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Abstract—The author is trying to achieve a breakthrough in
the elucidation of information processing of the cerebral cortex, in
order to realize highly intelligent robots like human beings. The
author designed a computational model of the cerebral cortex,
called BESOM model. The neural network that executes the
derived algorithm of the model is very similar to six-layer and
column structures that represent the anatomical characteristics
of a cerebral cortex.

I. INTRODUCTION

In light of recent findings related to neuroscience and ma-
chine learning, the author is engaged in elucidating the brain’s
information processing principles, with a view to realizing
robots as highly intelligent as human beings.

The author designed a neural network model of the cerebral
cortex, called the BESOM (BidirEctional SOM) model[5][6].
The BESOM model is a combination of four machine learning
technologies, the self-organizing map (SOM)[1], Bayesian
network[2], independent component analysis (ICA)[3], and
reinforcement learning[4], and has appropriate computational
characteristics as a model for reproducing brain functions. Sur-
prisingly, the neural network that executes the algorithm de-
rived theoretically accords extremely well with main anatom-
ical characteristics of the cerebral cortex [5]. Therefore, it is
almost certain that this is an appropriate model for explaining
the information processing principles of the cerebral cortex.
Using this model, concrete methods will be developed for
reproducing the main functions of the cerebral cortex, such
as concept acquisition, pattern recognition, action acquisition,
thought and language comprehension.

Although the neural network model is not yet complete
and is not able to perform computer simulations, the author
believes that it is an extremely promising model.

The outline of the BESOM model is explained in the
following section. Furthermore, brain’s various functions, such
as pattern recognition, inference, action acquisition, sequence
learning, action planning, and language comprehension, are
discussed with respect to the BESOM model.

II. ELEMENTS OF THE BESOM MODEL

From the overall macro-scale structure of the brain to
the micro-scale structures of individual neuron functions, the
BESOM model is widely related to the brain.

At present, the BESOM model comprises two mechanisms,
the BESOM net and the reinforcement learning mechanism.
The BESOM net is structured as shown in Fig. 1.

The BESOM net has hierarchical structure of bases.

A basis is composed of nodes that represent random vari-
ables. The variables represented by the nodes within one
basis become mutually independent as a result of independent
component analysis.

Nodes contained in bases at the different levels of hierarchy
are connected by edges. Thus, the nodes form a directed
acyclic graph. This network of nodes acts as a Bayesian
network.

The nodes are composed of multiple units. The nodes
are random variables, while the units correspond to possible
random-variable values. At the same time, each node acts as
a competitive layer of a SOM, which compresses the input
from its child nodes. Meanings of the values of each random
variable are acquired by the SOM.

The algorithm to operate the BESOM net is currently
expressed using about 10 types of variables (Chapter IV).
The repetitive algorithm can be realized by a neural network
(Chapter V).

The hierarchical structure of the bases, the number of nodes
within the bases, and the number of units within the nodes are
not changed by learning, while only the weights of connections
between units change.

Table I shows the correspondence between the elements that
comprise the cerebral cortex and the structural elements of the
BESOM model.

III. BASIC BEHAVIOR OF BESOM NET

BESOM uses SOM and ICA to self-organize a model of the
external world, and expresses it using a Bayesian network.
Using this Bayesian network, BESOM carries out a variety
of information processing, which includes recognition, motor
control, logical inference and probabilistic inference about the
external world.

A node of a BESOM net behaves as follows. During
learning steps, each node acts as a SOM competitive layer,
as shown in the left of Fig. 2: the input from its child nodes
are compressed and learned. The learning result becomes a
conditional probability table of a Bayesian network. A variety



Elements of the Brain | Size in Human Number in Human Elements of the BESOM Model
Cerebral Cortex Approx. 200,000mm? BESOM Net

Area Hierarchy - Approx. 10 Basis Hierarchy

Area Approx. 40,000mm? Approx. 50 Basis

Hypercolumn Approx. Ilmm? Approx. 200,000 Node

Column Approx. 0.0lmm? Approx. 2 x 107 Unit

Neuron - Approx. 1.4 x 10™0 | Variables of the algorithm
Synapse - Approx. 1013 Weight of Connection

TABLE I
CORRESPONDENCE BETWEEN ELEMENTS COMPRISING THE CEREBRAL CORTEX AND THE BESOM MODEL.

Fig. 1. Elements comprising the BESOM net. The rectangles denote bases,
the circles inside the bases denote nodes, and the white circles inside the
nodes denote units.

of information processing is possible using this table. For
example, recall of memories is carried out in the following
manner. As is shown in the left of Fig. 2, assume that node
R has finished learning about the relationship between the
outputs of the two child nodes A and B. At this point, if the
bottom-up input to B is blocked, as shown in the right of Fig.
2, the unit output of R is determined only by the top-down
signal from A, and the unit output of B is determined only
by the top-down signal from R. In other words, the memories
that have been evoked from the pattern expressed by node A
are recalled in node B.

According to the BESOM model, each area of the cere-
bral cortex is an enormous table that has been ingeniously
compressed using the hierarchical SOM and the hierarchical
ICA. The table is the simplest and the most general purpose
data structure; it would be appropriate if the brain has selected
the data structure. A table can express a variety of information
depending on its uses. For instance, there are conditional prob-
ability tables for the Bayesian networks, relational database
tables for remembering and searching knowledge, state-action
pair tables for reinforcement learning, function tables for
approximating non-linear functions, state transition tables for
handling sequential information, etc.

input Input

Fig. 2. Learning and recall according to BESOM. Each node compresses
and learns inputs from its child nodes (left). When the values of a subset of
child nodes are given as observed values, it is possible to recall the associated
values of the other child nodes (right).
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Fig. 3. The approximate Belief Propagation Algorithm[5].
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Fig. 4. The approximate belief propagation algorithm corresponds well with
the connection rules between the six-layered structures of two areas in the
cerebral cortex.

IV. APPROXIMATE BELIEF PROPAGATION ALGORITHM

The BESOM model uses an algorithm, approximate belief
propagation algorithm [5] (Fig. 3) that is approximated with
some assumptions. 7' indicates a transposed matrix, and ¢
and ¢ + 1 indicate time. Using the other variable values in
t, the values in ¢ + 1 are calculated. A subscript X denotes a
node name. For example, the variable bx exists in each node.
Furthermore, the subscripts XY and UX are used to indicate
the edge between two nodes. For example, the variable I xy
and the matrix Wy exist along each edge.

Assume that the number of units is s for all nodes. Wxy is
a matrix of size s x s indicating connection weights between
units of node X and its child node Y. Zx is a scalar value,
while the other variables lxy, ox, kux, px, "x, 2x and
bx are column vectors of length s.

The i-th elements of variables Ixy, ox, kux, Px, rx and
bx concern with a unit z; of a node X. An element w;; of
Wxy is a conditional probability P(Y = y;|X = z;).

The initial value of each variable is arbitrary. The value of
each variable is repeatedly updated until the value reaches a
certain degree of convergence. The value of Wxy does not
change during execution of the approximate belief propagation
algorithm.

The variable ox means observation that mainly use bottom-
up information, while py means predictions using top-down
information; rx is the product of these two values, and the
normalized value by (abbreviation of ‘belief’) means the
posterior probabilities of the values of the node X.

V. CORRESPONDENCE WITH NEUROSCIENCE FINDINGS
A. Anatomical Features of the Cerebral Cortex

The cerebral cortex has a six-layer structure. There is a bi-
directional connection between the areas of the cerebral cortex,
and it is known that there is regularity in the make-up of this
connection [7]. Bottom-up connections, which proceed from
lower areas near the sensory input to higher areas near the

frontal lobe and the hippocampus, connect mainly from layer
3 to layer 4. There are also instances in which connections
connect from layer 5 to layer 4. Top-down connections, which
proceed from the higher areas to the lower areas, connect
mainly from layers 5 and 6 to layer 1. (There are also a few
connections from layer 3 to layer 1.)

Furthermore, from the distribution of the dendrites and
axons of the dominant neurons within the cerebral cortex, it
can be said that information input at layer 4 within a column
passes through layers 2 and 3 before being outputted to other
areas from layer 5 [8]. Information of Layer 5 is then inputted
into layer 4 after passing through layer 6.

When we consider these two findings together, we see that
layer 3 information, which is the intermediate result of intra-
column information processing, is sent to the upper areas,
while the layer 5 information, which is the final result, is
returned to the lower areas, making an exceedingly strange
structure. The functional meaning of this structure is unknown.

B. Correspondence between the Six-layer Structure and the
Approximate Algorithms

Out of the seven variables that appear in the approximate
belief propagation algorithm, we apply the five variables that
pertain to inter-nodal signals to the inter-area connection rules.
The results are as shown in Fig. 4. kyx, which computes the
inner product, is considered as being at layer 2, and not layer
1, which contains almost no neurons. And while Zx may also
appear in layer 3, it is taken as being at layers 5 and 6, due
to the depth of its correlation with bx.

As shown in the figure, the approximate algorithm exhibits a
straightforward correspondence with the inter-area connection
rules, which cannot be considered to be coincidental.

In addition, based upon the various neuroscientific findings
related to the six-layer structure, Fig. 5 shows a representation
of the approximate belief propagation algorithm in a neural
network. The previously-discussed progression of information
in the order of layer 4, layers 2 and 3, layer 5 corresponds
to the progression of information in the order of variables
lxy.,ox.,rx,bx (Please refer to Section VI-D concerning the
flow of information from layer 5 to layer 6 to layer 4.)

In the neural network shown in Fig. 5, the following
consistencies with anatomical findings can be seen. (1) Within
the columns, almost all information processing is carried out
only in the vertical direction. (2) Many horizontal fibers are
visible in layers 1, 4, and 5. (3) There are many small neurons
in layers 2 and 4.

VI. REALIZATION OF CEREBRAL CORTEX FUNCTIONS
USING BESOM MODEL

In this section, we discuss the outline by which the BESOM
network obtains the structure discussed in the previous section,
which may prove useful in realizing the cerebral cortex func-
tions.
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Neural network that executes the approximate belief propagation algorithm. The variable positions and interconnections accord at several points with

anatomical findings related to the six-layered structure, providing extremely strong evidence in support of the BESOM model being the appropriate model of

the cerebral cortex.

A. Pattern Recognition

Pattern recognition may be possible using the BESOM
model.

When sensory stimuli are provided by the lowest terminal
nodes, information is hierarchically compressed by the hier-
archical SOM function, and information having a degree of
abstraction as high as that found in the higher area is ex-
pressed. When perceiving something, the posterior probability
of a letter or an object before your eyes is calculated by Bayes’
theorem and the Bayesian network function based upon the
sensory stimuli provided by the lowest terminal nodes. The
perception result is the letter or the object having the highest
posterior probability.

It is known that when human beings perceive an object, the
perception result changes depending upon the context. Because
in the Bayesian network contextual information is conveyed
from parent node to child node, it becomes possible to explain
this property of the brain.

While pattern recognition according to BESOM qualita-
tively follows the Neocognitron, which is a neural network

model related to the visual areas, and the expanded SAM [9]
structure, which adds top-down signals to the Neocognitron,
it differs from them in its possession of Bayes’ theorem as a
theoretical background.

B. Inference

SOM resembles a relational database that possesses an
assembly of multiple attribute values, and using this, it is
possible to make a variety of inferences. For example, as
is shown in Fig. 6, let us say that there is node R, which
learns an assembly of four animal attributes, such as name,
color, shape, and size. When we speculate, “What color is a
rabbit?”, first of all the phoneme “rabbit” is recalled to the
name node, simultaneously with which we have only to block
the bottom-up input to the color, shape, and size nodes by
means of the selective attention function. According to the
Bayesian network function, an image of the color of a rabbit is
recalled to the color node through the information remembered
in node R.

If we wish to speculate, “What is the name of an animal
that is the same color as a rabbit?”, we maintain our image of
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Fig. 6. Example of a BESOM relational database.

the color as it is, and then may use any method to control the
flow of information such that it is recalled in the name node
via R.

In this way, by appropriately controlling the two-way flow
of information between two layers, it is possible to realize
a human-like inference which combines the characteristics
of both symbol processing and pattern processing. This has
already been shown in the PATON [10] neural network model.
It is believed that if we add an appropriate information-flow
control function according to selective attention, then it will be
possible for BESOM to exhibit the same abilities as PATON.

C. Action Acquisition at the Motor Area

It is possible to combine BESOM with reinforcement learn-
ing (Fig. 7).

The nodes at the motor area may learn state-action pairs
during reinforcement learning. In other words, the motor area
SOM compresses and learns the current state and the action
currently being performed. At the same time, another learning
takes place for the values of state-action pairs using the basal
ganglia. When selecting an action, the state-action pair with
the highest value is chosen based upon the perception results
of the current situation, after which it is necessary only to
‘recall’ the corresponding action.

This is an expansion of the Doya’s model [11] (which is
related to reinforcement learning in the closed loop between
the cerebral cortex and the ganglia), wherein a cerebral cortex
role has been added to the Doya’s model, which is neurosci-
entifically plausible.

In actuality, the motor area periphery possesses an even
more complex and distinctive structure than is indicated in
Fig. 7, but it is still possible to understand it qualitatively
using the BESOM model[6].

D. Sequence Learning

If special child nodes, which possess each node’s past recog-
nition results as values, are added to the BESOM network,
sequence learning will become possible, similar to the Elman
network[12].

Anatomically, as was discussed in Section V-A, the structure
is known in which the information on information processing
results output from layer 5 passes through layer 6 and then

Basal Ganglia

Fig. 7. Reinforcement learning using the BESOM net. The motor area learns
the state-action pairs. At the same time, the values of the state-action pairs
are also learned at the basal ganglia. Selection of an action which has the
highest value in a given situation, take place at a closed loop between the
cerebral cortex and the basal ganglia.

recursively returns to the input-receiving layer 4; the author
conjectures that this structure may perhaps be for the purpose
of sequence learning.

E. Action Planning at the Prefrontal Cortex

When a certain action a is performed while the external
world is in a certain state s, the world around will then change
to a new state s’, which human beings are able to predict based
upon past experiences. SOM is able to learn this three values,
(s,s’,a). It is possible to realize this state-change prediction
mechanism by carrying out a slight expansion of BESOM[6].

Using this mechanism, a variety of action sequences may
be simulated within the mind, and that ‘action planning’
becomes possible, whereby appropriate actions are singled out
for execution. Action planning is one of the important function
of the prefrontal cortex.

Furthermore, this mechanism may also be useful in mak-
ing estimations of invisible states in the partially-observable
Markov decision process.

F. Language Comprehension

The cerebral cortex may compress and learn words
(phoneme sequences) and information expressed in other
areas. It may explain how word’s meanings are learned. If
learning progresses, it becomes possible to recall from the
word the firing patterns in the several areas of the cerebral
cortex. This is recall of the word’s meanings. For example, if
a little child hears the words, “If you touch the heater it’s very
hot,” then within the child’s mind are recalled the action of
touching a heater, and the unpleasant sensation of heat. It is
likely that this recall is almost exactly the same as the firing
pattern that would occur in the cerebral cortex if the child were
actually to touch the heater and feel heat. If the word-induced
firing pattern recall is successful, it is furthermore possible for
another SOM to learn the relationship between the action of
touching the heater, and the sensation of heat. This can be for
no other reason than that the knowledge that “the heater is
hot” has been communicated by using words. The child will
probably henceforth avoid the heater.



VII. CONCLUSION

Using the BESOM model, we have started clarifying the
information processing in the brain.

Because it may be possible to efficiently realize this neural
network model using a computer, this neural network model
is also promising in the area of engineering applications. The
author is currently involved in detailing the model for use in
computer simulations. Using this model, it will be possible to
progressively realize robots that possess the same intelligence
as human beings do.

We hope that, by many researchers coming to an under-
standing of this paper, and by then applying their efforts
towards resolving the problems that remain to be solved.
The implementation of the brain’s information processing
principles might be realized in the not too distant future.
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