
 
 

 

 

Abstract—This paper describes a neural network model of 
cerebral cortex, BESOM model, that acquires conditional 
probability tables for a Bayesian network using self-organizing 
maps and estimates states of random variables with an 
approximate belief propagation algorithm. The approximate 
algorithm is derived from some assumptions.  A neural network 
that executes the derived algorithm is in good agreement with 
six-layer and column structures that represent the anatomical 
characteristics of a cerebral cortex in many respects. This model 
has scalable time and space complexities and is therefore 
qualified to be a model of the brain, a large-scale information 
processor. 

I. INTRODUCTION 
Through intensive neuroscience studies in recent years, the 

roles of individual areas in the cerebral cortex and enormous 
amounts of information on the anatomical structure of area 
connections have been accumulated and organized. However, 
understanding of the cortex is not enough to reproduce the 
main functions of the cortex on a computer. 

   Self-organizing map (SOM) [1] is a model that 
reproduces some cortex functions on a computer. SOM is a 
machine learning algorithm that is characterized by 
competitive learning and neighborhood learning. An SOM 
can achieve clustering high-dimensional input under 
unsupervised conditions and online. This agrees with one of 
the features of cerebral information processing. The column 
structure seen in the primary visual cortex and other areas is 
evidence that suggests that the cortex is a sort of SOM. 

A Bayesian network[2] has also been used as a model for 
the cortex[6]. It is a graphical model that represents a directed 
acyclic graph of causal relations between random variables. 
Observations of some random variables within the network 
allow for estimation of the values of the remaining random 
variables based on conditional probability tables. For this 
estimation, an efficient calculation method, called a belief 
propagation algorithm, is used. This network has features 
such as noise-resistant pattern recognition, ambiguous 
information-based plausible inference and real-time 
operation that are also in agreement with features of cerebral 
information processing. The cortex areas form a 
bidirectionally linked network. This structure is similar to that 
of the Bayesian network. 

One visual cortex model that has a mechanism similar to 
both SOM and a Bayesian network is the Selective Attention 
Model (SAM)[3]. The SAM, a hierarchical combination of 

competitive learning nodes, has bidirectional signal routes, a 
bottom-up signal that sends the results of individual nodes’ 
recognition, and a top-down one that sends predictions based 
on past experiences and contexts. The SAM reproduces some 
of the features of cerebral visual information processing such 
as noise-resistant recognition and target segmentation, and is 
considered to be a plausible model for a cerebral cortex. 
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In addition to the SAM, there are models for the cortex in 
which a top-down signal represents predictions [4][5][6]. 
These models, however, have no self-organizing mechanism. 

Traditional models also have the issue of scalability.  The 
cortex is a large-scale information processor that consists of 
14 billion neurons and should use a computational algorithm 
that runs at a realistic speed through parallel processing. 
However, the order of time and space complexity is not 
discussed in traditional models. 

In this paper, we propose a BESOM (BidirEctional SOM) 
as a model for the cortex that has both the features of the 
SOM and the Bayesian network. The BESOM is a 
hierarchical SOM with bidirectional connections. Each SOM 
is used to self-organize and obtain a conditional probability 
table for the network. The BESOM replaces the SAM’s 
learning and recognition calculating formula with one based 
on a belief propagation algorithm, thereby providing a 
footing for further expansion of the model and for efficient 
calculation. 

This paper consists of five subsequent sections. Section II 
provides an overview of the BESOM model’s architecture. 
Sections III and IV detail the learning and recognition steps, 
respectively. In Section IV, scalability is also discussed. 
Section V describes the agreement between this model and 
the anatomical features of a cerebral cortex. Section VI 
provides conclusions. 

II. ARCHITECTURE 
The BESOM consists of nodes that are connected in the 

form of a directed acyclic graph. Each node consists of 
several units. If two nodes are linked by an edge, the units 
included in each node are connected in a complete bipartite 
graph (Fig. 1). Each unit connection has a weight that varies 
with learning. (Section IV describes the structure of units 
more accurately.) It was assumed that a network structure 
does not vary with learning and is given as a prior knowledge. 

The BESOM repeats the learning step and the recognition 
step alternately. A learning step updates weights of 
connections based on the result of the previous recognition 
step. A recognition step calculates outputs of nodes, which 
represent the state of the world, based on the observed values 
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Fig. 2.  Input vectors to the SOM in the learning step. Each black unit 
corresponds to the value with maximum posterior probability. 

and the current conditional probability tables. 
  In the learning step, each node works as a SOM’s 

competitive layer. Each node clusters input vectors that are 
sent from child nodes. The result of the SOM’s learning can 
be regarded as a conditional probability, as described in the 
next section. The updated conditional probabilities are used at 
the next recognition step. The network of SOMs form a 
hierarchical structure such that SOMs at the higher layers of a 
network express more abstract information that compresses 
more input information than those at the lower layers. 
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Fig. 1.  BESOM Architecture. See Fig. 6 for unit structure and detailed 
connections among units.   

   In the recognition step, a network of nodes works as a 
Bayesian network. Each node represents a random variable. 
Each unit included in one node corresponds to a possible 
value of the random variable. External inputs from sensors 
(observed values) are given as outputs of the lowest nodes 
(nodes that have no child nodes). In the recognition step, in 
accordance with external inputs and each node’s conditional 
probability table, an approximate belief propagation 
algorithm (described in Section IV) is used to compute 
posterior probabilities of individual variables. The results are 
used in the next learning step. 
   In terms of a model for a cerebral cortex, the BESOM is 
interpreted as follows. The BESOM’s nodes and units are 
equivalent to the hyper-columns and columns of the cortex. In 
the primary visual cortex, individual units are equivalent to 
the orientation columns. 

III. LEARNING STEP 
   In the learning step, each node works as an SOM 
competitive layer and clusters inputs from its child nodes. 
   Assume that Node X  has  child nodes   n Yl (l =1,L,n). 
In this step, the SOM receives estimated values of the 
individual child nodes as inputs. Given that a estimated 
posterior probability of Node Yl ’s unit  is , an 
element of an input vector v  from 

yi
l BEL(yi

l )
l Yl  is expressed as 

follows. 
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   Namely, an element corresponding to a unit with a 
maximum posterior probability is 1, while other elements are 
0 (Fig. 2). 
   The estimated value of Node X  becomes a winner for 
competitive learning. In the winner unit, a reference vector (a 
vector of weights) is brought close to an input vector. 
Assuming that the weight of the connection between Node 
X ’s winner unit xi  and Node ’s unit y  is , this 

weight is then updated with the following rule: 
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 where α  is a learning rate. In this step, neighborhood 
learning should also be done using a proper neighborhood 
function. 
   Here, given that the neighborhood radius is sufficiently 
small and negligible, and a learning rate α  is equal to  
for n-th learning of each unit, a weight  is then equal to a 

conditional probability P . (For details, 
see the appendix.) 
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IV. RECOGNITION STEP 
   In the recognition step, an approximate belief propagation 
algorithm is executed to estimate values of the individual 
random variables. This section indicates the problems in 
introducing a belief propagation algorithm into a neural 
network model and provides solutions to these problems. The 
characteristics of the derived approximate algorithm are then 
discussed. 

A. Approximation of conditional probability tables 
Bayesian networks have a problem in that the size of a 

conditional probability table  increases 
exponentially against the number of parent nodes, . At the 
same time, the execution cost of the belief propagation 
algorithm [2] (Fig. 3) also increases in the same order. (In 
Fig.3, the variable  is an abbreviation of 
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)( ixXBEL = , that is an estimated posterior probability of 

a value  of a random variable ),,1( sixi L= X , where 

is a number of possible values of s X . The variable 
)( kX uπ  is an abbreviation of , that is a 

message to a node 

)( k
ik u=

)(),,|()()(

)()()(

)()(

)(),,|()(
)()()(

1
/,,

1
,,

1

1

i
ki

Xm
uuux

kX

lj
YY

l
Y

k
k

Xm
uu

uuuxPxu

xxx

xx

uuuxPx
xxxBEL

km

jl

l

m

∏∑∑

∏

∏

∏∑

≠

≠

=

=

=

=

=

πλλ

λππ

λλ

ππ
παλ

L

L

L

L

 
Fig. 3.   Original belief propagation algorithm.  

X Uπ
X  from a parent node concerning a 

value . Other variables are abbreviated in the same 
manner.) 
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k
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In the case of BESOM as a model of a cerebral cortex, it 
may be assumed that the individual nodes included in the 
same layer learn different sets of features, and that their 
individual recognition results are almost independent of each 
other. In addition, the number of input features required by 
the status of a certain node may be assumed to be small 
because of the sparseness of neuron firings. In this situation, 
if at least one of Node ’s parent nodes requires a feature X x , 
it can be estimated that this feature will exist. Based on these 
assumptions, a conditional probability table for Node  can 
be approximated with the sum of conditional probabilities 
learned by parent’s SOMs. 
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   This assumption is similar to that of the noisy-OR model [2], 
so it can be expected that this situation will result in a simple 
belief propagation algorithm and reduce the time and space 
complexity substantially. 
   It is necessary to verify the establishment of (3) with a 
physiological experiment or a computer simulation. In this 
paper, (3) is assumed to be given and an approximate belief 
propagation algorithm is derived from this assumption. 

B. Information from message receiver 

   Each formula for πYl
(x)  and )( kX uλ  in the algorithm 

in Figure 3 excludes information came from the node that 
will receive a messages calculated by the formula. This 
causes complexity of the algorithm. If a network has a tree 
structure, the algorithm becomes simpler, as used in [6]. In 
cerebral cortex, however, generally one area has 
connections to several higher areas, so we cannot assume 
that the network is structured in a tree form. 
   In this paper, conversely, we assume that one node has 
considerably many parent and child nodes. By assuming 
this, information that supports values of a certain node’s 
 random variable are normally obtained from several nodes, 
so inclusion of information from a message receiver may 
not greatly affect the estimation results. 
   Based on this assumption, we use an approximation of 
“inclusion of information from a message receiver.” 

C.  Approximate belief propagation algorithm 
   In addition to the two kinds of approximations described 
above, it is assumed that messages from parent nodes are 

normalized. 
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u
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    Then, a belief propagation algorithm can be approximated, 
as shown in Figure 4. (See the appendix for a detailed 
derivation.) 

 In the approximated belief propagation algorithm, each 
node receives the values of λ(yl ) and ZYl

 from its child 

nodes and the values of BEL(uk) from its parent nodes and 
determines values of its own λ(x) , BEL(x) and ZX . The 
algorithm repeats these calculations until the values of the 
individual variables converge, like an original loopy belief 
propagation algorithm.  
   λ(yl ) is the results of the child nodes’ recognition with the 
use of mainly bottom-up information. κ uk

(x) is a prediction 
based on information from parent nodes. BEL(x)  is a 
posterior probability. ZX  is used for the normalization of 
BEL(x)  and also represents the degree of agreement 
between the predictions and observations in Node .  X
   It is interesting that the term  appears in a formula for 

lYZ
λYl

(x) . Inputs from a node with a good agreement between 
predictions and observations have a smaller effect on the 
recognition of parent nodes. In other words, the features not 
agreed with predictions are emphasized on the recognition. 
(This effect results from Assumption (3).) 
   The values of individual variables, which only arise from a 
very simple calculation, can be sufficiently implemented with 
a neural network. In particular, an inner product calculation 
conducted using λYl

(x)  or κ uk
(x)  is suitable for neuron 

execution. In addition, a conditional probability table can be 
obtained from Hebbian learning by synapses linking to these 
neurons. (Note that one conditional probability  is 

learned by two neurons, 

)|( kuxP
κ uk

(x)  and )( kX uλ , 
simultaneously.) 

D.  Scalability 
Because input vectors in the learning steps are sparse, the 

obtained conditional probability table may also be sparse. 



 
 

 

The number of non-zero elements of an input vector is a 
constant number (number of child nodes) and independent of 
the number of units s  within each child node. The resulting 
conditional probability table may inevitably have the same 
features. Taking advantage of this characteristic, we can 
lower the order of time and space complexities. In the case of 
cortex, synapses with a weight of 0 can be eliminated. This 
can limit the explosive increase of synapses required. 
      A space complexity that is required to express one unit’s 
conditional probability table (reference vector) is O , 
which can be reduced to  by taking advantage of table’s 
sparseness.  

(s)
O(1)

   A time factor that requires an inner product calculation 
made by λYl

(x)  and κ uk
(x) will reach O  by the same 

reasoning. Therefore, a time for all inner product calculations 
in parallel computation within a node is . The  time 
complexities in parallel computation for other variables are 

 or less. 

(1)

O(1)

O(logs)
   As shown above, the approximate algorithm derived in this 
paper is scalable. Hence, it can be said to be qualified as a 
model for the cerebral cortex’s information processing 
algorithm in terms of time and space complexities. 

V. CORRESPONDING TO NEUROSCIENCE FINDINGS  

A. Anatomical characteristics of a cerebral cortex 
The cerebral cortex has a six-layer structure. Areas of the 

cortex are bidirectionally connected. These connections are 
known to have the following regularities[7]. Bottom-up 
connections are directed from layer III to IV. Some areas also 
have connections from layer V to IV. Top-down connections 
are directed mainly from layers V and VI to layer I. There are 
also a few connections from layer III to layer I. 

 Furthermore, based on a column’s anatomical structure, 
information input to layer IV is considered to be output from 
a-layer V via layers II and III within the column[8].  

Considering these two findings, the six-layer cortex 
structure forms a very strange construction in which the 
information in layer III, a provisional result of information 
processing within the column, is sent to a higher area, and the 
information in layer V, a final result, is sent back to a lower 
area. The functional meaning of this structure is unknown. 
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Fig. 4.  Derived approximate belief propagation algorithm. 
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Fig. 5.  Correspondence of approximate belief propagation algorithm 
and the six-layer structure of cerebral cortex. 

B. Corresponding to the approximate algorithm  
   Of the seven variables appearing in the approximate 
belief propagation algorithm, five variables related to node 
communication are applied to an area connection rule. The 
result is shown in Figure 5.  We selected a layer II, not I, for 
κ uk

(x) because the layer I contains small number of cells. 

Layers V and VI were selected for ZX  based on a depth 
related to BEL(x), although a layer III can be considered. 
   As shown in the Figure 5, an approximate algorithm can 
be directly corresponded to the connection rule, and cannot 
be considered to be coincidentally correspondent to it. 
(Top-down connections from layer III to I cannot be 
explained by this model.) 
   Figure 6 shows that the seven kinds of variables are 
placed in a column so as to be consistent with anatomical 
findings. A flow of information in the order of layers IV, 
II/III and V, as described above, corresponds with that in an 
order of variables of λYl

(x) , λ(x) , )(xρ  and BEL(x). 
(Based on the findings, information further flows in the 
order of layers V, VI and IV[8]. This information route 
cannot be explained by this model.) 
   In addition, the following agreements can be observed 
with the findings: 1) almost all information processing is 
conducted vertically within the column, 2) many horizontal 
fibers are seen in layers I and IV and 3) there are many 
small cells in layers II and IV. 
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Fig. 6.  Neural network which executes the approximate belief propagation algorithm. This figure shows the flow of information between variables 
within two units, x1 and x2, of  Node X. Node X receives information from two parent nodes, U1 and U2, and two child nodes, Y1 and Y2. The network 
structure is similar to the column structure of a cerebral cortex in many respects (see main text). 
 

C.  Same layer’s area connection problems 
The cerebral cortex sometimes has horizontal connections 
between two areas that cannot be explained in the current 
BESOM model. We think these connections are 
communication route with a different purpose, such as 
independent component analysis. 

VI. CONCLUSION 
   An approximate belief propagation algorithm was derived 
for bidirectionally connected SOM network, and it was 
demonstrated that the algorithm both corresponds well to the 
six-layer and column structures of the cerebral cortex and is 
scalable. This model represents firing rate of neurons within 
the cortex that might be observed in physiological 
experiments. 
   In order to simulate this model and conduct large-scale tests, 
the mechanism to make nodes within the same layer 
independent each other must be elucidated. We are currently 
tackling this challenge, by introducing a mechanism of 
independent component analysis to this model. If this issue is 
solved, it will allow for simulations to be performed verifying 
the adequacy of an approximate expression (3) in a 
conditional probability table. 

 In addition to the basic functions of the BESOM model 
described in this paper, we think it is necessary to extend the 
model, for instance, to include selective attention and 
short-term memory mechanisms. 

The BESOM network has a very high level of expressive 
power. We have started to model a mechanism for acquiring 
action sequences done by premotor and supplementary motor 
areas, and also model a mechanism for acquiring a state 
transition table of external world used for action planning by 
prefrontal area. Both models are expressed by BESOM 
network combined with a reinforcement learning mechanism 
that is a model of the basal ganglia. 

In the future, we aim to reproduce main brain functions on 
computers. 

APPENDIX 
   It can be shown that weights obtained in learning steps are 
regarded as conditional probabilities as follows. Let 
v j (n) ∈ {0,1} be an j-th element of an input vector from 

X’s child node Y and let  be learning result, where n 

means n-th learning of a unit 

wij (n)
xi . (We do not consider 



 
 

 

neighborhood learning here.) Let m  be the 

number of times that a unit  becomes the estimated value 

of Node Y. Let 
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equals the following. 
wij (1) = v j (1) = m(1) ij (n) (n >1)
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   This value is a ratio between “the number of times that a 
unit  becomes the estimated value of Node Y” and “the 

number of times that a unit  becomes the estimated value 
of Node X.” Assuming that the estimation results are right, 
this value is the conditional probability . 
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   An approximate belief propagation algorithm used for 
learning steps is derived as follows. 
   First, π (x) can be approximated as follows, using (3). 
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   Here, the following equation is established from (4), 
assumption for normalization. 
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The following equation included in a formula for )( kX uλ  

can be approximated as follows, using (3) and (8). 
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   By “including information from a message receiver” and 
(6), the above formula is approximated as follows. 
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   By substitution of the above equation, λX (uk )  can be 
approximated as follows. 
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Arranging the above results, we obtain the algorithm 
shown in Figure 4.  
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