## The cerebral cortex model that

 self-organizes conditional probability tables and executes belief propagation IJCNN 2007 \#1065National Institute of Advanced Industrial Science and Technology(AIST), Japan<br>Yuuji Ichisugi 2007-08-09

## Outline

- A model of cerebral cortex, BESOM model, is explained.
- BESOM unifies self-organizing map and Bayesian network.
- This model matches main anatomical structure of cerebral cortex very well.


## BESOM architecture

## Self-organizing map (SOM)

- Unsupervised learning algorithm.
- Competitive learning and neighborhood learning.
- Clustering high-dimensional input.

Competitive layer

Input layer


## Bayesian network

- A graphical model that represents a directed acyclic graph of causal relations between random variables.
- Belief propagation algorithm to estimate each value of node.

Node = random variable


## BESOM (BidirEctional SOM)

- Each node is a competitive layer of a SOM.
- Each unit represents a value of the random variable.



## BESOM may be used for pattern recognition

- Similar structure to Neocognitoron [Fukushima 1980]
- Lowest nodes represents observed values.



## Learning step and Recognition step

- BESOM repeats two steps alternately.
- Learning step
- Each node works as a SOM's competitive layer.
- Clustering input from its child nodes.
- Learning results are conditional probabilities, used at the next recognition step.
- Recognition step
- Network of nodes works as a Bayesian network.
- Values of nodes are estimated by approx. loopy BP.
- Results of estimation are used as input to SOMs at the next learning step.


## Learning step

## Example of input vector to a SOM

- Units corresponding to the maximum a posteriori (MAP) estimates send 1, others send 0.


Each red unit is a MAP estimate.

## Learning rule

- Make winner's reference vector $\mathrm{w}_{\mathrm{ij}}$ close to input vector. - with appropriate neighborhood learning.

$$
w_{i j} \leftarrow(1-\alpha) w_{i j}+\alpha v_{j}
$$

- Learned weight $\mathrm{w}_{\mathrm{ij}}$ means a conditional probability:
$v=(0,0,1,0,0)^{\top}$

$$
w_{i j}=P\left(Y=y_{j} \mid X=x_{i}\right)
$$

## Recognition step

## Belief propagation algorithm [Pearl 1988]

$$
\begin{aligned}
& B E L(x)=\alpha \lambda(x) \pi(x) \\
& \pi(x)=\sum_{u_{1}, \cdots, u_{m}} P\left(x \mid u_{1}, \cdots, u_{m}\right) \prod_{k} \pi_{x}\left(u_{k}\right) \\
& \lambda(x)=\prod_{l} \lambda_{Y_{l}}(x) \\
& \pi_{Y_{l}}(x)=\pi(x) \prod_{j \neq l} \lambda_{Y_{j}}(x) \\
& \lambda_{X}\left(u_{k}\right)=\sum_{x} \lambda(x) \sum_{u_{1}, \cdots, u_{m} u_{k}} P\left(x \mid u_{1}, \cdots, u_{m}\right) \prod_{i \neq k} \pi_{X}\left(u_{i}\right)
\end{aligned}
$$

It's hard to be implemented by neurons.

## In order to approximate

- Assumption 1: CPTs (conditional probability tables) can be approximated as follows:

$$
P\left(X \mid U_{1}, \cdots, U_{m}\right) \approx \sum_{i=1}^{m} P\left(X \mid U_{i}\right)
$$

- Reason: Smoothing, Sparseness, Infomax, ... Accurate analysis is future work.
- Assumption 2: Nodes have many parent and child nodes.


## Approximate belief propagation

$$
\lambda^{t+1}(x)=\prod_{l=1}^{n} \lambda_{Y_{l}}^{t}(x)
$$

$$
\kappa_{U_{k}}^{t+1}(x)=\sum_{u_{k}} P\left(x \mid u_{k}\right) B E L^{t}\left(u_{k}\right)
$$

$$
\pi^{t+1}(x)=\sum_{k=1}^{m} \kappa_{U_{k}}^{t+1}(x)
$$

$$
Z_{X}^{t+1}=\sum_{x} \rho^{t+1}(x)
$$

$B E L^{t+1}(x)=\rho^{t+1}(x) / Z_{X}^{t+1}$


$$
\rho^{t+1}(x)=\lambda^{t+1}(x) \pi^{t+1}(x)
$$

Easy to be implemented by neurons.

## Space and Time complexity

- With assumption of sparseness of input vectors of each SOM and sparseness of edges, each node requires
- O(s) space for the CPT,
- O(log s) time for parallel execution of one step of approx. BP, where $\boldsymbol{s}$ is a number of units in each node.
- This means the system is scalable.
- It is a necessary condition for brain models, the large-scale information processor.

The correspondence of the approx. algorithm to the anatomical structure

# Six-layer structure of cerebral cortex 


K. Brodmann, Vergleichende Lokalisation der Grosshirnrinde. in: ihren Prinzipien dargestellt auf Grund des Zellenbaues,. J.A. Barth, Leipzig, 1909.

## Connection rule [Pandya and Yeterian 1985]

- Bottom up connections from layer 3 to 4.
- Some connections from layer 5 to 4.
- Top down connections from layer 5/6 to 1 .
- (A few connections from layer 3 to 1.)


Higher areas
Lower areas

## Information flow in cortex [Gilbert 1983]

Lower areas - 4-2/3-5-Subcortical structures
(And flow for recurrent input, 5-6-4. )


## Very strange structure

- Intermediate results, in layer 3, are sent to the higher areas.
- Final results, in layer 5, are sent back to the lower areas.



## Assigning Variables of approx. BP

- Surprisingly, all five communication variables can be successfully assigned to these layers.



## Detailed structure in columns



## The structure matches anatomical structure



## Horizontal fibers in layer 1 and 4



## Small cells in layer 2 and 4



## How the network structure is learned? <br> - My speculation -

# Generative model can be acquired by ICA 

- In other words, ICA may acquire twolayered Bayesian network structure.



## Hierarchical generative model

- Hierarchical ICA may acquire multi-layered Bayesian network structure.



## How ICA corresponds to the anatomical structure ?

- Network of visual areas.



# Corresponding to the anatomical structure 

- Position, motion and shape are independent.
- Horizontal connections may be for ICA.



## How about motor areas ?

## Reinforcement learning in motor areas

- Nodes acquire state-action pairs. State values are learned by synapses connect to basal ganglia.

- Matches the anatomical structure: corticobasal ganglia loop.
- This interpretation is an extension of Doya's model:
K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control, Current Opinion in Neurobiology 10 (6): 732-739 Dec 2000.


## Network of motor areas

- Each motor area certainly has child nodes representing state and action.
- (M1's action node is spinal cord.)



## Future work

- Sophistication and computer simulation of this model.
- Need slight modification of approximate BP.
- Determine concrete algorithms of SOM and ICA.
- Some other important mechanisms.
- Selective attention mechanisms in order to avoid the curse of dimensionality.
- Novelty detection, that may be an online cross-validation mechanism in order to maximize generalization ability.


## Summary of BESOM model

- Each hyper column in cortex is a node (a random variable) of a Bayesian network.
- Learning step:
- Each CPT is self-organized by a SOM.
- Network structure is self-organized by ICA.
- Recognition step:
- State estimation is done by approximate loopy BP algorithm.
- The approx. BP algorithm matches main anatomical structure of cortex.
- Hopefully, explains main function of cortex.


## Supplemental Slides

# Other neuroscience knowledge consistent with BESOM model 

- Most information processing is done within the column.
- Output of simple cells in layer 4 are linear sum of input from LGN. Complex cells are nonlinear.
- Neurons in a column represent similar information, independent of their depth.
- because observation and prediction matches after the learning converged.


## Information from message receiver

- In BP algorithm, messages exclude them.

- If there are many parents and children, these information may be included.


## Example: $\pi_{\mathrm{YI}}(\mathrm{x})$ approximation

- An message $\pi_{\mathrm{YI}}(\mathrm{x})$ from node X to node $\mathrm{Y}_{\mathrm{I}}$ may include information $\lambda_{\mathrm{Y} 1}(x)$ from $Y_{1}$.

$$
\begin{aligned}
& \pi_{Y_{1}}(x) \\
& =\pi(x) \prod_{j \neq 1} \lambda_{Y_{j}}(x) \\
& \approx \pi(x) \prod_{j} \lambda_{Y_{j}}(x) \\
& =\lambda(x) \pi(x)
\end{aligned}
$$



## A possible ICA mechanism

- Two random variables may become independent if connected with anti-Hebb synapses.

cf. Naoki Oshiro, Koji Kurata, Tetsuhiko Yamamoto,
"A self-organizing model of place cells with grid-structured receptive fields", Artificial Life and Robotics, Vol.11, No.1, pp.48--51, 2007

