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Abstract. In pattern classification, it is needed to efficiently treat two-
way data (feature matrices) while preserving the two-way structure such
as spatio-temporal relationships, etc. The classifier for the feature matrix
is generally formulated by multiple bilinear forms which result in a ma-
trix. The rank of the matrix, i.e., the number of bilinear forms, should
be low from the viewpoint of generalization performance and computa-
tional cost. For that purpose, we propose a low-rank bilinear classifier
based on the efficient optimization. In the proposed method, the classi-
fier is optimized by minimizing the trace norm of the classifier (matrix),
which contributes to the rank reduction for an efficient classifier without
any hard constraint on the rank. We formulate the optimization prob-
lem in a tractable convex form and propose the procedure to solve it
efficiently with the global optimum. In addition, by considering a kernel-
based extension of the bilinear method, we induce a novel multiple kernel
learning (MKL), called heterogeneous MKL. The method combines both
inter kernels between heterogeneous types of features and the ordinary
kernels within homogeneous features into a new discriminative kernel in
a unified manner using the bilinear model. In the experiments on var-
ious classification problems using feature arrays, co-occurrence feature
matrices, and multiple kernels, the proposed method exhibits favorable
performances compared to the other methods.

1 Introduction

Classification problems are usually addressed to the tasks to classify feature
vectors extracted from the target domain such as images [1,2] and motion se-
quences [3,4]. The features are often to be represented in a vector form (one-way)
such as by concatenation, whereas it is inherently defined in a matrix form (two-
way). For example, the matrix forms are found in image pixels, arrays of (local)
feature vectors extracted at spatio-temporal (grid) points such as in HOG [1], and
co-occurrence features (Fig. 1). The dimensionality of the concatenated feature
vector is the product of two-way’s dimensions, resulting in high dimensionality,
and the inherent structure of the two-way features is unfortunately collapsed [5].

There are some recent works to directly deal with the features in a matrix
form; 2DPCA [6] and 2DLDA [7] are extended from PCA and LDA to matrix-
based formulations for dimensionality reduction, and the methods in [8,9] are
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Fig. 1. Examples of feature matrices. Arrays of feature vectors extracted from one-way
(a) and two-way data (b) and co-occurrence features (c) are defined in a matrix form.

also proposed to factorize the feature matrix. Those methods are formulated
mainly to learn effective image representations in a matrix form and are not
intended for classification problems in a supervised framework.

For classification, significant research efforts have been made on construct-
ing linear classifiers for feature vectors, e.g., SVM [10] and L1-SVM [11] in the
maximum-margin framework [12], which can be further extended to kernel-based
methods [13]. On the other hand, the classifier to deal with feature matrices is
naturally defined as a bilinear model comprising two kinds (row and column)
of weights [5], which forms a matrix in general. Along with the advances of the
linear classifiers, some bilinear classifiers have been recently proposed [14,15].
The main concern in the bilinear methods is to construct the bilinear classifier
(matrix) of low rank in a manner similar to the maximum-margin framework;
The VC-dimension of the low-rank bilinear model is proven to be less than that
of the concatenated linear models [15]. In those methods, the approximated op-
timization approaches are usually employed, resulting in local minima, since the
optimization problems are formulated as a biconvex (non-convex) formulations
and semi-definite programming (SDP) which is computationally less efficient. In
addition, the constraint regarding to the rank is explicitly introduced as a free
parameter; that is, users are required to determine the classifier rank in advance.

In this paper, we propose a novel method to optimize the efficient bilinear
classifier which results in low rank. Without approximations nor hard constraints
on the rank, the proposed method automatically produces the optimal low-rank
classifier by minimizing the trace norm of the classifier matrix, while reducing
the classification errors.

The contributions of this paper are 1) to formulate a tractable convex op-
timization problem and propose an efficient optimization procedure to provide
the global minimum, and 2) by considering a kernel extension of the bilinear
classifier, to apply the proposed method to multiple kernel learning (MKL) [16]
and induce a novel MKL, called heterogeneous MKL. In the heterogeneous MKL,
by using the bilinear model, we can integrate both inter kernels between hetero-
geneous types of features and the ordinary kernels within homogeneous features
into a new discriminative kernel in a unified manner.

2 Bilinear Classifier

LetX be a feature matrix whose dimensions are denoted by h and w (X∈Rh×w).
For example, X is regarded as the array of the h-dimensional feature vectors
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extracted at w points, such as in xy-coordinates for images or along t-axis for
time-series signals, as shown in Fig. 1. To deal with the feature matrix, a bilinear
classifier is simply formulated as ŷ=w�

h Xww+b where wh∈Rh, ww∈Rw. This
is regarded as a ‘1-rank’ classifier, and by integrating multiple such classifiers,
the general bilinear classifier is defined by

ŷ = tr(W�
h XWw) + b = tr(W�X) + b, (1)

where b is the bias and W = WhW
�
w ∈ R

h×w is the classifier matrix (Wh ∈
R

h×r, Ww ∈Rw×r where r≤min[w, h]). For simplicity, we consider a two-class
classification problem, given n samples {Xi, yi}ni=1 where yi is the class label
(yi∈{+1,−1}) of the i-th sample. As in the maximum-margin framework [12],
we measure the margin of the bilinear classifier in (1) by the matrix trace norm,
i.e., sum of singular values, for minimizing the matrix rank, which results in the
following optimization problem:

min
W ,b

||W ||Σ + C

n∑

i=1

max
[
0, 1−yi{tr(W�Xi) + b}], (2)

where ||W ||Σ indicates the trace norm of W . Let the singular values of W be
denoted by σ ∈ R

r. The trace norm is represented by ||W ||Σ = ||σ||1, while
the rank is measured by rank(W )= ||σ||0. Thus, in the formulation (2), the L1

norm (trace norm) in the objective cost is regarded as a relaxation of the L0

norm which directly minimizes the rank. Such L1-norm minimization induces
sparsity [11] in the singular values, thereby minimizing the rank. In the follow-
ings, we reformulate (2) to the tractable convex problem (10) and propose the
procedure to solve it efficiently.

2.1 SDP Problem

We begin with rewriting (2) to semi-definite programming (SDP) [17]. By intro-
ducing the augmented variables,

X̃i =
[

0 Xi

X�
i 0

]
, W̃ =

[
Wh
Ww

][
Wh
Ww

]�
=

[
WhW

�
h W

W� WwW
�
w

]
,

the formulation (2) results in

min
W̃�0,b

1

2
tr(W̃ ) + C

∑

i

max
[
0, 1−yi

{1

2
tr(W̃�X̃i)+b

}]
, (3)

where we replace ||W ||Σ by tr(W̃ ) as in [17]. In the convex problem (3), the
global optimum is obtained by SDP [18], but it requires significant computational
costs, which makes it infeasible for large-scaled samples.

2.2 Efficient Convex Problem

Considering W̃=
[
Wh
Ww

][
Wh
Ww

]�
, we further rewrite (3) to

min
Ww

[
1

2
tr(WwW

�
w) + min

Wh,b

{1

2
tr(WhW

�
h )+C

∑
i

max
[
0, 1−yi{tr(W�

hXiWw)+b}]}
]
.

(4)
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The formulation (4) is biconvex (non-convex) or bilevel [19], and the iterative
approach which optimizes either of Wh or Ww in an alternating manner is
applicable as in [14]. Such an approach is tractable in contrast to SDP, but it
results in local minima. In this study, we reformulate (4) to a tractable convex
problem and propose a procedure to produce the global optimum efficiently.

Here, we suppose the column size is smaller than the row size, h>w, without
loss of generality. The inner optimization (underlined term) in (4) is regarded as
the standard SVM problem with respect to Wh, b, and thus it has the dual:

max
α∈Θy

∑

i

αi − 1

2

∑

i,j

αiαjyiyjKij , (5)

where Θy =
{
α | ∀i, 0 ≤ αi ≤ C,

∑
i yiαi = 0

}
, (6)

Kij = tr{(XiWw)
�(XjWw)} = tr(WwW

�
w X�

i Xj). (7)

Thereby, given the optimum W ∗
w, we get the optimum bilinear classifier as

W ∗
h =

∑

i

α∗
i yiXiW

∗
w, ŷ = tr(W ∗

wW
∗
w
� ∑

i

α∗
i yiX

�
i X), (8)

where α∗
i are the optimizers in (5). In the forms (4-8), we can see that the key

variable isΣw�WwW
�
w � 0 rather thanWw itself. Since the inner optimization

in (4) can be replaced with its dual (5) due to the string duality [20,21], the
optimization (4) is reformulated into

min
Σw�0

[
1

2
tr(Σw)+ max

α∈Θy

{∑

i

αi − 1

2

∑

i,j

αiαjyiyjKij(Σw)

}]
,

where Kij(Σw) = tr(ΣwX
�
i Xj). (9)

This is still one form of bilevel optimization [19], but by using the unique opti-
mizer α∗ in (5), we finally obtain our proposed formulation from (2) as

min
Σw�0

[
J(Σw)�

1

2
tr(Σw)+

∑

i

α∗
i (Σw)− 1

2

∑

i,j

α∗
i (Σw)α∗

j (Σw)yiyjKij(Σw)

]
, (10)

where α∗
(Σw) = arg max

α∈Θy

∑

i

αi − 1

2

∑

i,j

αiαjyiyjKij(Σw). (11)

The optimization problem (10) is a single-level form byΣw and is convex (refer to
supplementary material for the proof). Thus, we can obtain the global optimum
Σ∗

w, instead of W ∗
w, by means of the following gradient-descent approach.

By using Lemma 2 in [22] (see supplementary material for the detail), the
derivative of J is given, as if α∗

(Σw) do not depend on Σw , by

∂J

∂Σw
=

1

2

{
I −

∑

ij

α∗
i(Σw)α∗

j(Σw)yiyjX
�
i Xj

}
.

For optimization of (10), to ensure the positive semi-definiteness of Σw, the
projected gradient descent [20,21] is applied via the eigen decomposition of Σw−
η ∂J
∂Σw

and cutting off the negative eigenvalues and their eigenvectors:

Σold
w − η

∂J

∂Σw
=V ΛV �=

w∑

i=1

λiviv
�
i , Σnew

w ←
∑

i|λi>0

λiviv
�
i =V+Λ+V

�
+ , (12)
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where η is the step size determined by the line search [23] and λi,vi are the
i-th eigenvalue and eigenvector, respectively. The variables Ww,Wh are easily

retrieved by using those positive eigenvalues and eigenvectors:Ww=V+Λ
1
2
+, and

Wh=
∑

i α
∗
i (V+Λ+V �

+ )yiXiV+Λ
1
2
+.

The essential rank of the classifier W = WhW
�
w is usually less than r, and

the redundant ranks are eventually eliminated by assigning zero singular values
through the optimization in (10) which corresponds to minimization of the trace
norm ||WhW

�
w ||Σ , even if starting with the full rank Σw .

In the proposed formulation (10), the dimensionality of the variable Σw ,
O(w2), is much smaller than that of W̃ , O((h + w)2), in SDP (3). The com-
putational complexity of the above optimization procedure is solely dependent
on that of the quadratic programming (QP) in (11). For solving the QP, we can
apply the efficient off-the-shelf SVM solver, such as libsvm [24]. The computa-
tionally exhaustive step other than the QP is the eigen decomposition in (12).
In practice, however, either the dimension h,w is low; e.g., high-dimensional fea-
tures are extracted at a few points (h�w), or either of the dimensionalities can
be reduced such as by applying PCA in advance. Thus, the computational cost
of the eigen decomposition is negligible compared to those of QP in most cases.

2.3 Comparison to Related Works

The formulation of the linear SVM [10] is actually regarded as the minimization
of the Frobenius norm ‖W ‖F =tr(W�W ), but it usually results in a full rank
classifier. The Frobenius norm corresponds to the L2 norm of the singular values
σ and the obtained classifier tends to have dense singular values, resulting in
the full-rank classifier, unlike the trace norm (the L1 norm of σ). Therefore, to
achieve low-rank SVM, Wolf et al . [15] and Pirsiavash et al . [14] additionally in-
troduced a hard constraint on the rank, rank(W )≤k, into the formulation using
‖W ‖F . Those methods, however, usually produce the classifier of the maximum
rank under that constraint, i.e., rank(W )=k, since the objective cost ‖W ‖F is
the same as in the SVM, and it is difficult to determine the optimal rank k in
advance.

The bilinear models are also addressed in the literature of the collaborative fil-
tering [17,25,26]. In those methods, the trace norm ||W ||Σ was employed as the
objective cost, but the authors also mentioned that the resulting SDP is exhaus-
tive and difficult to solve for large-scale samples. Thus, Loeff and Farhadi [26]
and Rennie and Srebro [25] applied the approximated optimization approaches,
though resulting in local minima.

Compared to the above methods, in terms of optimization, our contribution is
to formulate the bilinear classification problem in the tractable convex form (10)
and to propose the computationally efficient optimization procedure to solve it.
Without any hard constraint on the rank, the proposed method can automati-
cally produce the bilinear classifier of the optimal low rank.
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3 Extensions of Bilinear Classification

3.1 Smoothing Regularization

Either or both of the bilinear weights, Wh,Ww, are occasionally connected to
physical properties; e.g., Ww works as weights on spatio-temporal positions,
while Wh is for the feature vector. In such cases, it is useful to take into account
the (physical) relationships between the weight components in terms of regu-
larization for improving the generalization performance. For that purpose, we
introduce the smoothing regularization. In the case of time-series, the extracted
features are not independently drawn but naturally have continuity between
adjacent features, which expects the smooth weights Ww. The smoothing reg-
ularization is expressed by using the quadratic form derived from Laplacian of
the weights, and the formulation results in

min
Ww,Wh,b

1

2
tr(WwW

�
w )+

1

2
tr(WhW

�
h )+

1

2
Cwtr(W

�
w LwWw)+

1

2
Chtr(W

�
h LhWh)

+C
∑
i

max
[
0, 1− yi{tr(W�

h XiWw) + b}],

where Lw,Lh are the matrices measuring the smoothness and Cw, Ch are reg-
ularization parameters. For time-series (one-way), the matrix Lw is determined
based on tr(W�

w LwWw) =
∑

t ‖ − ww,t−1 + 2ww,t − ww,t+1‖2. In this study,
the regularization parameter Cw is set so as to equally balance the two spectral
matrix norms of I and Lw by Cw = 1/||Lw||s, (Ch = 1/‖Lh‖s for Lh), where
‖Lw‖s indicates the spectral matrix norm (the maximum singular value) of Lw.
Then, the above formulation is rewritten to the following form similar to (4):

min
W̄w,W̄h,b

1

2
tr(W̄wW̄

�
w )+

1

2
tr(W̄hW̄

�
h )+C

∑
i

max
[
0, 1−yi{tr(W̄�

h X̄iW̄w) + b}],
where X̄i = (I + ChLh)

− 1
2Xi(I + CwLw)

− 1
2 .

The optimization procedure in Sec.2.2 is applicable to it and we obtain the
smoothed classifier weights Wh=(I + ChLh)

− 1
2 W̄h, Ww=(I + ChLw)

− 1
2 W̄w.

3.2 Heterogeneous Multiple Kernel Learning

By considering a kernel-based extension of the bilinear classifier, we naturally ap-
ply the proposed method to multiple kernel learning (MKL) [16], which induces
a novel MKL, called heterogeneous multiple kernel learning.

For kernelization, we employ the kernels for Rij �X�
i Xj ∈Rw×w in (9). In

this case, the optimized Σw works as weights for the multiple (w×w types)
kernels in Rij to produce a new composite kernel in (9), which is closely re-
lated to MKL [16]. In the followings, we consider the column feature vectors xic

(c=1, · · · , w) in Xi=[xi1, · · · ,xiw]. When the feature vectors xic are all homo-
geneous, an identical kernel function is simply applied as Rij

cd=k(xic,xjd). The
proposed bilinear model can also deal with multiple types of kernels (features),
which induces heterogeneous MKL (hMKL), as follows. Given respective types of
kernels kc, the main concern in the hMKL is to construct kernels, especially for
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the off-diagonal elements of Rij ; those are inter kernels between heterogeneous
types of kernels (features), which is a novel concept in this paper. We propose
the following form of the kernels for Rij ,

Rij
cd = k�

icK
− 1

2
c K

− 1
2

d kid, (13)

where Kc is the c-th type of kernel Gram matrix, Kc = {kc(xic,xjc)}j=1,..,n
i=1,..,n ∈

R
n×n, and the kernel feature vector kic = [kc(xic,x1c), · · · , kc(xic,xnc)]

� ∈ R
n

(the i-th column vector of Kc). We give an interpretation to this formulation of
the kernel (13) as follows.

For the intra kernels between homogeneous types of kernels, each type of
feature vector φic associated with xic in the reproducing kernel Hilbert space
(RKHS) is projected into the subspace by PCA [13],

Rij
cc = k�

icK
− 1

2
c K

− 1
2

c kjc = φ�
icVcVc

�φjc,

where Φc = [φ1c, · · · ,φnc] = VcΛcU
�
c (SVD), and kic = Φc

�φic. Note that
Kc =UcΛ

2
cU

�
c and Vc is the projection matrix by PCA in RKHS. Especially,

for the training samples, the diagonal elements of Rij are identical to the original
kernels; Rij

cc = kc(xic,xjc). When dealing with only the diagonal matrix of Rij
cc,

the proposed bilinear method (10) corresponds to the MKL method of [21].
On the other hand, the inter kernels between heterogeneous types of kernels

are represented by

Rij
cd = k�

icK
− 1

2
c K

− 1
2

d kjd = φ�
icVcU

�
c UdV

�
d φjd. (14)

In this form, the consistency between the different types of kernels is ensured via
canonical correlation analysis (CCA). The CCA provides the projections A,B
for the two types of features Φc,Φd in RKHS so as to maximize the correlation
coefficient, by solving the following eigenvalue problem:[

0 ΦcΦ
�
d

ΦdΦ
�
c 0

][
A
B

]
=

[
ΦcΦ

�
c 0

0 ΦdΦ
�
d

][
A
B

]
Ω, ∴ A = VcΛ

−1
c P , B = VdΛ

−1
d Q,

where U�
c Ud=PΩQ� (SVD). In the CCA, the feature vectors φic,φjd are first

whitened by VcΛ
−1
c ,VdΛ

−1
d via PCA, and then the PCA axes are rotated by

P ,Q so as to ensure the consistency and to maximize the correlation coefficient.
By using these notations, (14) is rewritten to

Rij
cd = φ�

icVcPΩ
1
2Ω

1
2Q�V �

d φjd.

This is quite similar to the CCA projection; The feature vectors φic,φjd are
projected into PCA subspaces by Vc,Vd, and then they are rotated by the CCA
rotation matrices P ,Q with weighting the CCA axes by the correlation coef-
ficients Ω

1
2 . The differences from the CCA projections are that 1) we use the

orthogonal PCA projection, not whitening, for preserving the magnitude (norm)
of φic,φjd and then 2) we use the weighting by the correlation coefficients Ω
which measure consistency between the heterogeneous kernels.

As a result, in hMKL, we deal with the feature matrix which is explicitly
represented by the following form;

X=[K
− 1

2
1 k1, · · · ,K− 1

2
w kw] ∈ R

n×w, kc=[kc(xc,x1c), · · · , kc(xc,xnc)]
� ∈ R

n.
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class1 class2 SVM bilinear SVM SDP Ours
Input images (100 rank) [14] (5 rank) (1 rank) (1 rank)

Fig. 2. Classifier weights on toy data. Negative and positive weights are shown by
pseudo colors from blue to red.

Thus, the resultant bilinear classifier is also represented in the bilinear form (1)
and the proposed optimization procedure (Sec.2.2) is directly applicable even
to this hMKL. It should be noted again that Σw =WwW

�
w is regarded as the

weights on both the intra and inter kernels.

4 Experimental Results

We applied the proposed bilinear classification method to various classification
problems using feature arrays, co-occurrence features and multiple kernels.

For comparison,we also applied linear SVM[10] to the concatenated feature vec-
tors and bilinear SVM [14] to the feature matrices except in multiple kernel learn-
ing. The bilinear SVM [14] includes an rank parameter for rank(W )≤ k which is
determined based on two-fold cross validations from k∈{5, 10} as in [14]. In all the
methods, to cope with multi-class problems, the one-vs-rest approach is employed.
All the methods were implemented byMATLABwith libsvm [24] on 3.33GHz PC.

4.1 Toy Example

First, by using toy data, we intuitively demonstrate how the proposed method
works on feature matrices. For two-class classification, two types of binary images
(100×100) are used as feature matrices (X ∈ R

100×100), as shown in Fig. 2; the
images have basically one rank with salt and pepper noise of size 5× 5, and
there are 100 samples in each type (class). The obtained classifier (W ) is shown
in Fig. 2, compared to those by the other method including SDP (3) which is
feasible in such a small dataset by using SeDuMi solver. In the linear SVM, the
concatenated linear classifier (vector) is folded into the intrinsic matrix form
and its rank is also measured. The proposed method favorably produces the
one-rank classifier which is the same as the global optimum one by SDP, while
the classifiers by the methods of linear SVM and bilinear SVM [14] are overly
fitted to the data with higher (full) rank. Without any hard constraint about
the rank, the proposed method recovers the essential rank in data with a low
computational cost (0.4 sec) compared to the exhaustive SDP method (14.0 sec).

4.2 Feature Array

Next, we conducted the practical experiments on motion classification using
RWC gesture dataset [3] and image classification (detection) using INRIA person
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Table 1. Classification performances for feature arrays

(a) RWC dataset (b) INRIA dataset

Method Rank Err. (%)
SVM 50 2.11

bilinear SVM [14] 5.59 1.41
Ours 3.27 0.98

Ours (smooth) 3.25 1.01
[4] - 1.9
[3] - 4.14

Method Rank EER (%)
SVM 32 0.55

bilinear SVM [14] 10 0.71
Ours 12 0.62

Ours (smooth) 12 0.53
[27] - 0.58
[1] - 2.25

dataset [1]. In these experiments, the array of the feature vectors extracted at
temporal/spatial points forms the feature matrix X as shown in Fig. 1ab.

RWC Gesture Dataset [3] contains 17 types of human gesture as shown in
Table 1a. Each of these gestures is performed four times by 48 subjects (23 men
and 25 women). We extract 751-dimensional CHLAC motion feature vector [3]
at every frame with multiple correlation intervals Δr ∈ {1, 3, 5}; for details of
this feature, refer to [3]. Since the numbers of frames are different across the
motion image sequences, we subsample those frame-based features by bilinear
interpolation into 50-frame feature vectors. As a result, the feature matrix is
formed as feature-vs-time; X∈R751×50 (Fig. 1a). The performance is evaluated
by three-fold cross validation, and both the error rates and the ranks of the
classifiers averaged across classes are shown in Table 1a. The proposed method
produces the favorable performance compared to the other methods of SVM and
bilinear SVM [14] and the prior works [4,3]. While the rank of the SVM classifier
is 50, the proposed classifier has around only three rank, improving the efficiency
of information compression and also the generalization performance. In this case,
the smoothed classifier (Sec.3.1) that imposes the smoothing regularization on
the temporal weight Ww produces slightly inferior performance. This is because
the feature matrices are already smoothed by the subsampling procedure and
such further smoothing slightly degrades the performance.

In INRIA Person Dataset [1], we used 2,416 person and 12,180 person-free
images (64× 128) for training, and 1,132 person and 13,590 person-free images
for test as shown in Table 1b. The image is divided into 4×8 subregions and
324-dimensional GLAC feature vectors [27] are extracted from each region with
the same parameter settings as in [27]. Thereby, the feature matrix is formed as
feature-vs-space (positions); X∈R324×32 (Fig. 1b). The performance results are
shown in Table 1b. In the proposed method, the smoothed classifier that imposes
the regularization on the (two-way) spatial positions Ww slightly improves the
performance. The performance is comparable to SVM and is superior to the
prior works [27,1]. It should be noted that the proposed classifier of low rank
(=12) significantly reduces the computational cost in the detection stage since
our low-rank classifier is decomposed into a few separable filters which require
O(rank(W )×max(h,w)) compared to O(hw) of the full rank SVM classifier.

4.3 Co-occurrence Feature

The bilinear classifier can also directly deal with the co-occurrence features
which are inherently formed as a matrix (Fig. 1c). In the bag-of-features [2],
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the local features, such as HOG [1], are assigned with (visual) words via clus-
tering, and the simple occurrence of the words are counted to produce the final
histogram-based feature vector. The occurrence features are extended to the co-
occurrence features of the words in local neighborhoods in the bag-of-features
framework [28]. For motion recognition, we follow the framework used in [4]
which extracts frame-based motion features at every 10 frames and applies k-
means to cluster the features into motion words in Fisher discriminant space;
refer to [4] for more details. In these experiments, we count the co-occurrence
of the motion words along the time axis, as follows. Given w motion words, the
frame-based feature at time t is assigned with multiple motion words of which
weights form a vector f(t)∈Rw [4]. The co-occurrence features are extracted by
F (Δt) =

∑
t f(t)f(t +Δt)�, in which Δt denotes the interval along the t axis,

say Δt∈{0, 20} in these experiments, and those features are concatenated into
the final feature matrix X = [F (0),F (20)]� ∈ R

2w×w. The number of words is
simply determined by w = 10×#class. We conducted the motion classification
experiments by using UCF sport action dataset [29] and Cambridge hand gesture
dataset [30]. In the smoothed classifier (Sec.3.1), the matrices Lh,Lw are set as
the graph Laplacian [31] for which the similarities between words are measured
by 10 nearest neighbors of word centers.

UCF Sport Action Dataset [29] contains nine types of sport actions as
shown in Table 2a. Each action is performed by several (about 17) players, and
the total number of sequence is 150. To enlarge the training size, the number
of training samples are doubled by adding horizontal mirror images. For evalu-
ation, three-fold cross validation is applied and the averaged error rates across
action classes are reported in Table 2a. The performances reported in the prior
works [29,14], which are measured in a slightly different protocol (slightly dif-
ferent number of action classes), are also shown as a reference. The proposed
methods exhibit superior performances to the other methods, and in particu-
lar, the smoothed bilinear classifier improves the performance with quite low
rank. In Fig. 3a, we show the performances by increasing the number of words
to evaluate the robustness of the methods. In the proposed method, due to the
appropriate low rank, the performances are stably high even for larger number
of words, while the other methods degrade their performances.

CambridgeHandGestureDataset [30] contains nine hand gestures defined
by three primitive hand shapes and three primitive motions, which are performed
ten times by two subjects under five different illumination conditions, as shown in
Table 2b. We used the sequences acquired under the plain illumination condition
for training and those under the remaining four conditions for test. The averaged
error rates across all gesture classes over the four test conditions are reported in
Table 2b. The proposed method produces superior performances to the others in-
cluding the prior works [4,30]; the smoothed classifier is the most favorable. Fig. 3b
also shows the performances for various numbers of words, demonstrating the ro-
bustness of the proposed method as is the case with UCF dataset.

These experimental results show that the proposed method robustly produces
high performances, requiring users only to set sufficiently large number of words
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Table 2. Classification performances for co-occurrence features

(a) UCF dataset (b) Cambridge dataset

Method Rank Err. (%)
SVM 246.67 28.80

bilinear SVM [14] 9.63 27.87
Ours 1.15 24.19

Ours (smooth) 1.11 23.73
[29] - 35.2
[14] - 30.8

Method Rank Err. (%)
SVM 251 14.03

bilinear SVM [14] 10 14.17
Ours 1.22 9.17

Ours (smooth) 1.33 9.03
[4] - 11
[30] - 18
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Fig. 3. Performances for various numbers of words

without carefully tuning the number of words nor the rank of the classifier for
classifying the co-occurrence features.

4.4 Multiple Kernels

At the last, we applied the proposed method to classification using multiple
kernels (Sec.3.2) and compared the performance to those of the other MKL
methods: simpleMKL [20] and the method of [21]. It should be noted again that
the proposed method dealing with only diagonal matrix of Rij

cc = kc(xic,xjc)
corresponds to the MKL method [21] and it is denoted by “diagonal ([21])”.

To demonstrate the effectiveness of the proposed kernel (13), we conducted
the comparative experiment using PASCAL VOC 2007 dataset1 which con-
tains 5,011 images for training and 4,952 images for test in 20 object categories.
We used 15 types of precomputed features provided in the website2 of the au-
thors [32] (for deals of the features, refer to [32]), and employed the RBF kernels
of those features as kc(xic,xjc)=exp(−||xic − xjc||2/γ) where γ is the mean of
pairwise distances. The following alternative forms to the proposed kernel (13)
are conceivable.

Product: Rij
cd = k�

ickjd,

PCA: Rij
cd = k�

icUcΛ
−1
c Λ−1

d U�
d kjd = φ�

icVcV
�
d φjd,

Inverse: Rij
cd = k�

icK
−1
c K−1

d kjd = φ�
icVcΛ

−1
c U�

c UdΛ
−1
d V �

d φjd.

Compared to (13, 14), the PCA kernel loses the CCA rotation matrix derived
from Uc, while the inverse kernel additionally introduces the whitening by Λ−1

c

1 http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
2 http://lear.inrialpes.fr/people/guillaumin/data.php

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://lear.inrialpes.fr/people/guillaumin/data.php
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Table 3. PASCAL VOC 2007

(a) Kernel types (b) Comparison
Kernel mAP (%)
Product 42.30
PCA 45.60

Inverse 37.88
Proposed 48.64

Method mAP (%)
simpleMKL [20] 48.04
diagonal ([21]) 45.83

Ours 48.64

Table 4. Flower dataset

Method Acc. (%)
simpleMKL [20] 81.08

simpleMKL (multiclass) [20] 82.55
diagonal ([21]) 85.10

[33] 85.5
Ours 86.47

Table 5. Butterfly dataset

Method Acc. (%)
simpleMKL [20] 69.60

simpleMKL (multiclass) [20] 67.95
diagonal ([21]) 74.42

Ours 76.54

Table 6. Bird dataset

Method Acc. (%)
simpleMKL [20] 69.21

simpleMKL (multiclass) [20] 68.71
diagonal ([21]) 72.85

Ours 74.50

to normalize the magnitudes (norms) of features. Table 3a shows the mean of
average precision rates (mAP) across the categories. The proposed kernel (13) is
superior to the other types of kernels, showing that both the rotation matrix by
CCA and magnitude preserving by PCA are effective for classifications. Table 3b
shows that the proposed method produces the favorable performance compared
to the others.

We further conducted the MKL experiments using Oxford flower dataset [34],
Butterfly dataset [35] and Bird dataset [36]. We used the RBF kernel in the same
manner as described above. The Oxford flower dataset [34] is composed of 80
images of 17 flower categories. We used the seven types of precomputed pairwise
distances provided in the website3 of the authors [37]; for the details of the dis-
tances, refer to [34,37]. Table 4 shows the performances evaluated by three-fold
cross validations using the same predefined splits as in [34]. For comparison, the
performance of the method [33] which uses the same features and cross valida-
tion splits is also shown. The Butterfly dataset [35] has 619 images of seven
butterfly classes, and the Bird dataset [36] contains six bird classes with 100
images per class. In these datasets, we used the three types of precomputed pair-
wise distances provided in the website4 of the authors [38]; for the details of the
distances, refer to [38]. The classification accuracies are evaluated by three-fold
cross validations and are shown in Table 5 and Table 6. In those three datasets,
the proposed method produces superior performances to the others. Especially,
in comparison to diagonal [21], the inter kernels between heterogeneous kernels
effectively contribute to improve the performances.

As shown in above experimental results, the proposed heterogeneous MKL
method, which combines both intra (diagonal) and inter (off-diagonal) kernels
by using the bilinear model, is effective compared to the standard MKL methods.

3 http://www.robots.ox.ac.uk/~vgg/research/flowers/index.html
4 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/msorec/

http://www.robots.ox.ac.uk/~vgg/research/flowers/index.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/msorec/
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5 Conclusion

We have proposed an efficient method to optimize a bilinear classifier for feature
matrices which results in low rank without any hard constraint on the rank.
The classifier is optimized by minimizing the trace norm of the classifier ma-
trix, which contributes to the rank reduction. The optimization is formulated
in a tractable convex form and an computationally efficient optimization pro-
cedure is proposed. In addition, by considering a kernel-based extension of the
bilinear method, a novel multiple kernel learning, called heterogeneous multiple
kernel learning (hMKL), is induced. In the hMKL, we can combine not only
the ordinary kernels of homogeneous kernels (features) but also the inter kernels
between heterogeneous kernels (features) into a new composite kernel by using
the bilinear model. In the experiments on various classification problems using
feature arrays, co-occurrence feature matrices and multiple kernels, the proposed
method exhibited favorable performances compared to the other methods.
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