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Abstract. In this paper, we propose the following interpretation: if a
Bayesian network has acquired translation invariance in input images,
its feedback messages from higher layers to lower layers can be inter-
preted as the response of complex cells in the visual system. To exam-
ine our proposal’s validity, we trained a Bayesian network to acquire
translation invariance using the standard belief propagation algorithm,
and confirmed its feedback messages were translation invariant and thus
they can be interpreted as the response of complex cells. Unlike previous
studies, our model does not require specially prepared random variables.
Furthermore, our model only uses the standard belief propagation al-
gorithm. Therefore we believe that our model is more natural than the
previous ones to integrate hierarchical Hubel-Wiesel architectures for the
visual system, e.g. Hierarchical MAX models, and probabilistic graphical
models.
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1 Introduction

Ranging from behavioral psychology to physiological experiments, probabilistic
computation is strongly suggested as the fundamental computational principle of
brain[1]. Especially for the visual cortex of mammals, probabilistic approaches
are successfully employed to explain some extra-classical receptive field prop-
erties in the primary visual area (V1), for example, end-inhibition or context-
dependent responses[2].

Most of the theories of vision are, however, based on non-probabilistic, feed-
forward neural networks[3, 4]. Series of these studies originate from the finding
of the simple and complex receptive fields[5]. In the primary visual area, both
neurons that have the simple receptive fields and neurons that have the com-
plex receptive fields are strongly tuned to their optimal orientations of stimuli
(e.g. slit of light). For the position (or phase) of stimuli, however, simple cells
have narrow, optimal positions, while complex cells respond relatively broad
positions. This suggests that features extracted by simple cells are pooled by
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complex cells. The neocognitron architecture[6] mimics these findings to build
an object recognition model with a hierarchical feedforward neural network, in
which convolutional feature extraction and max-pooling operation are repeated
alternatingly. This kind of architecture, called convolutional neural networks or
HMAX (Hierarchical MAX) models[3, 4], is currently known to be the state-of-
the-art visual recognition model.

These studies naturally lead us to the question; How can we integrate proba-
bilistic models and the HMAX-like models? Although many probabilistic models
are proposed for visual recognition tasks, most of them reproduce only responses
of simple cells but not those of complex cells. For an exceptional example, con-
volutional deep belief networks (CDBNs)[7] consist of stacked restricted Boltz-
mann machines with special probabilistic pooling variables that correspond to
complex cells. There are also models that are based on Bayesian networks in
which variables for simple cells and complex cells are arranged in a way similar
to the HMAX-model architecture[8]. In both cases, models of these types require
special handling for complex-cell variables for model architecture building or for
learning.

In this paper, we propose an alternative way to interpret simple cells and
complex cells in probabilistic graphical models. Our approach is based on belief
propagation, a bidirectional message propagation algorithm[9]. We point out that
if a graphical model has successfully learned translation invariance in its higher
levels, variational messages from those levels should have translation invariance.
This means lower levels can receive translation invariant signals in feedback mes-
sages and therefore do not require special variables for complex-cells’ behavior.

This paper is organized as follows; In the next section, we explain our ap-
proach to the integration of the graphical models and the HMAX models by
comparing it to the previous attempts. To examine our idea, we performed an
experiment by using a combination of a Bayesian network and the belief propa-
gation algorithm. A preliminary of the experiment is given in Sec. 3, and results
of the experiment appear in Sec. 4. Sec. 5 is devoted to describe the conclusion.

2 Related Work on Integration of Graphical Models and
HMAX Models

A remarkable attempt to unify HMAX-like models and probabilistic graphical
models is found in ref. [8]. The authors of ref. [8] propose the Bayesian network
model that contains two kinds of random variables; one corresponds to simple
cells, and the other to complex cells. Both cell types are trained so that each re-
sponds like the corresponding neuron type in HMAX models. The trained model
successfully integrates bottom-up evidences and top-down predictions using be-
lief propagation in a practical experiments.

However, their model has two disadvantages. The first one resides in the
learning algorithm. In order to reproduce simple-cell like and complex-cell like
responses, two different learning algorithms are used for the conditional proba-
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bility tables. Furthermore, the learning algorithms are based on clustering, not
on the maximal log-likelihood method.

The other one resides in the correspondence between the cells in model
and the biological cells. In ref [8], the beliefs, or the marginal probabilities
BEL(x) = P (x|e), are compared to the biological simple and complex cell ac-
tivities. However, if the belief propagation algorithm is executed in the cerebral
cortex, the activities corresponding to the intermediate variables, such as the
messages, should also be observed experimentally. It is not sufficient to model
the biological neural activities only with the beliefs.

In this paper, we present a new view for modeling simple and complex cells.
In a hierarchical graphical model, simple representations in lower levels can be
combined and stored in higher levels as complex representations. Hence, the
receptive fields of higher-level variables are broader and less sensitive to the
position of stimuli than that of lower-level variables. In a variational inference,
the effect of such broader receptive fields are initially observed in beliefs of higher-
level variables, then sent to lower-level variables as messages. This mechanism
leads us to the view that simple cells can be modeled by feedforward messages,
and complex cells can be modeled by feedback messages.

Note that, with this view, we do not need special handling for translation
invariant variables when we construct the graphical model that responses like
HMAX models. We only need to train the graphical model so that it acquires
translation invariance using a standard method, such as supervised learning, or
unsupervised, slow-feature-analysis learning. Complex-cell like responses can be
computed by using messages coming from higher levels in a variational inference.
This is a new way to “integrate” graphical models and HMAX models. This
viewpoint is explained in detail in the experiment section by using a simple,
specific model and the belief propagation algorithm as an inference algorithm.

Before proceeding, let us compare our idea with the other related studies.
Many models for the cerebral cortex with probabilistic graphical models are
presented so far[10–14], but the emergence of complex-cell like responses is hardly
addressed, except in Ref.[7, 8].

The author of ref.[14] used hierarchical Bayesian network which has similar
architecture to ours. The network was trained in an unsupervised manner with
natural images. As a result, receptive fields similar to V1 and V2 cells were
acquired by the model, and their details were carefully compared quantitatively
to physiological experiments. The author concluded that the complex receptive
fields could not be found.

From our point of view, we might give some explanations to this result.
Firstly, in [14], cell activities were measured by the beliefs, or the marginal
probabilities. As we mentioned above, if we execute a variational approximation
in the model, we might find another type of responses in variational messages.
Secondly, the author used unsupervised learning. If supervised learning had been
used, the higher-level variables would have acquired broad receptive fields and
would have shown complex-cell like responses.
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Fig. 1. Schematic representation of the Bayesian network in our experiment

In [11], the Bayesian network model was trained by a slow-feature-analysis
like algorithm[15] to have the translation invariance. However, it was not clear
whether there were responses corresponding to complex cells.

3 Bayesian Network Model

3.1 Model Architecture

To model the visual system in the cerebral cortex, we introduce a hierarchical
Bayesian network that mimics hierarchical structure of the dorsal stream of
the visual cortex. The Bayesian network model has three layers. The level zero
consists of N0 binary variables L0 = {L01, . . . , L0N0}. The level one consists of
N1 variables L1 = {L11, . . . , L1N1}. The level two consists of one variable L2.
The level zero is used as the visible, input layer, while the level one and the level
two are hidden layers.

Each level has rough correspondence to a part of visual area: the level zero
corresponds to lateral geniculate nucleus (LGN), the level one to V1, and the
level two to V2 and higher areas. The hierarchical structure of the model is
shown in Fig.(1).

The joint probability distribution of the Bayesian network is given by

P (L0, L1, L2) =

N0∏
i=1

P (L0i|pai)
N1∏
j=1

P (L1j |L2)P (L2), (1)

where pai ⊂ L1 denotes the set of parent variables of L0i. The conditional
probability tables, P (L0i|pai), P (L1j |L2), and P (L2) are the model parameters.

3.2 Belief Propagation

Belief propagation[9] is an efficient algorithm for inference in probabilistic graphi-
cal models, exploiting graph structure to reduce the computational costs. In this
study, we employ the max-product belief propagation algorithm, which gives
maximum a posteriori (MAP) combination of the states in the model:

XMAP = argmax
X

P (X|e), (2)

where X is the set of the hidden variables and e is the set of the visible variables
with evidences given.
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Generally, the max-product belief propagation algorithm gives an approxi-
mate MAP solution after sufficient iterative message passings. Since our model
has a tree structure, however, the belief propagation gives the exact MAP solu-
tion in one cycle.

Because the set of message-update equations of the belief propagation al-
gorithm is too lengthy, we no not describe its detail here. Instead, we give the
key equation which connects the responses of beliefs in higher levels and the
messages that are sent from a higher level to a lower level.

πL1j (L2) =
∏
k ̸=j

λL1k
(L2)P (L2) ≈ BEL(L2), (3)

where πL1j (L2) is the feedback message sent from the higher variable L2 to the
lower variable L1j , λL1k

(L2) is the feedforward message sent from L1j to L2, and
BEL(L2) is the belief of L2. The approximation is justified if the number of the
child variables of L2 is large enough. This equation states how the feedback mes-
sage πL1j (L2) is computed using the other messages and the conditional proba-
bility tables. As seen in the approximation, the feedback message πL1j (L2) be-
haves similar to the belief of L2, BEL(L2). This means that if BEL(L2) responds
translation invariantly, the feedback message πL1j (L2) also responds translation
invariantly. This is the mathematical explanation of the translation invariant
feedback messages in the belief propagation algorithm.

4 Simulation

4.1 Setup and Hyperparameters

We performed an experiment using a Bayesian network to concretely present
our idea that translation invariant responses come from higher representations.
The experiment consisted of two kinds of steps, i.e. the learning step and the
recognition step.

The purpose of the learning step was to make the level-two variable learn
translation invariant representations. For the sake of this, we used a supervised
learning. We gave the translated images to the level-zero variables. Meanwhile,
we gave the corresponding instruction signal to the level-two variable. Giving
both the input and the instruction signal, the parameters in the model were
updated so that the log-likelihood was maximized.

We used Gabor filters for the connections between the level-zero and the
level-one variables instead of conditional probability tables. The Gabor filters
were fixed throughout experiments, which means we only updated conditional
probability table between level-one and two variables, P (L1j |L2). This approx-
imation is just for convenience and not essential. If one uses fully-probabilistic,
maximal log-likelihood learning approach, one may obtain Gabor-filter like con-
nection under an appropriate prior distribution[16]. With this approximation,
the feedforward messages from the level-zero variables to the level-one variables
were replaced by the convolutions of the image patches with the Gabor filters.
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In the recognition step, we presented input signals in the level-zero variables.
The hidden variables in the level one and level two were inferred with the belief
propagation algorithm. We computed feedforward and feedback messages, as
well as beliefs, as the responses of the model.

We used the following hyperparameters; The level zero had 16×16 binary
variables, the level one had 4×4 variables each of which had 8 states correspond-
ing to the 8 orientations of the Gabor filters (see below). The level two had
one 4-state variable. Corresponding to the level-zero variables, an input image
had 16×16 pixels. A level-one variable had 4×4 receptive field in level zero, and
the level-two variable had also 4×4 receptive field in the level one. Throughout
the network, there were no overlaps of receptive fields and therefore the model
was tree-structured. Since the model was a tree, we used the belief propagation
algorithm to get the exact MAP assignment in one cycle of iteration.

The Gabor filters employed to mimic the connections between the level zero
and the level one were set by the parameters of γ = 0.3, σ = 3.6, and λ = 4.6 as
in[4]. The angles were divided to eight directions by θ = 0, π/8, 2π/8, . . . , 7π/8,
which consisted of the eight states of the level-one variables.

4.2 Results with Line Stimuli

We used horizontal line stimuli that covered the whole width of all level-one
variables’ receptive fields, namely, 16 pixels wide. In the learning step, we trained
the model so that the sole level-two variable indicated the first state, out of the
four possible states, whenever a horizontal line stimulus was presented regardless
of its position. In the recognition step, we chose one level-one variable, L1, and
observed its two incoming messages λ(L1) and π(L1).

Fig. 2 shows the state of λ(L1) that corresponds to the horizontal angle of
the Gabor filter, and its equivalent of π(L1). λ(L1) responded more strongly
when a line stimulus was presented in the receptive field of L1 than when a
line stimulus was presented out of the receptive field. On the other hand, π(L1)
responded more equally concerning the position of the presented stimulus. With
these results, we can say that λ(L1) responds like simple cells and π(L1) responds
like complex cells.

As a result of the supervised learning, the level-two variable predicted hor-
izontal lines regardless of their positions. Since π(L1) was computed based on
that prediction (Eqn.(3)), it responded more equally concerning the position of
the stimulus.

Fig. 3 shows how the same state responded to the input stimuli that were
roteted by 90 degrees, namely, vertical stimuli. The responses of both λ(L1) and
π(L1) were suppressed. This indicates that both responses were selectively tuned
to their optimal orientation, namely, horizontal orientation. Since the model had
not been trained to recognize vertical stimuli, the L2 belief for vertical stimuli
was uniform. Therefore, the π(L1) message in the feedback was weak.
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Fig. 2. Responses of the messages in
the Bayesian network model. Horizon-
tal axis indicates the position of pre-
sented horizontal stimuli, and vertical
axis indicates the responses.
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Fig. 3. Responses of the messages in
the Bayesian network model. The same
with Fig. 2, except that the presented
stimuli are vertical.

5 Conclusion

We have shown that the biological neural responses can be interpreted as vari-
ational messages in a probabilistic graphical model. We have experimentally
clarified this interpretation by using a Bayesian network and the belief propaga-
tion algorithm. We employed the standard supervised learning algorithm based
on the maximal log-likelihood to obtain the translation invariance. The complex-
cell like response in the level one was found in the computation of the feedback
message from the higher level. Note that we do not need special architecture
such as complex-cell random variables employed in the previous studies[7, 8] to
reproduce the complex-cell like response. We therefore consider that our inter-
pretation gives a new way to integrate the HMAX-like models and graphical
models for visual system.

We remark that our interpretation is not restricted to Bayesian network mod-
els or the belief propagation algorithm. Many variational inference algorithms,
such as the mean-field algorithm, share the computation in which a prediction
of a higher-level variable is sent as a feedback message to lower-level variables.
This fact suggests that the feedback messages in many variational inference
algorithms convey translation invariance if the graphical model has acquired
translation invariance appropriately.

Although our model is presented for the concreteness of the interpretation
and too simple to model the real cortex, we can find interesting correspondence
with the experiments. Complex cells in V1 are mainly distributed in superficial
layers(II, III) and in deep layers (V, VI)[17]. For complex cells in the deep layers,
it is suggested that they receive feedback signals from higher areas[18]. This is
consistent with our interpretation that feedback signals can be used to realize a
translation invariant response. On the other hand, complex cells in the superficial
layers are suggested to receive direct projections from simple cells in the same
area[19]. The role of the superficial complex cells in a variational inference model
is left for a future work.
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