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Abstract

Image classification methods have been significantly de-
veloped in the last decade. Most methods stem from bag-
of-features (BoF) approach and it is recently extended to a
vector aggregation model, such as using Fisher kernels. In
this paper, we propose a novel feature extraction method for
image classification. Following the BoF approach, a plenty
of local descriptors are first extracted in an image and the
proposed method is built upon the probability density func-
tion (p.d.f) formed by those descriptors. Since the p.d.f es-
sentially represents the image, we extract the features from
the p.d.f by means of the gradients on the p.d.f. The gra-
dients, especially their orientations, effectively character-
ize the shape of the p.d.f from the geometrical viewpoint.
We construct the features by the histogram of the oriented
p.d.f gradients via orientation coding followed by aggre-
gation of the orientation codes. The proposed image fea-
tures, imposing no specific assumption on the targets, are so
general as to be applicable to any kinds of tasks regarding
image classifications. In the experiments on object recog-
nition and scene classification using various datasets, the
proposed method exhibits superior performances compared
to the other existing methods.

1. Introduction

Image classification has attracted keen attentions in the

computer vision community in the last decade. The task

includes such as object recognition [1, 14] and scene clas-

sification [19, 20], posing a challenge to cope with sig-

nificant variations of the targets as well as the environ-

mental changes in the image. The image classification is

frequently addressed in the framework of bag-of-features

(BoF) [9] owing to the advances of the local descriptors

such as SIFT [23].

BoF is based on the local descriptors densely extracted in

an image which are further coded into visual words and pro-
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Figure 1. Overview of the proposed method. At dense spatial grid

points in an input image (1), a plenty of SIFT local descriptors are

extracted (2). The probability density function (p.d.f) in the de-

scriptor space is estimated by applying kernel density estimator to

those descriptors (3). The gradients are computed on the p.d.f and

then their orientations are coded (4). Those codes are aggregated

around respective visual words (5) and the aggregated codes are

finally concatenated into the image feature vector (6).

duces as the image feature the histogram of the visual words

that appear in the image. Thus, BoF mainly consists of the

four procedures extracting local descriptors, coding them

into words, aggregating (pooling) the words into the his-

togram, and classifying the histogram feature vector. While

the classification is performed such as by simply applying

(linear) SVM, much research effort has been made in the

past few years to develop effective feature representation re-

lated to the first three procedures; for example, [4, 5, 18, 21]

for local descriptors, [11, 12, 15, 22, 29, 32] for coding,

[19, 34, 33] for aggregation.
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In the other direction, the BoF has been recently ex-

tended to the methods aggregating vectors [16, 24, 35, 17],

not the word codes. It first appeared in Fisher kernel [16]

which is derived from the information geometry [2] using

Gaussian mixture models (GMM). The method of super

vector coding [35] was proposed afterwards to approximate

the (nonlinear) classifier function by piece-wise linear mod-

els. Although those two methods are defined in different

scenarios, they actually result in the same procedure that

aggregates the difference vectors between local descriptors

and their nearby visual word centers. The image features are

obtained by concatenating those difference vectors aggre-

gated around respective words, in contrast to the standard

BoF which simply counts the occurrence of the visual words

in the histograms. This vector aggregation based method

significantly improves the performance on object recogni-

tion [16, 24, 35] compared to the BoF approach. It is also

employed in the image search task [17].

In this study, we propose a novel method to extract ef-

fective features for image classifications; Fig. 1 shows the

overview. For describing the images, the proposed method

extends the discrete representation in BoF to the contin-

uous probability density function (p.d.f). The p.d.f is es-

timated by applying kernel density estimator [31] to the

densely extracted local descriptors without assuming any

specific probabilistic models such as GMM. Since the p.d.f

essentially represents the image, we extract features from

the p.d.f by means of the gradients on the p.d.f in a man-

ner similar to HOG [10]/SIFT [23] applied to image pixel
function. The gradients, especially their orientations, can

effectively characterize the p.d.f. Through computing the

gradients, the mean shift vectors [7] are naturally induced

and those vectors are coded in terms of their orientations.

Those orientation codes are finally aggregated around re-

spective visual words into the histograms similarly to the

above-mentioned methods, Fisher kernel [16, 24] and su-

per vector coding [35] which are also shown to be a special

case of the proposed method (Sec.3). The proposed method

is defined without any assumption on the target and thus it

is applicable to versatile tasks of image classifications, such

as object recognition and scene classification.

2. Proposed method

In the BoF framework [9], an image is represented by

a plenty (bag) of local descriptors densely extracted in the

image, and then is finally characterized by a histogram of

visual words quantizing the underlying probability distri-

bution of the local descriptors. In this work, we explicitly

focus on the probability density function (p.d.f) composed

of the descriptors; namely, we extract features from the p.d.f

which essentially represents the image. An overview of the

proposed feature extraction method is shown in Fig. 1.

2.1. Probability density function in BoF

From an input image, N local descriptors, such as SIFT

descriptors [23], are extracted at dense spatial positions

with various scales; those are denoted by xi ∈ R
d, i =

1, · · · , N . While the bag of those descriptors has so far

been used to discretely represent the image, we apply kernel

density estimator [31] to obtain the following (continuous)

probability density function (p.d.f),

pf(x) =
1
N

N∑
i=1

f(‖x− xi‖22), (1)

where f(z) : R → R indicates the (differentiable) profile

function for kernel [7]; e.g., f(z) = Cd,h exp(− z
2h ) with

the bandwidth parameter h, say h = 0.1 in this study, and

the normalization constant Cd,h. We begin with this p.d.f

(1) for constructing an effective image feature.

2.2. Oriented p.d.f gradients

The gradients, especially their orientations, effectively

characterize the “shape” of the p.d.f from the geometrical

viewpoint, as is the case with HOG [10]/SIFT [23] applied

to extract geometrical feature of an image pixel function.

The gradient vector of the p.d.f (1) is simply given by

∇pf(x) =
2
N

N∑
i=1

(x− xi)f′(‖x− xi‖22)

=
1
N

N∑
i=1

(xi − x)g(‖x− xi‖22), (2)

where g(z) = −2f′(z), the derivative of the profile function

f(z), which is also the profile [7]. Note that it is improper to

straightforwardly aggregate the p.d.f gradient vectors them-

selves since the gradient orientation information is canceled

out via summation. Thus, we consider the orientation cod-

ing of the p.d.f gradients (2), followed by aggregation into

histograms.

The orientation coding is usually applied to image gra-

dients such as in HOG[10] and SIFT[23]. The orientation

of the image gradients is coded based on a lot of the bases

(bins) that uniformly cover 2-D spatial orientations, form-

ing overcomplete set to describe any oriented gradients.

However, it is infeasible to use those overcomplete set of

(uniform) bases for coding high-dimensional gradient ori-

entations; e.g., p.d.f by SIFT descriptors is defined in 128-

dimensional space. In this study, we employ the complete

set of bases given by principal component analysis (PCA).

PCA1 is applied to the p.d.f gradient vectors normal-

ized in unit L2 norm ∇pf/‖∇pf‖2 which indicate only

1Note that, in this case, PCA is applied to the samples without center-
ing, which results in the eigen-decomposition of an auto-correlation ma-

trix, not a covariance matrix. And, the samples are all the L2-normalized

gradient vectors drawn from training images.
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the orientations on a unit hypersphere. Thereby, we ob-

tain the d orthonormal basis (eigen) vectors, uj , j =
1, · · · , d,u�j uk = δjk. Along each basis vector, we can

consider two orientations, positive and negative ones, which

totally provides 2d orientation bins by

C(v; {uj}d
j=1) = [max(u�1 v, 0)2, max(−u�1 v, 0)2, · · · ,

max(u�d v, 0)2,max(−u�d v, 0)2]� ∈ R
2d
+ , (3)

where v indicates the d-dimensional vector to be coded.

This coding produces rather sparse orientation codes in

which at most d components are nonzero, and the code has

a unit sum for ‖v‖22 =1 since ‖v‖22 =1�C(v; {u}d
j=1)=1.

Note again that, without this orientation coding, the gradient

vectors, especially oriented in opposite directions, would be

canceled out via aggregation. The orientation of the p.d.f

gradient vector (2) is coded by C
(

∇pf(x)
‖∇pf(x)‖2 ; {uj}d

j=1

)
.

For simplicity, we omit {uj}d
j=1 in C in the followings.

PCA produces the eigenvalues ej as well as the eigenvec-

tors uj employed for the orientation bases. The eigenvalue

represents the power of the code on the corresponding basis,

ej =Ex

[(
u�j

∇pf(x)
‖∇pf(x)‖2

)2]
, and thus it is utilized to normal-

ize the orientation codes as in tf-idf [28] or PCA whitening:

Ĉ

( ∇pf(x)
‖∇pf(x)‖2

)
= E−1C

( ∇pf(x)
‖∇pf(x)‖2

)
, (4)

where E = diag(e1, e1, · · · , ed, ed) ∈ R
2d×2d. Through

this weighting, the orientation codes are equally dealt with

by enhancing the orientations that rarely occur while sup-

pressing the common ones that are frequently found on the

whole. The rare orientations would be more discriminative

than the common ones [28], and thus the weighting (4) im-

proves the discriminative power.

2.3. Aggregation of p.d.f gradient orientation codes

The orientation codes (4) are finally aggregated around

the visual words which are basis points (cluster centers) in

the local descriptor space R
d. We define the aggregation in

the following continuous form as is the case with the p.d.f;

∫
W(x, μ)‖∇pf(x)‖2Ĉ

( ∇pf(x)
‖∇pf(x)‖2

)
dx, (5)

where W(x, y) is the weighting function indicating how the

local descriptor x contributes to the word μ as defined in

the later, and the magnitude and the orientation of the p.d.f

gradient vector ∇pf are processed respectively. To reduce

the continuous form into a tractable discrete one, it should

be noted that the local descriptors xi, i = 1, · · · , N are as-

sumed to be randomly sampled according to the p.d.f pf(x).
As to the sampling, given arbitrary function h(x), we have

the following relationship [3]:

∫
h(x)pf(x)dx ≈ 1

N

N∑
i

h(xi). (6)

By using the above relationship, (5) is reduced into

∫
W(x, μ)‖∇pf(x)‖2Ĉ

( ∇pf(x)
‖∇pf(x)‖2

)
dx

≈ 1
N

N∑
i=1

W(xi, μ)
‖∇pf(xi)‖2

pf(xi)
Ĉ

( ∇pf(xi)
‖∇pf(xi)‖2

)
. (7)

This is a summation weighted by the inverse of the proba-

bility pf(xi). The formulation (7) favorably suppresses the

effect of the frequent local descriptors of high probability

which are common across the categories and less discrimi-

native for classification [28]. Here, we can induce the nor-
malized gradient in (7) as

∇pf(x)
pf(x)

≈∇pf(x)
pg(x)

=
∑N

i=1 xig(‖x− xi‖22)∑N
i=1 g(‖x− xi‖22)

−x � ∇̂pf(x),

(8)

where the profile g is approximately applied to the normal-

ization since pf(x) ≈ pg(x). Note that the normalized gra-

dient ∇̂pf(x) is identical to the mean shift vector [7] which

has been usually used for clustering and its favorable prop-

erties are discussed in [7].

By introducing the normalized gradient (8) into (7), we

finally obtain the aggregation form to construct features as

the histogram of the oriented p.d.f gradients. Let μk, k =
1, · · · , M be the k-th visual word center, and the aggrega-

tion around μk is given by

dk =
1
N

N∑
i=1

W(xi,μk)‖∇̂pf(xi)‖2Ĉ
( ∇̂pf(xi)
‖∇̂pf(xi)‖2

)
.

(9)

These features around the respective visual words are con-

catenated into the final feature vector;

d = [d�1 , · · · , d�M ]� ∈ R
2dM
+ . (10)

2.4. Practical techniques

In this section, we present the techniques which are

somewhat apart from the essence in the proposed method

but are practically effective.

Weights to visual words. We define the weighting

function W(x, μ) from the local descriptor x to the visual

word μ. We simply apply the following method based

on the distance ratio, though the other word coding meth-

ods [12, 15, 33, 32] are also applicable. According to the

Euclidean distance D(x, y) = ‖x − y‖22, only K nearest

neighbor words around x are picked up, say K =10 in this
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study, and assume D(x, μk) ≤ D(x, μl) for k<l. Based on

the distance ratio compared to the nearest one D(x, μ1), the

weighting function is determined by

W(x, μk)=
D(x, μ1)/D(x, μk)∑K
l=1 D(x, μ1)/D(x, μl)

=

∏K
l̄ �=k D(x, μl̄)∑K

l=1

∏K
l̄ �=l D(x, μl̄)

.

The weights to the words other than those K-NN ones are

assigned with 0.

Normalization. The final feature vector d in (10) is

normalized by SIFT-like normalization [23, 10] with the

threshold τ = 1√
2dM

; d← min
(

d
‖d‖2

,τ
)

‖min
(

d
‖d‖2

,τ
)
‖

.

Spatial pooling. Following the idea of spatial pyramid

matching [19], we employ the spatial pooling using spatial

bins (partitions) in order to roughly take into account the

spatial alignment in the image. Hence, the weighting func-

tion W is modified into

Ŵ(xi, μk, ri, sl) = W(xi, μk)Ws(ri, sl), (11)

where ri indicates the 2-D position vector at which the lo-

cal descriptor xi is extracted, sl, l = 1, · · · , S be the l-th
spatial bin, and the spatial weighting function Ws is defined

by bilinear interpolation as in SIFT spatial pooling [23].

This enables us to characterize the spatial information in the

image, improving the classification performances. In this

study, we use three levels of spatial partitioning as 1×1, 2×2,

and 3×1 in the image, which results in the following feature,

d =
[
d1×1

1

�
, d2×2

1

�
, · · ·, d2×2

4

�
, d3×1

1

�
,· · ·, d3×1

3

�]�∈ R
16dM
+ .

3. Comparison to the previous methods
The proposed method can be regarded as HOG [10]

or SIFT [23] applied to the p.d.f of densely extracted lo-

cal descriptors in the BoF framework. However, it is

not straightforward to apply HOG to the p.d.f since the

p.d.f is composed of (discrete) samples of local descrip-

tors and thus defined in a high dimensional space, while

HOG [10]/SIFT [23] directly deals with an image, a (con-

tinuous) image pixel function well defined in 2-D spatial

dimensions. Table 1 shows the comparison of the proposed

method with HOG/SIFT.

In the BoF framework, some methods based on vector

aggregation have been proposed, showing promising perfor-

mances on object recognition, such as Fisher kernel [16, 24]

and super vector coding [35]. The Fisher kernel [16] is de-

rived from the information geometry [2] with Gaussian mix-

ture model (GMM), and the super coding [35] is motivated

by the piece-wise linear approximation of the (nonlinear)

classification function. These methods eventually result in

aggregating the difference vectors xi−μk around the vi-

sual word μk as shown in Table 2. The aggregation of the

Table 1. Comparison with HOG/SIFT

Ours HOG/SIFT

target p.d.f pf(x) image pixel function I(r)

variable
local descriptor 2-D position vector

x ∈ Rd r ∈ R2

orientation code by PCA bases predefined orientation bins

aggregation at visual words predefined spatial bins

Table 2. Comparison with BoF-based image features. For Fisher

kernel [24], GMM produces the mixture weight ηk and the diag-

onal covariance Σk = diag(σk)2 as well as the mean (word) μk,

and consequently the posterior αik = ηkN (xi;μk,Σk)∑M
l=1 ηlN (xi;μl,Σl)

. Note

that ()•2 indicates the operation of the component-wise square.

Super vector coding [35] has a (scalar) parameter s.

Method Feature vector around word μk Dim.

BoF
∑

i W(xi,μk) 1

Fisher kernel 1√
ηk

∑
i αik

[
Σ
−1/2
k (xi−μk)

1√
2

{
Σ−1

k (xi−μk)•2−1
}
]

2d[24]

Super coding
[35]

1√∑
i W(xi,μk)

∑
i W(xi,μk)

[
xi−μk

s

]
d+1

Ours
∑

i W(xi,μk)‖∇̂pf(xi)‖2Ĉ
(

∇̂pf(xi)

‖∇̂pf(xi)‖2

)
2d

difference vectors roughly corresponds to the p.d.f gradi-

ent vector ∇pf(μk) in (2), or mean shift vector ∇̂pf(μk)
in (8), at the word μk; thus, we can say that the Fisher ker-

nel [16] and super coding [35] are viewed as the special case

of the proposed method. The gradient vectors only at those

sparse word points would be less discriminative for charac-

terizing the distribution of local descriptors; especially, the

information of the distribution around the word is canceled

out by simply aggregating those difference vectors as shown

in Fig. 2a. The Fisher kernel [16, 24] additionally employs

the variances of the difference vector in order to compen-

sate it, but the integration of those different kinds of sta-

tistical quantities is itself difficult, though those are simply

concatenated in [16, 24]. In contrast, the proposed method

can effectively exploit the distribution (p.d.f) of the local

descriptors by means of the histograms of the p.d.f gradi-

ent orientation which is densely computed at every sample

point, as shown in Fig. 2b. Our formulation is compared to

those methods including the standard BoF in Table 2.

4. Experimental Results
We apply the proposed method to image classification

tasks in the following setting. The SIFT local descrip-

tors [23] are extracted at dense spatial grid points in 4 pixel

step with three scales of {16, 24, 32} pixels. Visual words

are obtained by applying k-means clustering to one mil-

lion local descriptors which are randomly sampled from the

training images. For orientation coding (Sec.2.2), the bases

uj and the weights ej are obtained by applying PCA to all

the gradient vectors in the training images. The resultant

748748748748750750



word center
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=
word center

meanmean

(a) Difference vector

word center �= word center

(b) Orientation code
Figure 2. Aggregation around the word center. ’+’ indicates the

local descriptor. While the aggregated difference vectors, denoted

by the large arrows, improperly coincide for different distributions

(a), the aggregation (histogram) of the orientation codes discrimi-

natively describes the distribution around the word (b).

feature vectors are finally classified by linear SVM [30].

First, we analyze the performance of the proposed

method to validate the effectiveness of the procedures de-

scribed in Sec.2. Then, the proposed method is compared

to the other recently developed methods on various datasets

for scene classification and object recognition.

4.1. Performance Analysis

We use PASCAL-VOC2007 dataset [1] to analyze the

performances of the proposed method from various aspects.

The dataset contains objects of 20 categories and it poses

a challenging task of object recognition due to significant

variations in terms of appearances and poses even with oc-

clusions. There are 5,011 training images (train+val
sets) and 4,952 test images (test set). The performance

is evaluated by the standard PASCAL protocol which com-

putes average precision (AP) based on the precision/recall

curve; we report the mean of AP (mAP) across the 20 cate-

gories in the results other than Table 4.

The following four issues are conceivable in the pro-

posed method. Here, we use 128 visual words.

Bandwidth parameter in the profile function. We use

the profile function f(z) = exp(− z
2h ) with h = 0.1 in

the kernel density estimation (1). The determination of

the bandwidth parameter h still remains as an open prob-

lem [7, 31], and there are some attempts to determine it

adaptively from the data, such as in [8, 27, 6]. Those

methods, however, are intended mainly for the lower di-

mensional data rather than the high-dimensional descrip-

tors that we use. Due to the curse of dimensionality [26],

such adaptive bandwidth selection becomes less effective

in the higher-dimensional space, since the data samples are

sparsely distributed around each sample point. Actually,
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(a) PASCAL-VOC2007 (b) Scene-15
Figure 3. Pairwise distances with the profile f(z) = exp(− z

2h
)

Table 3. Performance analysis on PASCAL-VOC2007
(a) Bandwidth in the profile f

h = 1 0.2 0.1 0.05

59.41 59.54 59.82 58.55

(c) Component weighting

inverse eigenvalues none

59.82 59.13

(b) Orientation coding

PCA bases random bases

59.82 58.05

(d) p.d.f gradient

normalized none

59.82 57.97

Fig. 3a shows the distribution of pairwise squared Euclidean

distances in PASCAL-VOC2007 dataset. Note that the

SIFT descriptors are non-negative in unit L2 norm, which

makes the squared distance range in [0, 2]. The distribution

has the peak at ‖xi − xj‖22 =1 and this can be also seen in

Scene-15 dataset of scene images (Fig. 3b) which are dif-

ferent contents from object images in PASCAL-VOC2007
dataset. We apply four bandwidths h ∈ {1, 0.2, 0.1, 0.05}
to the profile f(z) = exp(− z

2h ) which are superimposed

over the distribution of the distances in Fig. 3. The profile

of h=0.1 appropriately picks up the neighboring samples,

while those of the other bandwidths cover too small or too

large portion of neighbors. And, the favorable performance

is obtained at h=0.1 as shown in Table 3a; the larger band-

width h = 1 produces better performance than the smaller

one h = 0.05, showing that it is favorable to pick up some-

what large amount of neighbors for constructing discrimi-

native p.d.f gradients. In this study, we employ h=0.1.

Orientation coding of p.d.f gradients. Next, we fo-

cus on the way of coding p.d.f gradient orientations. As

described in Sec.2.2, those orientations are coded by us-

ing the PCA basis vectors. For the alternative to the PCA

bases, we can also employ the random orthonormal bases to

code them in a similar way. The performance comparison is

shown in Table 3b, demonstrating that the PCA bases sub-

stantially improve the performance. In such a case of com-

plete set of orientation bases, which is smaller than over-

complete one, the data-driven bases provided by PCA ef-

fectively code the orientations.

Component weighting. The third issue is related to the

weighting of the orientation codes as described in the last

paragraph of Sec.2.2. The effectiveness of the weighting

by the inverse of the PCA eigenvalues is shown in Table 3c

with comparison to the case without weighting. The per-

749749749749751751
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Table 4. Comparison with

VOC2007 winner

category
Ours
256 w.

Ours
1024 w. winner

aeroplane 77.1 75.0 77.5
bicycle 66.6 68.3 63.6

bird 54.7 58.2 56.1
boat 69.7 69.5 71.9

bottle 29.1 33.3 33.1
bus 67.8 68.9 60.6
car 79.1 80.0 78.0
cat 63.5 65.8 58.8

chair 55.8 55.9 53.5
cow 49.8 50.9 42.6

diningtable 61.4 60.6 54.9
dog 47.0 50.4 45.8

horse 77.6 77.6 77.5
motorbike 69.8 70.6 64.0

person 85.2 86.2 85.9
pottedplant 27.8 31.6 36.3

sheep 50.7 49.6 44.7
sofa 55.2 56.9 50.6
train 79.2 78.9 79.2

tvmonitor 54.4 55.5 53.2
mAP 61.1 62.2 59.4

formance is improved by the weighting which suppresses

the orientations commonly occurring across the categories

while enhancing the less-frequent but discriminative ones.

p.d.f gradients. The normalized p.d.f gradient ∇̂pf that

corresponds to the mean-shift vector [7] is naturally induced

via the aggregation considering sampling procedure as de-

scribed in Sec.2.3. In case that we simply use the (original)

p.d.f gradient ∇pf without normalization in (9), the perfor-

mance is deteriorated as shown in Table 3d. The method

employing ∇pf amounts to the aggregation (5) weighted

by the probability pf which would highly enhance the sam-

ples (local descriptors) frequently found in the image. Such

samples, however, are regarded as common ones across the

categories being less discriminative for the classification.

On the other hand, the normalized gradient ∇̂pf leads to

the uniform aggregation (5) over x; even the less-frequent

samples which would be discriminative are fairly treated.

In addition, the mean-shift vector ∇̂pf is stable in that it al-

ways points to the direction where the p.d.f is increased [7].

Number of visual words. We show the performances

on various numbers of words M ∈ {128, 256, 512, 1024}
in Fig. 4 with comparison to the methods of Fisher ker-

nel [24], super vector coding [35] and the standard BoF.

The proposed method produces stably high performances

even on the small amount of words, exhibiting significant

improvement over the BoF and the other two methods. The

proposed feature is twice the dimensionality of super vec-

tor coding [35] when the same number of words are used,

but our method produces superior performances to [35] un-

der the same dimensionality; e.g., the proposed method of

256 words is superior to super vector coding of 512 words.

These results demonstrates that the p.d.f gradient orienta-

tions more effectively characterizes the distribution of the

local descriptors, compared to the difference vectors.

Table 5. Performance comparison on Scene-15 dataset

Method Acc. (%)

Lazebnik et al. [19] 81.40 ±0.50

Yand and Newsam [34] 82.51 ±0.43

Dixit et al. [11] 85.4

Huang et al. [15] 82.55 ±0.41

Liu et al. [22] 83.76 ±0.59

Boureau et al. [5] 84.3 ±0.5

Fisher kernel (256 words) [24] 82.94 ±0.78

super coding (1024 words) [35] 84.79 ±0.76

ours (256 words) 85.63 ±0.67

Finally, Table 4 shows the performance comparison of

the proposed method with the winner (INRIA Genetic)

in PASCAL-VOC2007 [1]. The proposed method is com-

petitive to the winner, and thus we can say that the method

effectively works for object recognition.

Since the performance is sufficiently improved by 256
words, in the following experiments, we apply the proposed

method with 256 words and similarly Fisher kernel with 256
words and super vector coding with 1024 words.

4.2. Comparison on various datasets

We then apply the proposed method to the datasets

of Scene-15 [19] and MIT-Scene [25] for scene clas-

sification, UIUC-sports [20] for event classification and

Caltech-256 for object classification, with performance

comparison to the other methods; for the methods other than

Fisher kernel [24] and super vector coding [35], we show

the performances that are reported in the referenced papers.

Scene-15 [19]. The dataset contains totally 4,485 im-

ages of 15 scene categories in indoor/outdoor scenes, such

as store, bedroom and kitchen for indoor, and coast, city and

forest for outdoor. Each category includes 200∼400 images

of about 300×300 pixels. We follow the standard exper-

imental setup [19]; 100 images per class are randomly se-

lected for training and the rest images are used for test. The

averaged classification accuracies over 10 trials are shown

in Table 5. The proposed method exhibits the favorable per-

formance compared to the others, though the improvement

is not so significant. This is because the dataset is somewhat

easy due to the strong spatial alignment in the images and

the small number of categories, which saturates the perfor-

mances.

MIT-Scene [25]. This dataset contains 15,620 images

from 67 indoor scene categories and all images have a min-

imum resolution of 200 pixels in the smallest axis. In

contrast to Scene-15, this classification task is very chal-

lenging due to the large within-class variability and small

between-class variability in a large number of categories.

Following the experimental protocol in [25], we use 80 im-

ages per category for training and 20 images for test. We

report the classification accuracy on the training/test split

750750750750752752



Table 6. Performance comparison on MIT-Scene dataset

Method Acc. (%)

Quattoni and Torralba [25] 26.0

Li et al. [21] 37.6

Bo et al. [4] 41.8

Fisher kernel (256 words) [24] 53.27

super coding (1024 words) [35] 56.17

ours (256 words) 58.91

Table 7. Performance comparison on UIUC-sports dataset

Method Acc. (%)

Li et al. [21] 77.88

Li and Fei-Fei [20] 73.40

Dixit et al. [11] 84.4

Liu et al. [22] 84.56 ±1.5

Gao et al. [12] 85.31 ±0.51

Bo et al. [4] 85.7 ±1.3

Fisher kernel (256 words) [24] 88.61 ±1.16

super coding (1024 words) [35] 90.83 ±1.06

ours (256 words) 90.42 ±1.03

given by the authors’ web page2. The performance results

are shown in Table 6. We can see that the proposed method

significantly outperforms the others including Fisher ker-

nel [24] and super vector coding [35]; the proposed method

improves the performance by 17% over the recently devel-

oped method [4].

UIUC-sports [20]. This dataset is collected by [20] for

image-based event classification. It contains 1,792 images

of eight sport categories; badminton, bocce, croquet, polo,

rowing, rock climbing, sailing and snowboarding. Each

category contains 137∼250 images. This is a challenging

dataset since variations of poses and sizes are quite large

across diverse event categories with the cluttered back-

grounds. According to the experimental setup used in [20],

we randomly select 70 training and 60 test images from

each category. We report in Table 7 the averaged classifica-

tion accuracies over three random training/test splits. The

vector aggregation based methods effectively work com-

pared to the other methods; especially, the proposed method

significantly outperforms others, though it is comparable to

the super vector coding [35]. However, it should be noted

that the dimensionality of the proposed feature with 256

words is half of that in super vector coding with 1024 words,

which speeds up the classification.

Caltech-256 [14]. This is a challenging dataset for ob-

ject recognition task. It contains 256 object categories and

30,607 images besides a background (clutter) category in

which none of the images belonging to those 256 categories.

Each category contains at least 80 images. The intra-class

variances regarding such as object locations, sizes and poses

in the images are quite large, which makes Caltech-256 a

challenging benchmark dataset for object recognition. Ac-

2http://web.mit.edu/torralba/www/indoor.html
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Figure 5. Performance results on Caltech-256 dataset

Table 8. Performance (%) of our method on Caltech-256 dataset
#sample 15 20 30 40 50

Ours 40.1±0.23 44.1±0.46 48.6±0.26 51.6±0.09 53.8±0.26

cording to the standard experimental setting, we randomly

picked up for training 15, 20, 30, 40, and 50 images per cat-

egory and 30 images for test. We report the averaged classi-

fication accuracy over three trials, and the results are shown

in Fig. 5 and Table 8. The proposed method significantly

outperforms the other methods [13, 18, 29, 12]; the per-

formances are improved by 3 ∼ 5% over the method [13]

which uses multiple types of features while the proposed

method is based on single type of SIFT local descriptors.

Summary. These experimental results demonstrate

that the proposed method produces favorable performances

compared to the other existing methods on various tasks of

object recognition and scene/event classification using vari-

ous datasets. It should be noted again that all the results are

produced by the proposed method with the identical param-

eter setting described in this paper, without carefully tuning

them for respective datasets. Thus, the parameter setting,

especially the bandwidth h = 0.1, is shown to be robust,

while the performances might be further improved by tun-

ing the parameter setting carefully in each dataset.

We obtain greater performance improvements over the

methods of super vector coding [35] and Fisher kernel [24]

on PASCAL-VOC2007, MIT-Scene and Caltech-256
datasets. This is because the performances on the remaining

datasets of Scene-15 and UIUC-sports are saturated in the

proposed method and super coding [35]. Those two datasets

contain smaller number of categories, rendering rather eas-

ier classification tasks than the other three datasets; actually,

the performances produced by the methods on Scene-15
and UIUC-sports are much higher (about 90%) than those

on the other three datasets. The proposed method improves

the performances more significantly on the more challeng-

ing (difficult) datasets due to its high discriminative power.
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5. Conclusion
We have proposed a novel method to extract effective

features for image classification. In the framework of BoF

which extracts a plenty of local descriptors from an im-

age, the proposed method is built upon the probability den-

sity function (p.d.f) obtained by applying kernel density

estimator to those local descriptors. The method exploits

the oriented p.d.f gradients to effectively characterize the

p.d.f, which are subsequently coded and aggregated into

the orientation histograms. The proposed method produces

generic image features without imposing any assumption

on the task, and thus it is applicable to any kinds of image

classification tasks. In the experiments on object recogni-

tion and scene/event classification using various datasets,

the proposed method exhibited the superior performances,

compared even to the recently developed methods. Our fu-

ture work includes to apply the proposed method to an im-

age search as in [17].
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