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Abstract—We propose an optimization method for belief prop-
agation. First we mathematically show that the belief propagation
algorithm can be optimized by imposing a reasonable restriction
on the conditional probability tables in a Bayesian network. Then
we demonstrate the efficiency of the proposed algorithm with
experiments. Compared to the previously derived approximate al-
gorithm, the proposed algorithm has the following features: 1. the
proposed algorithm calculates more accurate maximum posterior
marginal values, 2. similar to the approximate algorithm, its
execution time grows only linearly against the number of edges,
and 3. the proposed algorithm is slower than the approximate
algorithm, but the difference between their execution time is less
than twice.

I. INTRODUCTION

According to the recent studies in computational neuro-
science, Bayesian network [1] can be the underlying mech-
anism of the cerebral cortex. Various neuroscientific phe-
nomena are successfully reproduced with models based on
Bayesian networks. The cerebral cortex shares many aspects,
not only in functions but also in structures, with Bayesian
networks [2][3][4][5][6][7].

On the other hand, the deep learning technology has been
receiving attention because of its high performance in recog-
nition tasks that are easy for human but difficult for machines.
Systems that are based on deep learning have been breaking
records in many competitions. It is worth pointing out that the
deep learning technology is a descendant of Neocognitron [8],
which is a neural circuit model that emulates the structure of
the ventral stream in the visual cortex.

Considering the above two facts, it is expected that we
obtain more human-like machine learning algorithms by com-
bining Bayesian networks and the deep learning technology.
Such machine learning algorithms would show better per-
formance and higher functionality compared to the current
machine learning algorithms used in recognition tasks.

There are also technical reasons for which we can expect
superior man-chine learning algorithms in the combination of
Bayesian networks and the deep learning technology:

• Bayesian network is a knowledge representation
model that expresses causal relationship among mul-
tiple events, using probabilities. Under certain condi-
tions, Bayesian networks can concisely express causal
relationships between the signal source and the ob-
served data; various inferences can be performed
efficiently in these cases.

• Bayesian networks use not only bottom-up input in-
formation but also top-down context information to
perform robust inference [2]. Which means Bayesian
networks can be applied to a wider range of tasks
compared to ordinary feed-forward neural networks.

• Bayesian networks can straightforwardly represent
generative models with multiple layers. Therefore it
is easy to design a Bayesian network that reflects
prior knowledge of the target domain. It is expected
that learning performance improves by designing a
network so that its internal structure and the prior
distribution of parameters reflect the prior knowl-
edge. Prior knowledge can be obtained both from
engineering analysis of the target domain and from
neuroscientific studies, e.g. how multiple areas of the
cerebral cortex are connected, etc.

There are, however, two potential problems in using
Bayesian networks with the deep learning technology: 1)
execution time and required memory grow rapidly as the size
of the network becomes bigger, and 2) learning would converge
to a local minimum or overfitting would occur.

To overcome the first problem above (i.e. complexities),
we propose an algorithm that greatly accelerates the belief
propagation of a Bayesian network by imposing a restriction
on the conditional probability tables. We then demonstrate its
positive effect with experimental results.

Although we do not discuss the second problem (i.e. local
minimum/overfitting) in this paper, it can be mitigated by
specifying the prior distribution of parameters.

II. PROPOSED RECOGNITION ALGORITHM

The main reason of the potential problems mentioned
above is that the size of a conditional probability table in-
creases exponentially against the number of parent nodes.
We impose the following linear-sum restriction on the con-
ditional probabilities to reduce the number of parameters of
the Bayesian network:

P (x|u1, · · · , um) =
1

m

m∑
k=1

w(x, uk) (1)

where uk is the value of node X’s parent node Uk, and w is
an arbitrary function. One of the simplest form of w is

w(x, uk) = P (x|uk). (2)



BEL(x) = αλ(x)π(x)
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]

Fig. 1. Pearl’s original belief propagation algorithm. Here, α, β1 and β2 are
normalizing constants.

When the conditional probability tables are restricted as in
Equation 1, we can transform Pearl’s original belief propaga-
tion algorithm [1], which is reproduced in Fig. 1, as follows.

First, we assume that the messages from the parent nodes
are normalized as ∑

uk

πX(uk) = 1 (3)

and therefore the equation∑
u1,···,um

m∏
i=1

πX(ui) = 1 (4)

holds.

Next, we define κUk
(x) as follows:

κUk
(x)

def
=
∑
uk

w(x, uk)πX(uk) (5)

Now the equation of π(x) in Fig. 1 is transformed as
follows. (Note that 1/m is a constant.)
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With the definition of ρ(x) def
= π(x)λ(x), the equation of

πYl
(x) in Fig. 1 is transformed as follows.

πYl
(x) = β1π(x)

∏
j 6=l

λYj
(x)

= β1(π(x)
∏
j

λYj (x))/λYl
(x)
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The term
∑

u1,···,um/uk
P (x|u1, · · · , um)

∏
i 6=k πX(ui) in

the equation of λX(uk) in Fig. 1 is transformed as follows.
Here we use the same transformation technique that we use to
transform π(x).
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(mπ(x)−

∑
uk

w(x, uk)πX(uk) + w(x, uk))

=
1

m
(mπ(x)− κUk
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Then we can calculate λX(uk) as follows.

λX(uk)

= β2
∑
x

λ(x)
∑

u1,···,um/uk

P (x|u1, · · · , um)
∏
i6=k

πX(ui)

=
β2
m
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λ(x)(mπ(x)− κUk
(x) + w(x, uk))

Replacing mπ(x) with π(x) (as π(x) is rescalable), com-
bining all the results above, reassigning normalizing constants
and adding the indices t and t + 1 so that the equations are
applicable to loopy networks, we get the following algorithm,
which we call Optimized Original Belief Propagation (OOBP).
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Fig. 2. The generalized structure of the Bayesian networks used for the
evaluation. All layers contain the same number of nodes. Edges exist only
between two adjacent layers. All nodes have two states. The conditional
probability tables are randomly set before each recognition trial.
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ρt+1(x) = λt+1(x)πt+1(x)

BELt+1(x) = αρt+1(x) (6)

Note that, unlike done in [3], we do not use any approxi-
mation here.

III. EVALUATION OF THE PROPOSED ALGORITHM

A. Evaluation Method

We evaluated the algorithm proposed in this article by
comparing it with the approximate algorithm derived in [3]
and with the original loopy belief propagation. All algorithms
were implemented in Java 1 and executed on a laptop computer
with an Intel Core 2 Duo P8600 (2.4GHz) CPU.

The Bayesian networks used for the evaluation have a
layered structure as shown in Fig. 2. This structure is an
implementation of a cerebral cortex model called BESOM (Bi-
dirEctional Self-Organizing Map). [6]

We used three measured values for evaluation: correct rate,
convergence rate and mean iteration steps.

The correct rate is defined as:

correct rate =
hcor
hall

(7)

where hcor is the number of hidden nodes that converged to
the correct maximum posterior marginal (MPM) values 2 and

1The source code is available at:
https://staff.aist.go.jp/y-ichisugi/besom/download.html

2We implemented yet another algorithm to find the “correct” MPM values.
This algorithm calculates the strict MPM values based on naive full search and
requires long calculation time, which increases exponentially to the number
of nodes. This naive algorithm was used solely for strict MPM calculation
and not a target for the current evaluation.

hall is the total number of hidden nodes.

The convergence rate is defined as:

convergence rate =
tcon
tall

(8)

where tcon is the number of recognition trials in which all
hidden nodes converged within a predetermined iteration steps
(set to 50 for this article) and tall is the total number of
recognition trials.

The mean iteration steps is defined as:

mean iteration steps =
1

tcon

tcon∑
i=1

si (9)

where si is the iteration steps at which the network converged
in the i-th converged recognition trial. Recognition trials that
did not converge are excluded. This measure is meaningful
only for network configurations that achieve high convergence
rates.

B. Accuracy for Small Networks

First we show the accuracy of the proposed algorithm.
Fig. 3 and Fig. 4 plot the mean measured values of 100
recognition trials. Only networks of small sizes were used for
evaluation because calculation of strict MPM values requires
long execution time. (See footnote 2.)

The proposed algorithm gives better correct rates compared
to the previously derived algorithm that uses approximation,
thanks to its more accurate calculation. Since the correct rate
of the proposed algorithm and that of the original loopy belief
propagation are always almost the same, we can confirm that
the proposed algorithm and the original loopy belief propaga-
tion are mathematically equivalent. (Fig. 3 A and Fig. 4 D)

All the convergence rates are close to 1.0, which means
both proposed and approximate algorithms have stable be-
haviour and seldom oscillate. When the number of layers
increases, however, the convergence rate of the approximate
algorithm decreases slightly. (Fig. 3 B and Fig. 4 E)

With shallow networks, the proposed algorithm requires
slightly greater mean iteration steps than the approximate
algorithm. The difference becomes clearer as the number of
nodes increases. (Fig. 3 C)

With narrow networks, both proposed and approximate
algorithms require almost the same mean iteration steps if the
number of layers is less than or equal to 4. When the number
of layers reaches to 5, the approximate algorithm requires more
mean iteration steps compared to the proposed algorithm. The
reason for this phenomenon remains to be elucidated. (Fig. 4 F)

C. Scalability

Next, we show the scalability of the proposed algorithm.

Fig. 5 plots execution time for networks that have 3 layers.
The number of nodes in a layer varies between 100 and
900. Both algorithms show execution time that grows almost
linearly against the number of nodes in a layer. Compared
to the approximate algorithm, the proposed algorithm requires
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Fig. 3. Recognition results of shallow networks: (A) correct rates, (B)
convergence rates and (C) mean iteration steps. The number of layers is fixed
to 3. The number of nodes in a layer varies between 5 and 10. Each hidden
node is connected to randomly selected 5 child nodes allowing duplication.
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Fig. 4. Recognition results of narrow networks: (D) correct rates, (E)
convergence rates and (F) mean iteration steps. The number of nodes in a
layer is fixed to 5. The number of layers varies between 2 and 6. Each hidden
node is connected to every node in the layer below.
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Fig. 5. Execution time of the proposed and the approximate algorithms for
shallow and wide networks. The number of layers is fixed to 3. The number of
nodes in a layer varies between 100 and 900. Each hidden node is connected
to randomly selected 20 child nodes allowing duplication.
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Fig. 6. Execution time of the proposed and the approximate algorithms for
shallow networks. The number of layers and the number of nodes in a layer are
fixed to 3 and 100, respectively. Each hidden node is connected to randomly
selected n child nodes allowing duplication, where n varies between 1 and
20.

longer execution time, but the difference is suppressed less
than twice.

Fig. 6 is another graph that indicates the scalability of the
proposed algorithm. For this time, the number of layers and the
number of nodes in a layer are fixed, but the number of child
nodes varies. Again, execution time of the proposed algorithm
grows almost linearly against the number of child nodes.

D. Digit Recognition

We also performed a preliminary experiment of handwrit-
ten digit recognition using MNIST [9] to estimate applicability
of the proposed algorithm.

Fig. 7 shows the structure of the Bayesian network used
for this purpose. The network has a layered structure as the
networks used in the evaluation above, but the number of nodes
and the number of states differ with layers. The input layer

28x28 pixels

L2

L1

3x3 nodes
100 states / node

5x5 nodes
20 states / node

1 node
10 states

…

…

L0 (input)

L3 (output)

Fig. 7. The structure of the Bayesian network used for handwritten digit
recognition. The input layer consists of 28 by 28 pixels. The first hidden
layer contains 25 nodes with 20 states. The second hidden layer contains 9
nodes with 100 states.

consists of 28 by 28 pixels. The first hidden layer consists
of 5 by 5 nodes and the second 3 by 3. Each node has 20
states in the first hidden layer and 100 in the second. Each
hidden node is connected to nodes in the layer below to have
a local receptive field as in general deep learning networks.
The output layer has only one node of 10 states; each state
corresponds to a label, i.e. one of the ten digits.

We first trained the network using the online version of
the EM algorithm, giving the label to the output node. Then
we tested its performance using the proposed algorithm. The
label that had the largest posterior probability in the output
node was selected as the output.

Its recognition accuracy was about 91% without pre-
training. Although this result is not satisfactory as a practical
machine learning algorithm, we should be able to increase the
accuracy by improving the model of conditional probability
tables and tuning hyper parameters.

IV. RELATED WORK

Researchers often impose restrictions on the conditional
probability tables and/or the network structure of a Bayesian
network for the purpose of decreasing the number of parame-
ters and increasing the accuracy of recognition.

The noisy-or model [1] not only concisely represents
causal relationships among binary variables but also reduces
computational cost by optimizing the algorithm. This model
straightforwardly represents the situation in which one of the
causal events should have occurred when an event is observed.
Situations of this kind are common in the real world.

George and Hawkins’ cerebral cortex model [2] restricts
the network to tree structure to avoid explosion of memory
size and computational cost. However, tree structure looks
insufficient as a model of the cerebral cortex; the actual
cerebral cortex is definitely not of the form of tree structure.

Hosoya [4] successfully reproduces multiple phenomena
found in the visual cortex by using conditional probability
tables based on softmax. The used learning method is Markov
chain Monte Carlo (MCMC) and not the belief propagation
algorithm.



Dura-Bernal et al. [5] develop a visual perception model
using two different optimization techniques. The first one is
restricting conditional probability tables, which is similar to the
one proposed in this article. They optimize message calcula-
tion, which is also similar to our method, but their optimization
is done only partially. Their second optimization technique
is introducing approximation in messages calculation. This
second one is independent of the method proposed in this
article, therefore it should be possible to merge this second
technique with our method to accelerate calculation.

V. CONCLUSION

We first mathematically showed that the belief propagation
algorithm can be optimized by imposing a restriction on the
conditional probability tables. Then we demonstrated the effi-
ciency of the proposed algorithm with experiments. Compared
to the previously derived approximate algorithm, the proposed
algorithm has the following features:

1) The proposed algorithm calculates more accurate
maximum posterior marginal values.

2) Similar to the approximate algorithm, its execution
time grows only linearly against the number of edges.

3) The proposed algorithm is slower than the approx-
imate algorithm, but the difference between their
execution time is less than twice.

As already reported [6], our earlier version of cerebral
cortex model, which satisfies the same restriction on the
conditional probability tables as in this article, resulted in hav-
ing variables that correspond to the six-layers and columnar-
structure in the cerebral cortex and relation among variables
that corresponds to connections between areas of the cortex.
Their resemblance is remarkable and unlikely to be a mere
coincidence. Therefore we believe that Equation 1 is a fairly
reasonable restriction.

However, it is also clear that the restriction limits the ability
of the Bayesian network to which it applies. We are now
investigating its theoretical limits and trying to find a looser
restriction for better performance.
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