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Abstract. We describe a computational model of motor areas of the
cerebral cortex. The model combines Bayesian networks, competitive
learning and reinforcement learning. We found that decision-making us-
ing MPE (Most Probable Explanation) approximates the ideal decision-
making in this model, which suggests that MPE calculation is a promis-
ing model of not only sensory-cortex recognition, already addressed by
previous works, but also motor-cortex decision-making.

1 Introduction

Motor areas and prefrontal areas are important areas of the brain that are related
to motor control and decision-making. Elucidating the basic mechanism of these
areas is a necessary and important step for understanding the mechanism of the
whole brain, because these areas are connected to other important organization,
such as the sensory-cortex, the basal ganglia and the cerebellum. All cortical
areas, including the motor and prefrontal areas, may be thought to function via
the same basic mechanism, because they have essentially the same anatomical
structure, that is, a six-layered and columnar structure.

In the case of the visual cortex, some computational neuroscientists have be-
gun to understand that the basic mechanism is a Bayesian network [1]. Bayesian
networks are a technology for knowledge representation that can efficiently ex-
press the causal relationships among many random variables. Computational
models based on Bayesian networks can not only exhibit robust pattern recogni-
tion[7][15] but also elegantly explain various electrophysiological
phenomena[5][6][12][13][16][17][18], psychophysical phenomena[12] and anatom-
ical structures[7][8][9][14].

Assuming that the cerebral cortex is a kind of Bayesian network, there would
be more than one candidate for a computational model of recognition mechanism.
A promising candidate is the calculation of MPE (Most Probable Explanation)[1].
A circuit that has a layered and columnar structure like the cerebral cortex can
efficiently execute an approximate calculation of MPE[11][14]. The amount of
computation is linear with respect to the number of nodes if edges are sparse[14].

However, no previous work has addressed the relation between MPE calcu-
lation and motor-cortex decision-making.
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In this paper, with theoretical study and computer experiments, we show that
decision-making using MPE approximates the ideal decision-making if hidden
nodes in a Bayesian network execute competitive learning. This result is new
indirect evidence supporting the hypothesis that “MPE calculation is the basic
mechanism of the cerebral cortex including sensory areas and motor areas.”

2 Bayesian networks and MPE

A Bayesian network is a model of knowledge representation that expresses causal
relationships between random variables using a directed acyclic graph. Random
variables are expressed as nodes, and relationships between random variables
are expressed as edges. Each node has a table of conditional probability, which
denotes the degree to which nodes are related to the set of its parent nodes.

In a Bayesian network, an MPE is the set of values of nodes that most likely
explains given observed data. Let i be a set of values of observed random variables
and h be a set of values of hidden variables (unobserved random variables). MPE
ĥ is defined by the following equations:

ĥ = argmax
h

P (h|i) = argmax
h

P (h, i), P (h, i) =
∏

x∈h∪i

P (x|parents(x)) (1)

where parents(x) denotes the set of values of parent nodes of node X.

3 Model of motor areas using a Bayesian network

We use an algorithm of reinforcement learning that is similar to the “sarsa”[2]
algorithm. An agent learns an action-value function with trial and error. In our
model, a probabilistic model of the action-value function is represented by a
Bayesian network 1.

Figure 1 is a Bayesian network that hypothetically represents the anatomical
structure of motor areas and related organizations. This structure is expressed
by the following equation:

P (q, s, a, v) = P (s|q)P (a|q)P (v|q)P (q) (2)

Nodes S, A and V are random variables that represent a state, an action and
a value of the state-action pair, respectively. Node Q is a hidden variable that
learns about the relationships among S, A and V . The learning is achieved by a
kind of competitive learning algorithm .

We do not distinguish reward r (0 <= r <= 1) with probability 1 from
reward 1 with probability r, because both of them have the same expectation.
We model the variable V as a binary variable whose value is 0 or 1. In this case,
1 Although the essential part of the reinforcement learning algorithm in this paper is

the same as the work presented by Hosoya[10], our algorithm is based on formaliza-
tion that is more detailed.
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Fig. 1. A Bayesian network that hypothetically repre-
sents the anatomical structure of motor areas and related
organizations.
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Fig. 2. Reaching task (a
maze task with no walls).

when the state is s and the action is a, an expectation of accumulated reward is
expressed as P (V = 1|s, a).

Given the model of action value function P (q, s, a, v) and a current state s,
an action aIdeal that maximizes expectation of accumulated reward, in other
words, an action based on the ideal decision-making, is as follows:

aIdeal = argmax
a

P (V = 1|s, a) = argmax
a

∑
q P (q, s, a, V = 1)∑
q

∑
v P (q, s, a, v)

(3)

From the point of view of computation amount, naive calculation of this
value is not efficient, because it contains marginalization of the variable Q. It
is no problem if the number of hidden nodes is small; however, the calculation
becomes intractable if the number is as large as the number of macro-columns in
the premotor area. Therefore, we do not think that the brain actually performs
such a calculation.

On the other hand, assuming that “recognition by the visual cortex is an
MPE calculation[11][14],” it must be more natural to assume that “the motor
area also uses MPE calculation for decision-making.” Based on this assumption,
the action aMPE selected by MPE decision-making is defined as follows:

(qMPE , aMPE) = argmax
(q,a)

P (q, s, a, V = 1) (4)

In general, aIdeal and aMPE may be different values; however, surprisingly, we
found these two values are approximately coincident if the action-value function
is learned using competitive learning. The reason for this is explained as follows.

When competitive learning is ideally completed, each state-action pair (s, a)
will completely correspond to a value of node Q, qsa. Therefore, the following
approximations will hold:

P (s|qsa) ≈ 1, P (a|qsa) ≈ 1, P (V = 1|qsa) ≈ P (V = 1|s, a) (5)

In addition, assuming that the value of P (q) is not dependent on q, the following
approximation will hold:

aMPE (6)



≈ argmax
a

P (qsa, s, a, V = 1) = argmax
a

P (s|qsa)P (a|qsa)P (V = 1|qsa)P (qsa)

≈ argmax
a

P (V = 1|qsa) ≈ argmax
a

P (V = 1|s, a) = aIdeal

The validity of this theoretical study is confirmed by computer experiments
described in the next section.

4 Computer Experiments

4.1 The task

To evaluate the performance of the proposed model as a reinforcement-learning
algorithm, we use a reaching task (Fig.2). An agent walks into a two-dimensional
discrete space that has 4x4 positions. The agent starts from the start point at
the lower left corner and goes toward the goal point at the upper right corner. It
moves in one of eight directions by steps. If it reaches the goal, it gets a reward
of 1. Otherwise, at each step, it gets a minus reward worth a small value. We set
the reward discount factor γ=1.

The moving direction of the agent is not deterministic because of action noise.
The agent can move in its desired direction with only probability 0.8. With
probability 0.1, it moves in the direction rotated 45 degrees to the left. With
probability 0.1, the direction is rotated 45 degrees to the right. This stochastic
action noise has a role of exploration of the optimal path.

Before the reinforcement learning phase, we introduced a pre-training phase,
because the agent has a very small chance of reaching the goal if it starts learning
from a randomly initialized action-value function. In that phase, the agent first
goes toward the lower right corner and then toward the goal at the upper right
corner. The agent repeats the moving sequence 1000 times and learns it.

4.2 The algorithm

The model of the action-value function is represented with some parameters as
follows:

P (q, s, a, v) = P (s|q)P (a|q)P (v|q)P (q) (7)
P (s|q) = wqs, P (a|q) = wqa, P (V = 1|q) = wqv, P (q) = constant

Let sQ, sS and sA be the number of states of nodes Q, S and A, respectively.
The number of parameters wqs, wqa and wqv are sQsS , sQsA and sQ, respectively.
(We do not count P (V = 0|q) = 1 − wqv as parameters.)

At each step in each episode, the current state s∗ is given. Then, action a∗

is determined based on the current action-value function as follows:

a0 = decision(s∗), a∗ = noise(a0) (8)

where noise(a0) is an action actually performed, determined by a desired action
a0 and action noise.



In the case of ideal decision-making, the decision-making function decision(s)
is defined as follows:

decisionIdeal(s) = aIdeal = argmax
a

P (V = 1|s, a) (9)

In the case of MPE decision-making, it is defined as follows:

decisionMPE(s) = aMPE (10)
where (qMPE , aMPE) = argmax

(q,a)

P (q, s, a, V = 1)

After performing the action a∗ and obtaining a reward r, the parameters of
the action-value function are updated as follows. First, a value q∗, which is the
winner of a competition at node Q, is determined as follows:

q∗ = argmax
q

∑
v

P (q, s∗, a∗, v)A(q) (11)

where A(q) is as described below.
Then, the parameters related to q∗ are updated as follows:

wq∗s ← wq∗s + α(δss∗ − wq∗s) (12)
wq∗a ← wq∗a + α(δaa∗ − wq∗a)
wq∗v ← wq∗v + α(r + wq′v − wq∗v)

where α is the learning rate, q′ is q∗ at the next step, Kronecker delta δxx = 1
and δxy = 0 (x ̸= y) .

The win-rate penalty A(q) is introduced to avoid the undesirable situation in
which some values never become the winner. A(q) is defined as follows:

A(q) = (rq)−C (13)

where C is a coefficient to control the strength of the effect of the win-rate
penalty. The win-rate rq of a value q is updated as follows:

rq ← rq + α(δqq∗ − rq) (14)

We set the parameters as follows: sQ = 64, sS = 4 × 4, sA = 8, α = 0.001
and C = 0.2 .

4.3 Evaluation methods

To evaluate the performance of reinforcement learning quantitatively, we plot
graphs of transition of the mean steps elapsed between the start and the goal.

To evaluate the validity of MPE decision-making, we plot the relation be-
tween the number of occurrence of a state-action pair (s, a) and the value v1/v2,
defined as follows:

v1 = P (V = 1|s, a) (15)
v2 = P (q∗, s, a, V = 1) where q∗ = argmax

q
P (q, s, a, V = 1)
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Fig. 3. Examples of the transition of the mean num-
ber of steps in the case of ideal decision-making (left)
and MPE decision-making (right). The horizontal
axis denotes the number of learned episodes.

occurrences

Fig. 4. A scatterplot of v1/v2

in the case of MPE decision-
making. The horizontal axis de-
notes the number of occurrences
of state-action pairs.

The number of points in the scatterplot is the number of all combinations of
s and a, (4×4)×8 = 128. The values v1 and v2 are the scores to determine ideal
and MPE decision-making, respectively. Therefore, if the value v1/v2 is close to
1, MPE decision-making will be close to ideal decision-making.

4.4 Results

Figure 3 (left) is an example of the transition of the mean number of steps in the
case of ideal decision-making. The mean number of steps quickly approach the
optimal value, which is about 3 steps. This means that the proposed reinforce-
ment learning algorithm combined with a Bayesian network and competitive
learning works correctly. In the case of ideal decision-making, the performance
is stable even if the value of sQ (the number of states of the hidden node Q)
and/or C (the strength of the win-rate penalty) are/is changed.

Figure 3 (right) is the mean number of steps in the case of MPE decision-
making. The mean number of steps gradually become a small value. This means
reinforcement learning using MPE also works correctly.

Figure 4 shows a scatterplot of v1/v2 in the case of MPE decision-making,
after 30,000 episodes are learned. We see that v1/v2 is close to 1 if a correspond-
ing (s, a) occurs a large number of times. This means MPE approximates ideal
decision-making in many cases. On the other hand, if (s, a) occurs infrequently,
v1/v2 is far from 1. We can expect that some treatment for these situations will
improve the performance of MPE decision-making in the future.

5 An interpretation of the cortico-basal ganglia loop

Assuming that the cortico-basal ganglia loop executes the algorithm described in
this paper, the meaning of the output of each organization can be interpreted as
portrayed in Fig.5. We assume that MPE is calculated only by using the circuit
within the cerebral cortex[11][14].
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Fig. 5. A hypothetical interpretation of the cortico-basal ganglia loop based on the
model presented in this study. Indirect paths in the basal ganglia are omitted, as in
a previous work[4]. SNc: Substantia nigra pars compacta, SNr: Substantia nigra pars
reticulata, GPi: Internal segment of globus pallidus.

The cerebral cortex sends q∗ to the striatum: active columns send 1, and
inactive columns send 0. The striatum learns the value wq∗v using q∗ sent from
the cerebral cortex and TD-error sent from SNc. The striatum sends the current
value of wq∗v to the cerebral cortex via SNr/GPi and the thalamus. Active
columns in the cerebral cortex copy the value wq∗v sent from the thalamus.
The copied value is used for MPE calculation at the next step of reinforcement
learning.

6 Conclusion and future work

With theoretical study and computer experiments, we have shown that decision-
making using MPE can approximate ideal decision-making. The main contribu-
tions of this paper to computational neuroscience are summarized as follows:

1. We proposed a model of motor areas based on a Bayesian network with more
detailed formalization than the previous study[10].

2. We showed indirect evidence that MPE calculation is a unified model of both
sensory-cortex recognition and motor-cortex decision-making.

3. We provided a new interpretation of the cortico-basal ganglia loop.

In the future, we will extend this model to a multiple-hidden node and
multiple-layered model that is more close to the actual brain and that can re-
alize more complex behavior of motor-areas and high-level decision-making of
prefrontal areas. We also aim to show the practical usefulness of efficient MPE
decision-making in some nontrivial application.
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