The cerebral cortex model that self-organizes conditional probability tables and executes belief propagation IJCNN 2007 #1065

National Institute of Advanced Industrial Science and Technology(AIST), Japan Yuuji Ichisugi 2007-08-09

Outline

- A model of cerebral cortex, BESOM model, is explained.
- BESOM unifies self-organizing map and Bayesian network.
- This model matches main anatomical structure of cerebral cortex very well.

BESOM architecture

Self-organizing map (SOM)

- Unsupervised learning algorithm.
- Competitive learning and neighborhood learning.
- Clustering high-dimensional input.

Bayesian network

- A graphical model that represents a directed acyclic graph of causal relations between random variables.
- Belief propagation algorithm to estimate each value of node.

BESOM (BidirEctional SOM)

- Each node is a competitive layer of a SOM.
- Each unit represents a value of the random variable.

BESOM may be used for pattern recognition Similar structure to Neocognitoron Recognized [Fukushima 1980] Lowest nodes pattern represents observed values.

Learning step and Recognition step

- BESOM repeats two steps alternately.
 - Learning step
 - Each node works as a SOM's competitive layer.
 - Clustering input from its child nodes.
 - Learning results are conditional probabilities, used at the next recognition step.
 - Recognition step
 - Network of nodes works as a Bayesian network.
 - Values of nodes are estimated by approx. loopy BP.
 - Results of estimation are used as input to SOMs at the next learning step.

Learning step

Example of input vector to a SOM

Units corresponding to the maximum a posteriori (MAP) estimates send 1, others send 0.

Each red unit is a MAP estimate.

Learning rule

- Make winner's reference vector w_{ij} close to input vector.
 - with appropriate neighborhood learning.

$$w_{ij} \leftarrow (1-\alpha)w_{ij} + \alpha v_j$$

 Learned weight w_{ij} means a conditional probability:

$$w_{ij} = P(Y = y_j \mid X = x_i)$$

 $v = (0, 0, 1, 0, 0)^{T}$

Recognition step

Belief propagation algorithm [Pearl 1988]

$$BEL(x) = \alpha \lambda(x) \pi(x)$$

$$\pi(x) = \sum_{u_1, \dots, u_m} P(x | u_1, \dots, u_m) \prod_k \pi_X(u_k)$$

$$\lambda(x) = \prod_l \lambda_{Y_l}(x)$$

$$\pi_{Y_l}(x) = \pi(x) \prod_{j \neq l} \lambda_{Y_j}(x)$$

$$\lambda_X(u_k) = \sum_x \lambda(x) \sum_{u_1, \dots, u_m/u_k} P(x | u_1, \dots, u_m) \prod_{i \neq k} \pi_X(u_i)$$

It's hard to be implemented by neurons.

In order to approximate

 Assumption 1: CPTs (conditional probability tables) can be approximated as follows:

$$P(X | U_1, \cdots, U_m) \approx \sum_{i=1}^m P(X | U_i)$$

- Reason: Smoothing, Sparseness, Infomax, ...
 Accurate analysis is future work.
- Assumption 2: Nodes have many parent and child nodes.

Approximate belief propagation

$$\lambda_{Y_{l}}^{t+1}(x) = Z_{Y_{l}}^{t} + \sum_{y_{l}} \lambda^{t}(y_{l})P(y_{l} | x)$$

$$\lambda^{t+1}(x) = \prod_{l=1}^{n} \lambda_{Y_{l}}^{t}(x)$$

$$\kappa_{U_{k}}^{t+1}(x) = \sum_{u_{k}} P(x | u_{k})BEL^{t}(u_{k})$$

$$\pi^{t+1}(x) = \sum_{k=1}^{m} \kappa_{U_{k}}^{t+1}(x)$$

$$\rho^{t+1}(x) = \lambda^{t+1}(x)\pi^{t+1}(x)$$

$$Z_{X}^{t+1} = \sum_{x} \rho^{t+1}(x)$$

$$BEL^{t+1}(x) = \rho^{t+1}(x)/Z_{X}^{t+1}$$
Easy to be imply neurons.

plemented

Space and Time complexity

- With assumption of sparseness of input vectors of each SOM and sparseness of edges, each node requires
 - -O(s) space for the CPT,
 - O(log s) time for parallel execution of one step of approx. BP, where s is a number of units in each node.
- This means the system is **scalable**.

 It is a necessary condition for brain models, the large-scale information processor. The correspondence of the approx. algorithm to the anatomical structure

Six-layer structure of cerebral cortex

K. Brodmann, Vergleichende Lokalisation der Grosshirnrinde. in: ihren Prinzipien dargestellt auf Grund des Zellenbaues,. J.A. Barth, Leipzig, 1909.

This figure is taken from the following Web page. http://web.sc.itc.keio.ac.jp/anatomy/brodal/chapter12.html

Connection rule [Pandya and Yeterian 1985]

- Bottom up connections from layer 3 to 4.
 Some connections from layer 5 to 4.
- Top down connections from layer 5/6 to 1.
 (A few connections from layer 3 to 1.)

Higher areas

Lower areas

Information flow in cortex [Gilbert 1983]

 Lower areas - 4 - 2/3 - 5 - Subcortical structures (And flow for recurrent input, 5 - 6 - 4.)

Very strange structure

- Intermediate results, in layer 3, are sent to the higher areas.
- Final results, in layer 5, are sent back to the lower areas.

Assigning Variables of approx. BP

 Surprisingly, all five communication variables can be successfully assigned to these layers.

Detailed structure in columns

The left circuit calculates values of two units, x1 and x2, in node X in the above network.

The structure matches anatomical structure

Horizontal fibers in layer 1 and 4

Vib

Small cells in layer 2 and 4

How the network structure is learned ? - My speculation -

Generative model can be acquired by ICA

• In other words, ICA may acquire twolayered Bayesian network structure.

Hierarchical generative model

• Hierarchical ICA may acquire multi-layered Bayesian network structure.

How ICA corresponds to the anatomical structure ?

• Network of visual areas.

Daniel J. Felleman and David C. Van Essen Distributed Hierarchical Processing in the Primate Cerebral Cortex Cerebral Cortex 1991 1: 1-47

Corresponding to the anatomical structure

- Position, motion and shape are independent.
- Horizontal connections may be for ICA.

How about motor areas ?

Reinforcement learning in motor areas

 Nodes acquire state-action pairs. State values are learned by synapses connect to basal ganglia.

- Matches the anatomical structure: corticobasal ganglia loop.
 - This interpretation is an extension of Doya's model:
 K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control, Current Opinion in Neurobiology 10 (6): 732-739 Dec 2000.

Network of motor areas

- Each motor area certainly has child nodes representing state and action.
 - (M1's action node is spinal cord.)

Daniel J. Felleman and David C. Van Essen Distributed Hierarchical Processing in the Primate Cerebral Cortex 1991 1: 1-47

Future work

- Sophistication and computer simulation of this model.
 - Need slight modification of approximate BP.
 - Determine concrete algorithms of SOM and ICA.
- Some other important mechanisms.
 - Selective attention mechanisms in order to avoid the curse of dimensionality.
 - Novelty detection, that may be an online cross-validation mechanism in order to maximize generalization ability.

Summary of BESOM model

- Each hyper column in cortex is a node (a random variable) of a Bayesian network.
 - Learning step:
 - Each CPT is self-organized by a SOM.
 - Network structure is self-organized by ICA.
 - Recognition step:
 - State estimation is done by approximate loopy BP algorithm.
- The approx. BP algorithm matches main anatomical structure of cortex.

– Hopefully, explains main function of cortex.

Supplemental Slides

Other neuroscience knowledge consistent with BESOM model

- Most information processing is done within the column.
- Output of simple cells in layer 4 are linear sum of input from LGN. Complex cells are nonlinear.
- Neurons in a column represent similar information, independent of their depth.
 - because observation and prediction matches after the learning converged.

Information from message receiver

• In BP algorithm, messages exclude them.

• If there are many parents and children, these information may be included.

Example: $\pi_{YI}(x)$ approximation

• An message $\pi_{Y|}(x)$ from node X to node $Y_{|}$ may include information $\lambda_{Y|}(x)$ from $Y_{|}$.

$$\pi_{Y_l}(x)$$

= $\pi(x) \prod_{j \neq l} \lambda_{Y_j}(x)$
 $\approx \pi(x) \prod_j \lambda_{Y_j}(x)$
= $\lambda(x) \pi(x)$

A possible ICA mechanism

 Two random variables may become independent if connected with anti-Hebb synapses.

cf. Naoki Oshiro, Koji Kurata, Tetsuhiko Yamamoto, "A self-organizing model of place cells with grid-structured receptive fields", Artificial Life and Robotics, Vol.11, No.1, pp.48--51, 2007