure 2: A method de�nition which uses nested if

statements.

features using the syntax extended by SystemMixin

plug-in. First, Fig.2 shows a common method de�-

nition using nested if statements.

Next, Fig.3 shows the method de�nition divid-

ed into three mixins. Here, the method-invocation

expression, original, introduced by SystemMixin

plug-in, corresponds to the super method-invocation

in traditional object-oriented languages.

Thus, mixins enable the user to divide a method,

which used to be an inseparable unit, into multiple

\method fragments"; and afterward the whole class

can be constructed by combining multiple mixins.

3.2.3 Mixin implementation

EPP's SystemMixin plug-in implements mixins by

translating all the method fragments incorporated

in mixins into small Java classes. The method-

invocation expression searches the hashtable of the

receiver object for the object to implement a method

segment and is translated into an expression to invo-

cate its nested call. The problem with this imple-

mentation is that, with low e�ciency, it is impossible

to treat the mixin-de�ned class and the intrinsic Ja-

va class equally. However, this implementation is

adopted because it allows separate compilation of

the mixins.

C++ can also implement mixin-based inheritance

by parameterizing the super class using the template

mechanism. Fig.4 shows mixins de�ned by the tem-

plate. Combining Skeletons A and B provides the

class B<A<Skeleton>>. Note that mixins de�ned by

the template do not allow separate compilation.

3.3 Mixins Composing EPP

The EPP's parser is de�ned as the only class named

Epp, with the class de�nition divided into multiple

SystemMixin Skeleton {

class Foo {

define void m(char c){

doDefault();

}

}

}

SystemMixin A {

class Foo {

void m(char c){

if (c == 'A') { doA(); }

else { original(c); }

}

}

}

SystemMixin B {

class Foo {

void m(char c){

if (c == 'B') { doB(); }

else { original(c); }

}

}

}

Figure 3: A method de�nition by mixins.

class Skeleton {

public:

void m(char c){ doDefault(); }

};

template<class Super>

class A : public Super {

public:

void m(char c){

if (c == 'A') { doA(); }

else { Super::m(c); }

}

};

template<class Super>

class B : public Super {

public:

void m(char c){

if (c == 'B') { doB(); }

else { Super::m(c); }

}

};

Figure 4: Mixins de�ned by the template mechanism

of C++.

3

mixins. Starting EPP combines all the mixins com-

posing the standard Java parser and mixins compos-

ing the plug-in speci�ed at the top of the source code

to construct one parser (the class named Epp). EPP

then generates the class instance and invokes the s-

tarting method to begin processing the input source

code.

4 Implementation of extensi-

ble parser

4.1 Representation of tokens

One problem about extensible lexical analyzer is how

the programmer extends the de�nition of data type

returned by the lexical analyzer. Two possible solu-

tions are as follows:

To provide the means of extending the token data

type de�nition along with the means of extending

the lexical analyzer.

To provide a general purpose data type in advance

for all possible tokens.

Possibility (1) will require modi�cation and re-

compilation of the source code of the parser because

the lexical analyzer extension changes the data type,

a�ecting the parser which processes the data type.

Therefore, EPP implements possibility (2). The

EPP's token data types, constructed so as to han-

dle a wide range of extension, apply to almost any

language extension without modifying data types.

More speci�cally, all the tokens are expressed either

in literal data types or symbol data types.

A literal is composed of a tag representing the kind

of the literal and a string representing the content

of the literal. For instance, an integer literal 123 is

expressed as a tag int and a string 123. In this

way, a literal which was not included in the original

syntax can be expressed with a new tag assigned.

All the tokens except literals-identi�ers, key words

such as if and while, operators, and special char-

acters such as semicolons and parentheses-are ex-

pressed as symbols. EPP does not distinguish be-

tween keywords and identi�ers; therefore, a new syn-

tax can easily be added by simply extending the

parser without modifying the lexical analyzer at all.

4.2 Recursive Descent Parser

This chapter describes the conventional implementa-

tion of the method of parsing non-terminals without

using mixins. (Chapter 4.3 describes the implemen-

tation split into mixins.)

The following is an example of the production with

alternatives of a pre�x operator, parentheses, a right

associative binary operator, a left associative binary

operator, and a post�x operator 2.

Exp → ++ Exp | (Exp) | Term += Exp | Term

| Exp + Term | Exp ++

Rewriting this production provides the form that

can be parsed by the recursive descent parser: LL(1)

grammar. (See the appendix for the details.) The

recursive descent parser[ASU87] consists of functions

which parse corresponding non-terminal and return

the parsed abstract syntax trees.

Fig.5 shows a part of a recursive descent parser

(without mixins) for the non-terminal Exp in the ex-

ample production, where the three methods return

abstract syntax trees as follows:

� expTop parses alternatives that are neither right

recursion nor left recursion. For example, a pre-

�x operator or parentheses.

� expRight parses alternative of right associative

operators.

� expLeft parses alternatives that are left recur-

sion. For example, post�x operators or left as-

sociative operators.

The roles of methods invoked from the program

are as follows:

� lookahead returns the token currently being

noticed.

� match reports an error if the current token d-

i�ers from the argument value. Otherwise, it

discards the current token and reads the next

token.

� matchAny discards the current token uncondi-

tionally.

The program generates the abstract syntax trees

as is expected from the production. For example, a

+= b += c generates (+= a (+= b c)); a + b + c

generates (+ (+ a b) c).

4.3 Extensible Recursive Descent

Parser

2
In fact, in general language grammar, a non-terminal nev-

er mingles alternatives of parentheses and a binary operator;

or a right associative binary operator and a left associative

binary operator. Such grammar cannot generate expressions

like a + (b) or a + b += c, and then, the grammar con
icts

with human intuition.

4

Tree exp() {

Tree tree = expTop();

while (true){

Tree newTree = expLeft(tree);

if (newTree == null) break;

tree = newTree;

}

return tree;

}

Tree expTop() {

if (lookahead() == :"++"){

matchAny();

return new Tree(:"preInc", exp());

} else if (lookahead() == :"("){

matchAny();

Tree e = exp();

match(:")");

return new Tree(:"paren", e);

} else {

return expRight(exp1());

}

}

Tree expRight(Tree tree) {

if (lookahead() == :"+="){

matchAny();

return new Tree(:"+=",tree,exp());

} else {

return tree;

}

}

Tree expLeft(Tree tree) {

if (lookahead() == :"+"){

matchAny();

return new Tree(:"+",tree,exp1());

} else if (lookahead() == :"++"){

matchAny();

return new Tree(:"postInc", tree);

} else {

return null;

}

}

Tree exp1() { return term(); }

Figure 5: A part of a recursive descent parser.

SystemMixin Exp {

class Epp {

define Tree exp(){

Tree tree = expTop();

while (true){

Tree newTree = expLeft(tree);

if (newTree == null) break;

tree = newTree;

}

return tree;

}

define Tree expTop(){

return expRight(exp1()); }

define Tree expRight(Tree tree){

return tree; }

define Tree expLeft(Tree tree){

return null; }

define Tree exp1(){

return term(); }

}

}

Figure 6: A skeleton of a extensible parser.

SystemMixin Plus {

class Epp {

Tree expLeft(Tree tree) {

if (lookahead() == :"+") {

matchAny();

return new Tree(:"+",tree,exp1());

} else {

return original(tree);

}

}

}

}

Figure 7: A mixin which de�nes a left associative

binary operator.

5

Splitting the program shown in Fig.5 into mixins

makes it more modular and extensible. Removing

if-then clauses and leaving else clauses in Fig.5 pro-

vides a skeleton as shown in Fig.6. Exp de�ned by

the mixin is a method of parsing the following pro-

duction:

Exp → Term

New alternatives can be added to non-terminals

by extending the methods expTop, expRight and ex-

pLeft in this program using mixins. Fig.7 shows a

mixin which de�nes a left associative binary opera-

tor.

EPP de�nes dozens of kinds of non-terminals as a

set of the mixins which de�ne the skeleton as shown

in Fig.6 and the mixins which add alternatives as

shown in Fig.7. With a macro facilitating these def-

initions, the mixins in Fig.6 can be de�ned by the

following one line:

defineNonTerminal(exp, term());

Also, the mixins which add the left associative bi-

nary operator in Fig. 7 can be de�ned by the fol-

lowing one line:

defineBinaryOperator(Plus, :"+", exp);

4.4 Lexical Analyzer Extension by D-

i�erence

A recursive descent lexical analyzer is extensible by

di�erence. The EPP's lexical analyzer mainly con-

sists of the following methods, whose behavior can

be extended by mixins.

readToken

readId

readNumber

readOperator

readStringLiteral

readCharLiteral

readTraditionalComment

readEndOfLineComment

For example, Fig.8 shows the mixin that does not

regard // as a beginning of a comment if it is fol-

lowed by :. (This feature preserves extensibility and

compatibility with Java. This is an example of a pro-

gram using the mixin.

//: assert(predicate);

This line is simply regarded as a comment by the s-

tandard Java compiler, but works as an assert macro

if the �le is processed by EPP.)

SystemMixin CommentPragma {

class Epp {

Token readEndOfLineComment

(EppInputStream in){

if (in.peekc() == ':'){

in.getc();

return readToken(in);

} else {

return original(in);

}

}

}

}

Figure 8: A mixin which extends the lexical analyz-

er.

4.5 Parser Module Deletion and Re-

de�nition

EPP also provides a means of extending grammar

other than programming by di�erence.

Grammar extension by programming by di�erence

is somewhat limited in that (1) only new parser mod-

ule addition is possible; current module deletion is

impossible and (2) extension works only with pre-

pared \hooks" (methods).

One way to perform extension without program-

ming by di�erence is not to execute the original

method invocation in adding mixins: i.e., to disre-

gard the original method. For example, rede�ning

exp1 in Fig.6 modi�es the precedence of operators.

In addition to this, plug-ins have a mean of re-

moving some parser de�nition modules (mixin) when

plug-ins are loaded. By the mean, the grammar can

be arbitrary modi�ed.

The drawback of realizing the plug-ins through the

above two means is that they are much less compos-

able than extension only by programming by di�er-

ence. A plug-in programmer/user has to trade-o�

extensibility against composability.

5 Ad-hoc Processes

5.1 Backtrack

EPP provides explicit backtrack with the lexical an-

alyzer and the parser. Fig.9 shows a mixin which

de�nes a new token **" .

The argument EppInputStream is an input stream

that backtracks at an arbitrary length by having the

whole input �le as a character array on the memory.

6

SystemMixin NewOp {

class Epp {

Token readOperator(EppInputStream in){

if (in.peekc() == '*') {

int p = in.pointer();

in.getc();

if (in.getc() == '*') {

return :"**";

}

in.backtrack(p);

return original(in);

} else {

return original(in);

}

}

}

}

Figure 9: A mixin which de�nes a new token.

5.2 Context Sensitivity

A recursive descent parser easily implements

context-sensitive processes in the lexical analyzer

and the parser: the user just has to input the contex-

t information into the global variables (static vari-

ables, in Java terminology).

5.3 Error Recovery

Error recovery during parsing is easily implement-

ed by Java's exception handling feature. The error

handler just has to skip tokens till a particular token

appears.

5.4 Line Number Managing

It is desirable to have information on \the line num-

ber at which the syntax began" in the Tree that is

generated by parsing. The information helps gen-

erate clear error messages when errors occur during

semantic analysis afterwards. EPP also uses the in-

formation to output each line of the source code at

the same line after translation.

Lisp and Java easily implement line number man-

aging. Lisp uses variables with dynamic scope, and

Java uses static variables, stacks and try-�nally syn-

tax.

Fig.10 shows an example de�nition of the method

exp with Java. All the non-terminal methods are

de�ned in the same way. The Tree constructor ob-

tains the line number at which it began by checking

Tree exp(){

LineNumber.stack

.push(currentLineNumber());

try {

... Same as Fig.6 ...

} finally {

LineNumber.stack.pop();

}

}

Figure 10: Managing line number information.

the top of the stack of the static variable LineNum-

ber.stack.

6 Evaluation

6.1 Java Grammar Description

EPP incorporates a complete Java parser for JDK1.1

implemented as described in this paper. The Java

grammar de�nition part consists of 105 mixins, 29 of

which de�ne the skeleton of non-terminals as shown

in Fig.6.

Explicit backtrack was executed at the following

points during implementation:

1. Distinction between constructor and method or

�eld.

2. Distinction between static method/�eld and

static initializer.

3. Distinction between method and �eld.

4. Distinction between local variable declaration

and statement.

Some of the above can be parsed with LL(1) by

rewriting grammar, but that lowers extensibility and

modularity. Therefore, backtrack was adopted.

Field access syntax and cast syntax are imple-

mented with lower modularity; it is impossible to

make these elements highly modular unless type in-

formation is obtained during parsing.

6.2 E�ciency

The author tested the speed of EPP for processing

of source code of EPP itself, consisting of 7218 lines,

and obtained the following results.

� MMX Pentium 233MHz, Windows95, Microsoft

SDK2.01: approximately 30 seconds

7

� UltraSPARC 200MHz, Solaris2.5.1, JDK1.1.3:

approximately 40 seconds

The process consists of three parts: source code

parsing, macro expansion of extended syntax, and

source code emission after translation. The most

time-consuming part is parsing. That is no problem

for practical use, but a parser should work much

faster. Three factors cause EPP's low speed:

1. Java interpreter overhead,

2. Mixin method invocation overhead, and

3. intrinsic low speed of parser description meth-

ods proposed by this paper (e.g., sequential

search of alternatives with if-then-else and un-

necessary invocation of method having no con-

tent).

The overhead of the current mixin method invo-

cation is approximately 10 times slower than that of

the standard Java class invocation. This is because

EPP implements a mixin-de�ned fragment with a s-

mall Java object, invoking the method by searching

the hashtable during execution. Mixin implementa-

tion speed should be improved in the future.

The overhead of sequentially searching for alterna-

tives with if-then-else takes up much time. In order

to improve that, one possible solution is to imple-

ment an optimized translator that is specialized to

the EPP's parser source code. For example, if-then-

else should be translated into a table search.

In general, having too many backtracks reduces

parsing e�ciency, but Java grammar never caus-

es backtracks that will seriously reduce the speed,

as proven by the following experiment. When

the source code of Java.uil.Vector in JDK1.1.1 was

parsed by EPP, 1214 tokens were appeared. There

were 86 backtracks which caused 172 times extra in-

vocation of readTokens method. The result shows

that the invocation of readToken increases approxi-

mately 14

6.3 Ease of Debugging

Standard declarative description parser generators

detect collisions and ambiguity of grammar to warn

the user. Unfortunately, EPP's parser does not have

this feature. Since it is intended for extending the

grammar of already completed languages by di�er-

ence, the parser is not intended as a tool for design-

ing a new language grammar.

Nevertheless, it would be possible to construct a

parser generator which generates mixins described

in this paper.

Local debugging of a recursive descent parser is

easy; the standard Java debugger and print state-

ments work as in common programs.

7 Related work

ANTLR[ANT] and JavaCC[Jav] are recent top-down

parser generators based on LL(k). According to

the creators of these tools, the advantages of a top-

down parser include ease of debugging and passing

attribute values downward or upward during pars-

ing. A bottom-up parser like LALR(1) does not have

such features. Also, ANTLR can extend the existing

grammar by di�erence through inheritance. JavaC-

C enables direct writing in part of the production,

making writing easy with declarative description.

MPC++[Ish94], OpenC++[Chi95],

JTRANS[KK97] and OpenJava[Tat] are extensible

systems which can introduce new language fea-

tures by providing compile time MOP (Meta object

Protocol[KdRB91]) during compilation. Like EP-

P, their task is to perform complicated translation

on an abstract syntax tree after parsing. Also, the

grammar is extensible in a limited range. For exam-

ple, MPC++ allows addition of new operators and

statements.

Eli[GHL+92] is a compiler-generator which mod-

ularizes the grammar de�nition. It automatically

generates a language processor using grammar and

semantics de�nitions based on attribute grammar,

and de�nes a new language by a kind of inheritance

using existing de�nition modules.

Many \extensible languages" for grammar modi�-

cation have been created, and most of them, includ-

ing Lisp and C macros, de�ne new grammar exten-

sion in the on-the-
y style, i.e. in the program to

be processed. The problems with on-the-
y exten-

sion are that (1) it does not allow pre-compilation of

the grammar extension code and therefore lacks e�-

ciency, and (2) modifying or extending \the syntax

to de�ne syntax extension" itself often causes confu-

sion. EPP has no such problems because it does not

work in the on-the-
y style.

Camlp4[Rau] is an Objective Campl pre-processor

whose grammar can be extended by adding modules.

The extension can be done by di�erence with declar-

ative description, and the modules can be compiled

separately.

8 Conclusion

A method of constructing a highly modular and

extensible parser by splitting the recursive descent

8

parser into small mixins was described. The syntax

accepted by the parser can be extended with high

composability over a wide range by adding mixin-

s implemented by programming by di�erence. Al-

so, in principle, removing existing mixins arbitrarily

modi�es grammar.

acknowledgment

The author wishes to thank Makoto Matsushita

of Osaka University for his discussion about the

method of describing an extensible parser in the ear-

ly stages of the study, and Yves Rouder who was a

visiting researcher of the Electrotechnical Laborato-

ry for his helpful suggestions on EPP.

References

[ANT] Antlr home page.

\http://www.ANTLR.org/".

[ASU87] A.V. Aho, R. Sethi, and J.D. Ullmann.

Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1987.

[BC90] G. Bracha and W. Cook. Mixin-

based Inheritance. In Proc. of E-

COOP/OOPSLA'90, 1990.

[Chi95] S. Chiba. A Metaobject Protocol for

C++. In Proceedings of OOPSLA'95,

volume 30(10) of ACM Sigplan Notices,

pages 285{299, Austin, Texas, October

1995. ACM Press.

\http://www.softlab.is.tsukuba.ac.jp

/~ chiba/openc++.html".

[GHL+92] R.W. Gray, V.P. Heuring, S.P. Levi,

A.M. Sloane, and W.M. Waite. Eli: A

complete,
exible compiler construction

system. Communications of the ACM,

35(2):121{131, February 1992.

[GJS96] J. Gosling, B. Joy, and G. Steele. The

Java Language Speci�cation. Addison-

Wesley, 1996.

[GRV95] Helm Gamma, E., R. R., Johnson, and

J. Vlissides. Design Patterns. Addison-

Welsley, 1995.

[Ich] Y. Ichisugi. EPP home page.

\http://www.etl.go.jp/~ epp".

[IR97] Y. Ichisugi and Yves Roudier. The ex-

tensible java preprocessor kit and a tiny

data-parallel java. In ISCOPE'97, Cal-

ifornia, LNCS 1343, pages 153{160, De-

cember 1997.

[Ish94] Y. Ishikawa. Meta-level Architecture

for Extendable C++, Draft Document.

Technical Report Technical Report TR-

94024, Real World Computing Partner-

ship, 1994.

\http://www.rwcp.or.jp/lab/mpslab/mpc++

/mpc++.html".

[Jav] Javacc home page.

\http://www.suntest.com/JavaCC/".

[KdRB91] G. Kiczales, J. des Rivieres, and D. G.

Bobrow. The Art of Metaobject Protocol.

MIT Press, 1991.

[KK97] A. Kumeta and M. Komuro. Meta - Pro-

gramming Framework for Java. In The

12th workshop of object oriented comput-

ing WOOC'97, Japan Society of Software

Science and Technology, March 1997.

[Rau] D. Rauglaudre. Camlp4 home page.

\http://pauillac.inria.fr/camlp4/".

[Ste90] G.L. Steele. Common Lisp the Language,

2nd edition. Digital Press, 1990.

[Tat] M. Tatsubori. Open java home page.

\http:// www.softlab.is.tsukuba.ac.jp

/~mich/openjava/".

[VN96] M. VanHilst and D. Notkin. Using role

components to implement collaboration-

based designs. In OOSPLA'96, October

1996.

A Production Rewrite

The production de�ned as follow is rewritten so that

it can be parsed by the recursive descent parser.

Exp → ++ Exp | (Exp) | Term += Exp | Term

| Exp + Term | Exp ++

Split the production into two by introducing

ExpTop.

Exp → ExpTop | Exp + Term | Exp ++

ExpTop → ++ Exp | (Exp) | Term += Exp | Term

Remove the left recursion of Exp by introduc-

ing ExpLoop and rewrite ExpTop by introducing

ExpRight.

9

Exp → ExpTop ExpLoop

ExpTop → ++ Exp | (Exp) | Term ExpRight

ExpRight → += Exp | ε
ExpLoop → + Term ExpLoop | ++ ExpLoop | ε

Now this grammar can be parsed by recursive de-

scent parser. Furthermore, by introducing ExpLeft,

ExpLoop can be rewritten as follows:

Exp → ExpTop ExpLoop

ExpTop → ++ Exp | (Exp) | Term ExpRight

ExpRight → += Exp | ε
ExpLoop → ExpLeft ExpLoop | ε
ExpLeft → + Term | ++

Fig.5 shows a part of a recursive descent parser for

non-terminals based on the above productions. Note

that the tail recursion of ExpLoop is rewritten into

Loop and embedded in the method exp; the method

expLeft expresses returns a special value, null, if no

matching alternatives.

Both the original and rewritten grammars are am-

biguous. For example, the expression ++ a + 1 can

be interpreted as either (++ (+ a 1)) or (+(++ a

)1) . The program in Fig. 5 parses this as (+(++ a

)1).

10

