Regularization Methods for the Restricted Bayesian Network BESOM

ICONIP 2016 2016-10-17

Yuuji Ichisugi and Takashi Sano
Artificial Intelligence Research Center (AIRC),
National Institute of Advanced Industrial Science
and Technology(AIST)

Outline

- Our research goal:
 - Implement a cerebral cortex model
- Our developing model: BESOM model
- Local minimum problem of BESOM
- Regularization methods
- Network translation technique in order to use EM algorithm

Our research goals

 Long term goal : Human-like intelligence by WBA approach

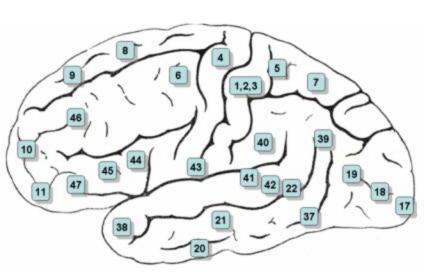
- Short term goals:
 - Implement a cerebral cortex model
 - Our working hypothesis :
 The cerebral cortex is a kind of Bayesian network

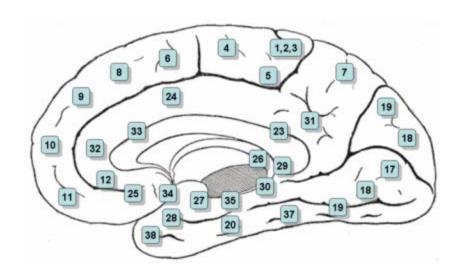
http://www.irasutoya.com/2015/05/ai.htm

 Implement visual area, language area, motor area etc. using the cerebral cortex model

Cerebral cortex

- Realizes human's intelligence.
 - Sensory, Motor, Language, ...
- It is important to reveal the informationprocessing principle of the cortex.





Bayesian network models of cerebral cortex

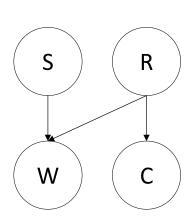
- Pattern recognition
 [George and Hawkins 2005][Hasegawa and Hagiwara 2010]
- Electrophysiological phenomena
 [Lee and Mumford 2003] [Rao 2005] [Chikkerur, Serre, Tan and Poggio 2010][Hosoya 2010][Hosoya 2012]
- Psychophysical phenomena
 [Chikkerur, Serre, Tan and Poggio 2010]
- Anatomical structures
 [George and Hawkins 2005] [Ichisugi 2007] [Rohrbein, Eggert and Korner 2008] [Ichisugi 2011]
- Motor areas [Hosoya 2009]
- The others [Litvak and Ullman 2009][Ichisugi 2011]

A cerebral cortex seems to be a huge Bayesian network with layered structure like Deep Learning.

What is Bayesian network?

- Very efficient and expressive data structure for probabilistic knowledge.
 - If a joint probability table can be factored into small conditional probability tables (CPTs), time and space complexity will decrease.

ex.: P(S, W, R, C) = P(W | S, R)P(C | R)P(S)P(R)



CPTs

P(S=yes)	
0.2	

S	R	P(W=yes S,R)
no	no	0.12
no	yes	0.8
yes	no	0.9
yes	yes	0.98

P(R=yes)
0.02

R	P(C=yes R)	
no	0.3	
yes	0.995	

Similarities between Cerebral Cortex and Bayesian network

- Asymmetric and bidirectional connections between lower and higher areas.
- Local and asynchronous communications.
- Non negative values.
- Normalization of values.
- Hebb's learning rule.
- Context dependent recognition.
- Behavior based on Bayesian Statistics.

Deep Learning using a Bayesian network is thought to be promising

- Because of its similarity to the human brain
- Inference in Bayesian networks can sometime be executed with low computational complexity
- Top-down information flow
- It is easy to build in prior knowledge about learning targets

0000000000

(000...0)(000...0)(000...0)

(0)(0)(0)(0)(0)(0)(0)

BESOM (BidirEctional SOM) [Ichisug 2007]

- A Bayesian network model of cerebral cortex
- Combination of Bayesian Networks, Deep Learning, Self-Organizing Maps and Independent Component Analysis
 - Incomplete technology, however
- Our goal:
 - Scalability of computation amount
 - Scalability of accuracy
 - Usefulness as a machine learning algorithm
 - Plausibility as a neuroscientific model

BESOM Ver.3.0 features

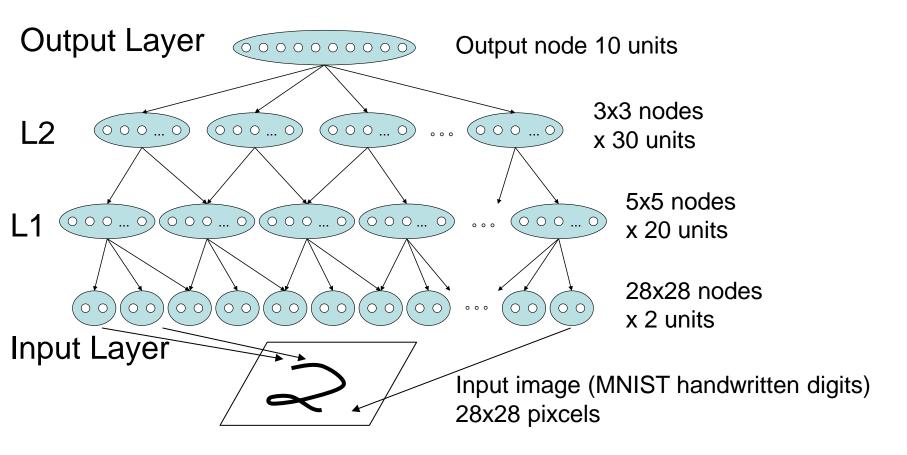
Restricted Conditional Probability Tables:

$$P(x|u_1,...,u_m) = \frac{1}{m} \sum_{k=1}^{m} P(x|u_k)$$

- Scalable recognition algorithm [Ichisugi, Takahashi 2015]
- Regularization methods:
 - Win-rate penalty
 - Lateral-inhibition penalty
 - Neighborhood learning
 - Edge selection

- Today's topics

4 layer BESOM for supervised learning



Ovals are nodes (random variables)
White circles inside are units (possible values for the random variables)

Objective of learning

• Calculate MAP estimator of the parameter θ

$$\theta^* = \arg \max_{\theta} \left[\prod_{i=1}^{t} P(\mathbf{i}(i) | \theta) \right] P(\theta)$$

$$= \arg \max_{\theta} \left[\prod_{i=1}^{t} \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{i}(i) | \theta) \right] P(\theta)$$

To estimate parameter, the online EM (Expectation-Maximization) algorithm or its approximation is used.

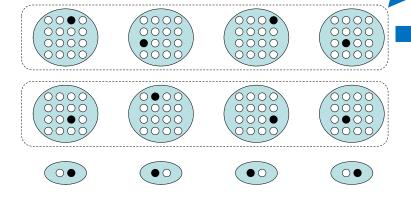
Structure of BESOM network

Node = random variable = cortical column unit 0000 0000 0000 = value (V2) 0000 0000 = mini-0000 0000 column 6000 6000 6000 0000 0000 0000 (V1) 0000 0000 00 00 00 00 (LGN)

No connections in each layer. Fully connected between different layers. Connection weights

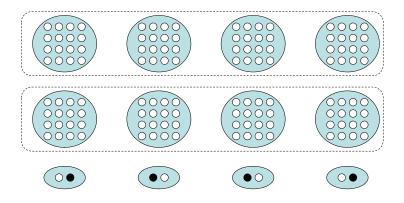
- = CPT
- = synapase weights

Recognition



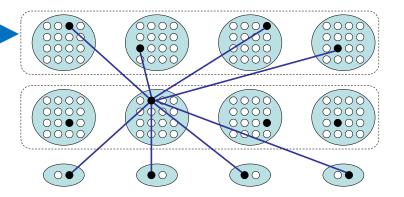
Find the values of hidden variables with the highest posterior probability. (MPE: most probable explanation)

Input



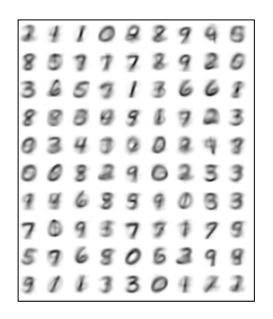
Input (observed data) is given at the lowest layer.

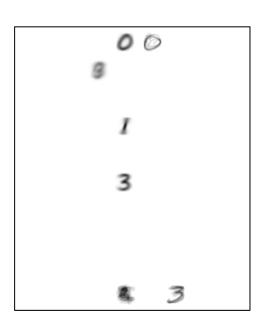
Learning



Increase the connection weights between active units (mini-columns) and decrease the other weights.

Problem of utilization ratio of units





Learned with proposed priors.

Learned with **no priors**. Most units never become active.

Seems to be very bad local minimum.

- Wastes units.
- Low recognition rates.63.6% MNIST

Each image is the mean image of inputs which activate the unit. (Selected 10 units of L2 nodes are shown.)

White image indicate the unit never become active.

Win-Rate penalty

- All units should be used evenly.
- Penalties are imposed when the histograms of win-rates are difference from the uniform distributions.

$$P^{WinRate}(\theta) = \prod_{X \in \mathbf{X}} e^{-C^{WinRate}D_{KL}(Q(X)||P(X;\theta))}$$
(8)
$$Q(X = x_i) = 1/s$$
(9)

Problem: When the parameter has a complex prior distribution, it is not obvious how to perform the EM algorithm efficiently.

Equivalent network

- Fortunately, the network with win-rate penalty can be expressed as an approx. equivalent network without prior.
 - Then, EM is straightforwardly applicable.

$$P(R_X = 1 | X = x; \theta) = e^{-(1/t)C^{WinRate}} R(x; \theta) = \frac{Q(x)}{P(x; \theta)} \log \frac{Q(x)}{P(x; \theta)}$$

Nodes which

imposes penalties.

Lateral-Inhibition penalty

- Nodes which shares the same child nodes should be independent.
 - Otherwise, redundant representation is acquired by learning.
- Penalties are imposed when designated pairs of nodes are not independent.

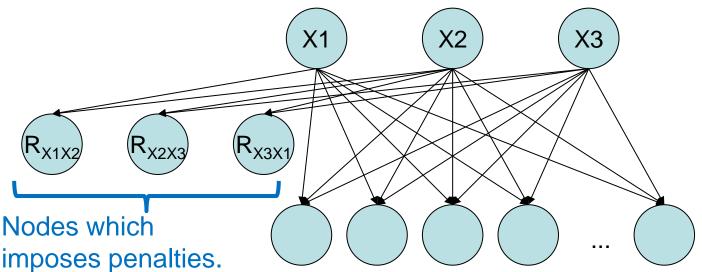
$$P^{Lateral}(\theta) = \prod_{(U,V)\in L} e^{-C^{Lateral}I(U,V;\theta)} \tag{17}$$

$$I(U, V; \theta) = \sum_{u} \sum_{v} P(u, v; \theta) \log \frac{P(u, v; \theta)}{P(u; \theta)P(v; \theta)}$$
(18)

Equivalent network

 This penalty can also be represented by an approximately equivalent network without prior.

$$\begin{split} P(R_{UV} = 1 | u, v; \theta) &= e^{-(1/t)C^{Lateral}R(u, v; \theta)}, & & R(u, v) \\ &= s^{-}\frac{P(u, v)}{P(u)P(v)} \log \frac{P(u, v)}{P(u)P(v)} \\ &= s^{-}(P(u|v)/P(u)) \log P(u|v)/P(u) \end{split}$$



Evaluation Result (MNIST)

	With Win-Rate Penalty	Without Win-Rate Penalty
With Lateral-Inhibition	80.6%	81.8%
Without Lateral-Inhibition	82.2%	63.6%

For both penalties, the recognition rate was higher than when no penalties were applied.

This result also shows that two prior distribution can be applied simultaneously; however, it does not show the best accuracy in this case.

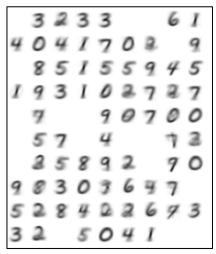
Status of utilization of units

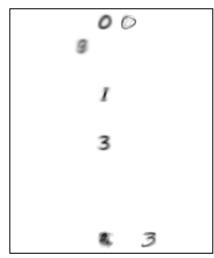
With Win-Rate Penalty

Without Win-Rate Penalty

With Lateral-Inhibition penalty

Without Lateral-Inhibition penalty





Conclusion

- Two regularization methods for parameter learning of layered Bayesian networks like deep learning are proposed.
 - Win-Rate penalty and Lateral Inhibition penalty
 - Standard EM can be used for learning by network translation technique
- They may alleviate both local minima and overfitting problems.