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Abstract. The subspace-based methods are effectively applied to clas-
sify sets of feature vectors by modeling them as subspaces. It is, how-
ever, difficult to appropriately determine the subspace dimensionality in
advance for better performance. For alleviating such issue, we present a
generalized mutual subspace method by introducing soft weighting across
the basis vectors of the subspace. The bases are effectively combined via
the soft weights to measure the subspace similarities (angles) without
definitely setting the subspace dimensionality. By using the soft weight-
ing, we consequently propose a novel mutual subspace-based method
to construct the discriminative space which renders more discriminative
subspace similarities. In the experiments on 3D object recognition using
image sets, the proposed methods exhibit stably favorable performances
compared to the other subspace-based methods.

1 Introduction

In recent visual recognition tasks, sets of images (feature vectors) are effectively
employed; e.g ., image frames in a video sequence for face recognition [1–4] and
multiple still images captured from various angles for 3D object recognition [5,
6]. Those image sets capture various appearance changes of objects, providing
more discriminative clues for classification than a single-shot image alone. Thus,
the recognition systems utilizing those sets exhibit superior performances [1, 7].

The subspace models are successfully applied to classify the sets of vec-
tors [5–13]. The vector set is represented by its underlying subspace spanned
by a small number of the principal basis vectors. The angle between a vector
and a subspace [14] is mathematically extended to the canonical angle between
subspaces [7, 15, 16] which is a fundamental measurement for classifying the sets.
The canonical angles measured in the original vector space, however, are not nec-
essarily favorable from the viewpoint of discriminating classes, and for improv-
ing classification performances, apart from kernelization [6, 13], it is important
to discriminatively measure those canonical angles. For that purpose, much re-
search effort has been made for constructing the discriminative space [5, 8–11].
Those methods render the space such that the embedded subspaces are discrim-
inatively separated in terms of the canonical angles, as in Fisher discriminant
analysis [17] which makes the pair-wise vector distance more discriminative.



2 Takumi Kobayashi

class 1

class 2

ba
si

s 
#1

#2
basis #1

#2

Fig. 1. The arrows indicate the directions of the bases with the variances (arrow
length) in two classes. The one-dimensional subspaces (longer arrows) discriminate the
two class, but they coincide when employing two-dimensional subspace. The proposed
method can properly distinguish them with soft weighting based on the variances.

The subspace-based methods, however, involve the crucial issue regarding
the dimensionality of the subspace. Users are required in advance to appropri-
ately determine the subspace dimensionality for better performance. Each of
the basis vectors in the set, given by an eigen-decomposition (PCA), is subject
to the decision whether it is employed to support the subspace or not, based
on the eigenvalues (variances). Such binary decision may significantly affect the
performance as shown in Fig. 1, and the proper number of the bases, i.e., the
subspace dimensionality, is not known a priori depending on the overlap among
the classes. The importance of the bases should be defined smoothly according
to the eigenvalues (variances) rather than in such a binary form.

We propose generalized mutual subspace based methods for alleviating the
issue regarding the subspace dimensionality. The proposed methods introduce
soft weighting on the basis vectors composing the subspace, without definitely
picking up a small number of the principal bases. We generalize the mutual
subspace method (MSM) [7] by using the soft weighting to effectively combine
the bases for computing subspace angles. In addition, we reformulate the con-
strained mutual subspace method (CMSM) [8, 9] constructing the discriminative
space and give it theoretical justification. The reformulation also enables us to
generalize the method by incorporating the soft weighting. The proposed meth-
ods effectively exploit all the bases, some of which are even less contributive to
support the subspace, via the soft weighting. In summary, our contributions are
1) to introduce the soft weighting across the bases for effectively computing the
subspace angles in MSM, 2) to reformulate CMSM with theoretical justification
and 3) to propose a novel method for constructing the discriminative space based
on the reformulation with the soft weighting.

This paper is organized as follows: in the next section, we briefly review the
methods of MSM and CMSM and describe the novel reformulation of CMSM.
In Sec.3, the details of the proposed methods are described and Sec.4 shows the
experimental results on 3D object recognition. We conclude this paper in Sec.5.

2 Subspace based methods

The subspace model is effectively applied to classify not only a feature vector [14]
but also a set of feature vectors [7] that is our main concern in this paper. The
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set of feature vectors is represented by the subspace and thereby samples are
those subspaces, not vectors.

2.1 Mutual subspace method (MSM)

Let the i-th set of feature vectors be denoted by Xi = [xi1, · · · ,xini
] ∈ �d×ni

where xij ∈ �d is the j-th d-dimensional feature vector in the i-th set. The set
of vectors is modeled by the subspace spanned by the principal basis vectors:
we first apply an eigen-decomposition to XiX

�
i = ViΛiV

�
i where Vi, Λi =

diag({λil}d
l=1)∈�d×d are the eigenvectors and the eigenvalue diagonal matrix,

respectively, and then exploit the eigenvectors of the mi larger eigenvalues as
the orthonormal principal vectors V̂i ∈ �d×mi .

To classify the set of vectors, i.e., the subspace, the similarity measure is
defined by the canonical angles [15, 16] between the subspaces, called mutual
subspace method (MSM) [7]:

cos θ
(k)
ij = max

qik∈�mi ,qjk∈�mj
q�

ikV̂ �
i V̂jqjk, k = 1, · · · ,min[mi,mj ] (1)

s.t., ‖qik‖ = ‖qjk‖ = 1, q�
ikqik′ = q�

jkqjk′ = 0, k �= k′.

This is computed by applying singular value decomposition (SVD) to V̂ �
i V̂j :

V̂ �
i V̂j = QiΘijQ

�
j , (2)

where Qi,Qj are the singular vectors composed of qik, qjk and Θij is the
singular-value diagonal matrix whose diagonal elements are the singular val-
ues {cos θ

(k)
ij }k. The k-th canonical vectors V̂iqik and V̂jqjk provide the k-th

canonical angle cos θ
(k)
ij . In this paper, we define the similarity measure by

sij = tr(Θ2
ij). The measure sij becomes high for the similar subspaces and

low for the distinct ones, and they are fed to k-NN classifications.
It should be noted that in MSM the subspace dimensionality mi is crucial

for better classification performances, since the larger mi causes the measure sij

to be uniformly high for any pairs of subspaces; sij = d,∀i, j in case of mi = d.
There is no theoretical way to appropriately determine the dimensionality, and
thus users are required in advance to carefully tune the dimensionality, which is
an exhaustive procedure from the practical viewpoint.

2.2 Constrained mutual subspace method (CMSM)

In the above section, we have described how MSM works on classifying sets
of feature vectors in the original vector space. The original space, however, is
not necessarily favorable in terms of discriminating the subspaces, and it is
desirable to embed those subspaces into the more discriminative space as in
Fisher discriminant analysis (FDA) [17]. For that purpose, some methods have
been proposed for constructing the discriminative space to make the subspace
angles measured in that space more discriminative [5, 8–11]. In this paper, we
focus on the constrained mutual subspace method (CMSM) [8, 9] due to its
simple formulation and promising performances.
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Each class is represented by the subspace V̂ [c] ∈�d×mc , c = 1, · · · , C, and
let the collection of those subspace bases be denoted by V̄ = [V̂ [1], · · · , V̂ [C]].
CMSM produces the projection vectors D by the eigenvectors of the smaller
eigenvalues in the following eigenvalue problem:

V̄ V̄ �D = DΣ, s.t.,D�D = I, (3)
where Σ=diag({σl}l) is the eigenvalue diagonal matrix. In [8], it is shown that
those projection vectors of the smaller eigenvalues are based on the differen-
tial vectors between the canonical vectors, which discriminatively separate the
subspaces.

In a more practical case that multiple subspaces {V̂ [c]
i }nc

i=1 are given in each
class, a heuristic approach is presented in [9]: CMSM is repeatedly applied to
within-class subspaces and between-class ones as follows.

1. Within-class: In the c-th class, the representative subspace P [c] is obtained
by applying CMSM to V̄ [c] = [V̂ [c]

1 , · · · , V̂
[c]

nc ] as V̄ [c]V̄ [c]� = P [c]Σ[c]P [c]� .
2. Between-class: CMSM is applied to V̄ = [P [c], · · · ,P [c]] in (3) to get the

projection vectors D.

2.3 Reformulation of CMSM

In this paper, we give justification to CMSM in a different way from [8, 9] by
reformulating (3); the proposed method is founded on the reformulation (see
Sec.3). We consider the following dual eigenvalue problem of (3):

V̄ �V̄ Q = QΣ, s.t.,Q�Q = I, (4)
and the projection matrix D is retrieved by

D = V̄ QΣ− 1
2 , (5)

since V̄ = DΣ
1
2 Q� (SVD). The novel formulation (4) provides the coefficients

Q on the basis vectors, like coefficients on support vectors in SVM [18], to
construct discriminative space. We can give two interpretations (justifications)
to (4) as follows.

1) Differential canonical vectors. The reformulation (4) simply shows that
the projection vectors are based on the differential vectors between canonical
vectors. Suppose the two class subspaces V̂1, V̂2 and V̄ = [V̂1, V̂2]. The dual
eigenvalue problem (4) is described by

V̄ �V̄
1√
2

[
Q1 Q1

Q2 −Q2

]
=

[
I V̂ �

1 V̂2

V̂ �
2 V̂1 I

]
1√
2

[
Q1 Q1

Q2 −Q2

]

=
1√
2

[
Q1+Q1Θ12 Q1−Q1Θ12

Q2Θ12+Q2 Q2Θ12−Q2

]
=

1√
2

[
Q1 Q1

Q2 −Q2

] [
I + Θ12 0

0 I − Θ12

]
.

where Q1,Q2,Θ12 are the singular vectors and the singular values in (2).
Thus, the projection vectors of the smaller eigenvalues are D = 1√

2
(V̂1Q1 −

V̂2Q2)(I − Θ12)−
1
2 , which are (normalized) differential vectors between the

canonical vectors, V̂1Q1 and V̂2Q2, of those two classes. This shows that
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the eigenvalues less than 1 exhibit the discriminative power, rendering the
differential canonical vectors for the projections.

2) Minimization of pair-wise canonical angles. The eigenvalue problem (4)
is also derived from the following optimization:

min
‖q�[q[1]� ,··· ,q[C]� ]�‖=1

C∑
c,c′|c �=c′

q[c]�V̂ [c]�V̂ [c′]q[c′] + q�q = q�V̄ �V̄ q, (6)

where we use V̂ [c]�V̂ [c] = I, ∀c. The second term q�q (= 1) is the same
as the constraint, which thus makes no effect on the optimization. Roughly
speaking, the first term J �

∑
c �=c′ q[c]�V̂ [c]�V̂ [c′]q[c′] amounts to sum of

canonical angles between different classes c and c′ as in (1). The eigenvalue
less than 1 indicates J < 0 in which the discriminative coefficients q are
extracted.

The another merit of the reformulation (4) is that we can give theoretical
justification to the heuristic procedure [9] described in Sec.2.2 for dealing with
multiple subspaces in each class. Based on the above-mentioned second interpre-
tation, we consider the optimization problem to minimize the canonical angles
between classes while maximizing those within classes, which is formulated as in
FDA [17] by

J = min
q

∑C
c,c′|c �=c′

∑nc

i

∑nc′
j q

[c]�

i V̂
[c]�

i V̂
[c′]

j q
[c′]
j∑C

c

∑nc

i,j|i�=j q
[c]�
i V̂

[c]�
i V̂

[c]
j q

[c]
j + q�q

= min
q

q�RBq

q�RW q
(7)

⇒ RBQ = RW QΣ̃ ⇔ RT Q = RW QΣ, s.t.,Q�Q = I, (8)

where Σ = Σ̃ + I and

RW =

⎡
⎢⎣

V̄ [1]�V̄ [1]

. . .
V̄ [C]�V̄ [C]

⎤
⎥⎦ = blkdiag

({V̄ [c]�V̄ [c]}C
c=1

)
� 0,

RT = [V̄ [1], · · · , V̄ [C]]�[V̄ [1], · · · , V̄ [C]] � 0, RB = RT − RW ,

where blkdiag constructs a block-diagonal matrix. The projection matrix is
given in a manner similar to (5) by

D = [V̄ [1], · · · , V̄ [C]]QΣ− 1
2 . (9)

As in (6), q�RBq and q�RW q measure between-class and within-class canonical
angles, respectively. This proposed formulation has the following properties with
respect to the projection vectors D and the eigenvalues Σ = diag({σl}l).

Theorem 1. The projection vectors (9) produced via (8) are the same as the
projections by the heuristic procedure [9] described in Sec.2.2.

Proof. We apply SVD to V̄ [c] =P [c]Σ[c]Q[c]� , and define a block-diagonal ma-

trix R
− 1

2
W = blkdiag({Q[c]Σ[c]−1}C

c=1) such that R
− 1

2
�

W RW R
− 1

2
W = I. By using

these, (8) is transformed into

R
− 1

2
�

W RT R
− 1

2
W Q′ = Q′Σ, s.t.,Q′�Q′ = I, where Q = R

− 1
2

W Q′. (10)
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The left-hand-side matrix results in

R
− 1

2
�

W RT R
− 1

2
W = R

− 1
2
�

W [V̄ [1], · · · , V̄ [C]]�[V̄ [1], · · · , V̄ [C]]R− 1
2

W

= [P [1], · · · ,P [C]]�[P [1], · · · ,P [C]]. (11)
This is the same procedure as within-class CMSM to obtain the class represen-
tative subspaces P [c] in [9]. V̄ =[P [1], · · · ,P [C]] is decomposed via SVD by

V̄ = DΣ
1
2 Q′�,

where D corresponds to the projection vectors heuristically given in [9] and Q′

is the eigenvectors in (10). The projection vectors (9) are finally described by

Ddual = [V̄ [1], · · · , V̄ [C]]QΣ− 1
2 = [V̄ [1], · · · , V̄ [C]]R− 1

2
W Q′Σ− 1

2

= [P [1], · · · ,P [C]]Q′Σ− 1
2 = V̄ Q′Σ− 1

2 = D. 
�
Theorem 2. The eigenvalues in (8) are bounded in 0 ≤ σl ≤ C, ∀l.

Proof. RT � 0 and RW � 0 lead to σl ≥ 0, ∀l. By (10) and (11), the maximum
eigenvalue is obtained by

max
l

σl = max
‖q‖=1

q�[P [1], · · · ,P [C]]�[P [1], · · · ,P [C]]q, (12)

where P [c] is the orthonormal vectors since V̄ [c] = P [c]Λ[c]Q[c]� (SVD). Here,
we consider P [c]q[c] = q̄[c]p̄[c] where ‖p̄[c]‖ = 1 and q̄[c] =

√
q[c]�q[c], and

[P [1], · · · ,P [C]]q = [p̄[1], · · · , p̄[C]]q̄ where q̄ = [q̄[1], · · · , q̄[C]]� ∈�C . Thus, the
right-hand side in (12) is bounded in

q̄�[p̄[1], · · · , p̄[C]]�[p̄[1], · · · , p̄[C]]q̄ ≤ q̄�11�q̄ ≤ C, s.t. ‖q̄‖ = 1,

where we use ‖q̄‖ = ‖q‖ = 1 and p̄[c′]� p̄[c] ≤ 1, ∀c, c′. 
�

3 Proposed methods

As mentioned in Sec.2.1, the crucial issue in the subspace-based methods is how
to determine the dimensionality of the subspace. For alleviating it, the main
idea in this paper is to introduce soft weighting across the basis vectors of the
subspace instead of definitely selecting a small number of the principal bases.

3.1 Generalized mutual subspace method (gMSM)

The determination of the subspace dimensionality is regarded as picking up the
principal basis vectors, which further corresponds to designing the binary weights
on all the bases as shown in Fig. 2; 1/0 indicates whether the basis is picked up
or not. We relax the binary (hard) weighting to soft weighting. Let ω ∈ [0, 1]d

be the soft weights on the bases and Ω = diag(ω) ∈ �d×d. The soft weight is
illustrated in Fig. 2 compared to the binary one. By incorporating the weights
into MSM in (1), the generalized MSM (gMSM) is defined by

max
q�

i Ω−2
i qi=1,q�

j Ω−2
j qj=1

q�
i V �

i Vjqj ⇔ max
q′�

i q′
i=1,q′�

j q′
j=1

q′�
i ΩiV

�
i VjΩjq

′
j , (13)
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Fig. 2. Weights on basis vectors. The binary weight indicates five dimensions of the
subspace and the soft weight is created by w3 in (15).

where qi = Ωiq
′
i and Vi indicates the orthonormal bases given by an eigen-

decomposition of XiX
�
i =ViΛiV

�
i . As in (2), the generalized canonical angles

are computed by
ΩiV

�
i VjΩj = Q′

iΘijQ
′�
j , sij = tr(Θ2

ij), (14)
and the k-th canonical vectors are described by Viqi = ViΩiq

′
i and VjΩjq

′
j . In

this formulation for measuring the generalized canonical angle, the soft weights
on the bases work in the constraint q�Ω−2q = 1; the smaller weight ωl decreases
the coefficient ql, and especially ωl→0 enforces ql→0. The gMSM in (13) obvi-
ously reduces to the ordinary MSM in (1) by ω ∈ {0, 1}d (binary weights) since
[V̂i,0] = ViΩi. While in MSM the classification performance is, like quantization
errors, sensitive to the dimensionality indicated by the binary weights, the soft
weights in gMSM effectively combine the bases to compute the subspace angles.

The only issue is how to design the soft weights. Since the dimensionality is
usually determined based on the variances corresponding to the eigenvalues in
XX�=V ΛV �, the soft weights are also set according to the eigenvalues by

ω = wm(λ), where Λ = diag(λ) and wm(λ) = min
[

λ

λm
, 1

]
, (15)

where λm is the m-th eigenvalue in λ ∈ �d in descending order and min operates
on each component of the vector in comparison to 1, enforcing ω ≤ 1. This
weighting evaluates the importance of the basis vector by the variance relative
to λm; the basis of the larger variance is more important. In most cases, the
first principal basis vector indicate the direction of the subspace, which results
in significantly large λ1, and the second or later ones capture the spread of
the distribution around that direction. Thus, we suggest to use m> 1; the soft
weights with m=3 are illustrated in Fig. 2.

3.2 Generalized constrained mutual subspace method (gCMSM)

Along with gMSM, CMSM is also generalized by incorporating the soft weights
into the optimization problem (6) of the reformulated CMSM:

min
q�Ω̄−2q=1

C∑
c,c′|c �=c′

q[c]�V [c]�V [c′]q[c′] + q�Ω̄−2q (16)
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⇔ min
q�Ω̄−2q=1

q�(RT − I + Ω̄−2)q ⇔ min
q′�q′=1

q′�(Ω̄RT Ω̄ − Ω̄2 + I)q′, (17)

where q � [q[1]� , · · · , q[C]� ]� = Ω̄q′, Ω̄ = blkdiag({Ω[c]}C
c=1) and RT =

V̄ �V̄ , V̄ = [V [1], · · · ,V [C]]. This results in the following eigenvalue problem:
(Ω̄RT Ω̄ − Ω̄2 + I)Q′ = Q′Σ, s.t.,Q′�Q′ = I, (18)

and by using the eigenvectors of the smaller eigenvalues, the projection vectors
are obtained by

D = V̄ QΣ− 1
2 = V̄ Ω̄Q′Σ− 1

2 . (19)

As in the ordinary CMSM, the gCMSM also implies the differential vectors
between the canonical vectors as follows. Suppose two class bases V1,V2 and
V̄ = [V1,V2], Ω̄ = blkdiag(Ω1,Ω2). The eigenvalue problem (18) is described
by

(Ω̄RT Ω̄ − Ω̄2 + I)
1√
2

[
Q′

1 Q′
1

Q′
2 −Q′

2

]
=

[
I Ω1V

�
1 V2Ω2

Ω2V
�
2 V1Ω1 I

]
1√
2

[
Q′

1 Q′
1

Q′
2 −Q′

2

]

=
1√
2

[
Q′

1+Q′
1Θ12 Q′

1−Q′
1Θ12

Q′
2Θ12+Q′

2 Q′
2Θ12−Q′

2

]
=

1√
2

[
Q′

1 Q′
1

Q′
2 −Q′

2

] [
I + Θ12 0

0 I − Θ12

]
,

where we use Ω1V
�
1 V2Ω2 = Q′

1Θ12Q
′�
2 (SVD) in gMSM (14). The projection

vectors are described by using the eigenvectors of the smaller eigenvalues as
D = (V1Ω1Q

′
1 − V2Ω2Q

′
2)(I − Θ12)−

1
2 , which are differential vectors between

the canonical vectors of the two classes in gMSM.
The proposed gCMSM has the following property for the projection vectors.

Theorem 3. The projection vectors in (19) have the norms less than 1.

Proof. The squared norm of the projection vector is
p�p = σ− 1

2 q�V̄ �V̄ qσ− 1
2 = σ− 1

2 q′�Ω̄RT Ω̄q′σ− 1
2

= σ− 1
2 q′�(Ω̄RT Ω̄ − Ω̄2 + I)q′σ− 1

2 − σ− 1
2 q′�(I − Ω̄2)q′σ− 1

2 (20)

≤ σ− 1
2 q′�σq′σ− 1

2 = q′�q′ = 1, (21)
where we use I−Ω̄2 � 0 since the weights are ωl ≤ 1, ∀l, and the eigenvalue
problem (18) for transforming (20) to (21), and ‖q′‖ = 1 to get the last equality.


�

3.3 gCMSM for multiple subspaces

The gCMSM is also extended so as to cope with multiple subspaces in each class.
According to (7) and (16), the optimization problem is formulated by

J = min
q

∑C
c,c′|c �=c′

∑nc

i

∑nc′
j q

[c]�

i V
[c]�

i V
[c′]

j q
[c′]
j∑C

c

∑nc

i,j|i�=j q
[c]�
i V

[c]�
i V

[c]
j q

[c]
j + q�Ω̄−2q

(22)

= min
q

q�RBq

q�(RW − I + Ω̄−2)q
⇒ RBQ = (RW − I + Ω̄−2)QΣ̃

⇔ (RT − I + Ω̄−2)Q = (RW − I + Ω̄−2)QΣ (23)
⇔ (Ω̄RT Ω̄ − Ω̄2 + I)Q′ = (Ω̄RW Ω̄ − Ω̄2 + I)Q′Σ, (24)



Generalized Mutual Subspace Based Methods for Image Set Classification 9

where Σ = Σ̃ + I, Q = Ω̄Q′ and

V̄ [c] = [V [c]
1 , · · · ,V [c]

nc
], V̄ = [V̄ [1], · · · , V̄ [C]],

Ω̄[c] = blkdiag({Ω[c]
i }nc

i=1), Ω̄ = blkdiag({Ω̄[c]}C
c=1),

RW = blkdiag
({V̄ [c]�V̄ [c]}C

c=1

)
� 0, RT = V̄ �V̄ � 0, RB = RT − RW .

The projection vectors are given by using the eigenvectors of the smaller eigen-
values as

D = V̄ QΣ− 1
2 = V̄ Ω̄Q′Σ− 1

2 . (25)

The generalized eigenvalue problem (24) is transformed to a standard eigen-
value problem as follows. We apply an eigen-decomposition to Ω̄[c]V̄ [c]�V̄ [c]Ω̄[c]−
Ω̄[c]2 + I = Q′[c]Σ[c]Q′[c]� , which is within-class gCMSM, and define R

′− 1
2

W =

blkdiag({Q′[c]Σ[c]−
1
2 }C

c=1) such that R
′− 1

2
�

W (Ω̄RW Ω̄ − Ω̄2 + I)R′− 1
2

W = I.
Therefore, (24) is transformed into

R
′− 1

2
�

W (Ω̄RT Ω̄−Ω̄2+I)R′− 1
2

W Q′′ = Q′′Σ, s.t.,Q′′�Q′′ = I, where Q′ = R
′− 1

2
W Q′′.
(26)

The left-hand-side matrix is

R
− 1

2
�

W (Ω̄RT Ω̄ − Ω̄2 + I)R− 1
2

W

= [P [1], · · · ,P [C]]�[P [1], · · · ,P [C]] − blkdiag
({P [c]�P [c]}C

c=1

)
+ I,

where P [c] = V̄ [c]Ω̄[c]Q′[c]Σ[c]−
1
2 indicates the projection vectors in the c-th

within-class gCMSM in (19), and the final projection vectors (25) are described

by D = V̄ Ω̄R
− 1

2
W Q′′Σ− 1

2 = [P [1], · · · ,P [C]]Q′′Σ− 1
2 . Therefore, (26) is regarded

as between-class gCMSM using the vectors produced by within-class gCMSM.
The procedure for this method is shown in Algorithm 1 and the practical details
are described in the next section.

This proposed method has the following properties regarding the projection
vectors D and the eigenvalues Σ = diag({σl}l).

Theorem 4. The projection vectors in (25) have the norms less than 1.

Proof. The squared norm of the projection vector is
d�d = σ− 1

2 q′�Ω̄V̄ �V̄ Ω̄q′σ− 1
2

= σ− 1
2 q′�(Ω̄RT Ω̄ − Ω̄2 + I)q′σ− 1

2 − σ− 1
2 q′�(I − Ω̄2)q′σ− 1

2

≤ σ− 1
2 q′�σ(Ω̄RW Ω̄ − Ω̄2 + I)q′σ− 1

2 = q′′�q′′ = 1,

where we use I − Ω̄2 � 0 and the eigenvalue problems (24) and (26). 
�
Theorem 5. The eigenvalues in (24) are bounded in 0 ≤ σl ≤ C, ∀l.

Proof. The weights ω ≤ 1 result in Ω̄−2 −I � 0. Thus, since RT −I + Ω̄−2 � 0
and RW −I+Ω̄−2 � 0, we get σl ≥ 0, ∀l in (23). By using RW −I+Ω̄−2 � RW ,
the eigenvalues are upper-bounded by

max
l

σl = max
q

q�RBq

q�(RW − I + Ω−2)q
+1 ≤ max

q

q�RBq

q�RW q
+1 = max

q

q�RT q

q�RW q
≤ C,
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Algorithm 1 : gCMSM training

Input: X
[c]
i ∈ �d×nci : d-dimensional feature vectors of the i-th set in the c-th class.

1: for c = 1 to C do
2: Subspace: X

[c]
i X

[c]�
i =V

[c]
i diag(–

[c]
i )V

[c]�
i , i = 1, · · · , nc.

3: V̄ [c] = [V
[c]
1 , · · · , V

[c]
nc ], ¯̇ [c] = diag([wm(–

[c]
1 )�, · · · , wm(–

[c]
nc )�]�).

4: Within-class gCMSM: ¯̇ [c]V̄ [c]� V̄ [c] ¯̇ [c] − ¯̇ [c]2 + I = Q[c]˚[c]Q[c]� ,

P [c] = V̄ [c] ¯̇ [c]Q[c]˚[c]
− 1

2 .
5: Cut-off the vectors: P [c]←{p[c]

l

˛
˛‖p[c]

l ‖2 >ε}, p
[c]
l : the l-th column vector in P [c].

6: end for
7: P̄ = [P [1], · · · , P [C]], O = blkdiag

`{P [c]�P [c]}Cc=1

´

: block-diagonal matrix.

8: Between-class gCMSM: (P̄ �P̄ −O + I)Q = Q˚, D = P̄ Q˚− 1
2 .

9: Cut-off the projections: D←{dl

˛
˛σl < τ}, dl: the l-th column vector in D.

Output: Projection vectors: D ∈ �d×L.

Algorithm 2 : gMSM classification
Input: {Xi, yi}ni=1: pairs of d-dimensional feature vectors Xi∈�d×ni and a class label

yi ∈ {1, · · · , C} of the i-th set for training,
Xt: feature vectors of a set for test.

1: Subspace in gCMSM space: D�Xt = Vtdiag(–t)U�
t , ˙t = diag(wm(–t)).

2: for i = 1 to n do
3: Subspace in gCMSM space: D�Xi = Vidiag(–i)U�

i , ˙i = diag(wm(–i)).
4: Similarity: sti = tr(ˆ2

ti), where ˙tV �
t Vi˙i = QtˆtiQ

�
i (SVD).

5: end for
6: k-NN: y = kNN({sti, yi}ni=1).

Output: Estimated class label of the test set Xt: y.

where the last inequality is obtained from Theorem 2. And, as in CMSM (Sec.2.3),
σl <1 indicates J <0 in (22), producing the discriminative coefficients q. 
�

3.4 Procedure for classification

For classifying sets of feature vectors, we first train by gCMSM the discriminative
space in which the gMSM is subsequently performed to compute the subspace
angles. The training procedure by gCMSM is shown in Algorithm 1. In the line
5, we cut off the class representative vectors P [c] which are fed into between-class
gCMSM in the line 8. By Theorem 3, the vectors P [c] have the norms less than 1,
and there are negligible vectors whose norms are close to 0. By eliminating those
vectors, the eigenvalue problem in the line 8 is sufficiently speeded up without
changing the result; in this paper, we set ε = 0.1. In the line 9, we extract the
discriminative projection vectors of the smaller eigenvalues based on Theorem 5;
note that the projection vectors of the eigenvalues less than 1 are discriminative,
and we set τ = 0.9999.

The procedure to classify sets is shown in Algorithm 2. We apply gMSM in
the discriminative space produced by Algorithm 1 and then k-NN, say k = 1.
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4 Experimental results

We conducted the experiments on 3D object classification by using ETH-80 [19]
and RGB-D [20] datasets.

4.1 ETH-80 dataset

ETH-80 dataset [19] consists of eight categories, each of which contains 10 objects
with 41 images of different views. The images were transformed into gray-scale
and resized to 32×32 pixels after subtracting background as shown in Fig. 3,
resulting in 1024-dimensional image vectors. For evaluation, we applied two-fold
cross validation; the 10 objects in each category are partitioned into two folds of
five objects for training and test. We randomly repeated the validation 10 times
and reported the averaged classification performance. Two types of experimental
protocol were employed; ‘experiment 1’ is to use all of 41 views and ‘experiment
2’ is to randomly pick up 15 views for test while using all views in training.

First, we validated the theorems that the proposed method (Algorithm 1) is
based on. For Theorem 3 used in the line 5 of Algorithm 1, the norms of the class
representative vectors p

[c]
l produced by within-class gCMSM are shown in Fig. 4a

where those vectors are sorted in descending order of the eigenvalues σ
[c]
l . Some

of those vectors have tiny norms and by eliminating those tiny vectors, the com-
putational cost in the subsequent between-class gCMSM is significantly reduced;
actually the computation time for gCMSM is reduced to 0.19 sec from 2.13 sec
on Xeon 3.33GHz. For Theorem 5 in the line 9 of Algorithm 1, the eigenvalues σl

of gCMSM are shown in Fig. 4b along with the norms of the projection vectors
dl to validate Theorem 4. We can see that around σl = 1 the projection vectors
have smaller norms and are less contributive to the projections; we exploit the
projections of σl < τ = 0.9999.

We then analyzed the performances of the proposed methods; gMSM in (13)
measures canonical angles in the original vector space while the methods of
gCMSM in (18, 24) perform in the discriminative space. Note that there are two
types of gCMSM; gCMSM in (18), denoted by gCMSM-mono, groups all the
vectors of each class into a single set which is further represented by a mono-
subspace, while gCMSM in (24) deals with each object’s image set individually.
Fig. 5 shows the performances on various m used in the weighting function wm

in (15). The gCMSM produces the best performance, demonstrating that 1)
the discriminative space contributes to improve the performances in comparison
to gMSM and 2) the optimization considering within-class measures as well as
between-class ones is effective compared to gCMSM-mono. The proposed meth-
ods are also compared to the other subspace-based methods, MSM [7], OSM [10],
DCC [5], CMSM [8], as shown in Fig. 5 and Table 1. For fair comparison, the
subspace dimensionality is set by the number m in the weighting function for
gCMSM. As is the case with gCMSM, CMSM is superior to CMSM-mono. The
proposed gCMSM produces stably high performances on various m due to soft
weighting, which are superior to the others. In the experiment 2, we used only a
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Fig. 4. Norms of projection vectors with eigenvalues.
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Fig. 5. ETH-80 dataset.

subset of images of objects in test, making the test set different from the training
ones. Even though the principal directions of the image sets are highly sensitive
to the variations in pose, the proposed gCMSM exhibits superior performance
which is almost the same as in the experiment 1, while the others are degraded.

4.2 RGB-D dataset

RGB-D dataset [20] contains color and depth images of 300 physically distinct
objects in 51 categories. This dataset is composed of video sequences for each
object as it is spun around on a turntable at constant speed. The video data is
recorded by the camera mounted at three different views of approximately 30,
45 and 60 degrees from the horizon with 20 Hz providing about 250 RGB+depth
frames in a sequence. For this experiment, we subsampled the video sequences
at every fifth frame to obtain about 40,000 RGB-depth image pairs. The object
regions were extracted by background subtraction based on the depth and then
resized into 32 × 32 pixels both for RGB and depth images, as shown in Fig. 6.
Thus, we obtain the depth features of 1024 dimensionality as well as the gray-
scale features transformed from RGB.

The proposed methods are compared to the other methods by using each
of gray-scale and depth features. The results are shown in Fig. 7 and Table 2,
demonstrating the proposed gCMSM produces stably high performances com-
pared to the others; the best accuracies are competitive even with the state-of-
the-art results [20, 21]. The proposed methods are more effectively applied to
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Table 1. Best accuracies (%) on ETH-80 dataset.

Method MSM OSM DCC CMSM gMSM gCMSM

Exp.1 89.25 72.63 89.75 88.75 89.63 93.38
Exp.2 86.75 70.13 85.25 87.50 88.50 92.50

RGB

Depth

Fig. 6. RGB-D dataset.

the depth features than to the image features, which is contrast to [20, 21] us-
ing sophisticated local features such as SIFT. The depth values depending on
the object’s distance give less effective clues for classification in the local fea-
tures, while the global structure (distribution) of the depth values is effectively
extracted by the subspace. effective for classification. On the other hand, the ap-
pearance (gray-scale) features are affected by the textures and slightly degrade
the performance.

5 Conclusion

We have proposed generalized mutual subspace based methods. A soft weight-
ing is introduced across the bases of the subspace instead of definitely picking
up only principal basis vectors. The soft weights are constructed according to
the variances, i.e., eigenvalues, associated with the bases. The generalized MSM
is proposed to effectively combine the bases via the soft weights for measur-
ing the subspace angles. In addition, CMSM is reformulated with theoretical
justification, and the reformulation also enables us to generalize the CMSM
by incorporating the soft weighting for providing the discriminative space. In
the experiments on 3D object recognition using ETH-80 and RGB-D datasets,
the proposed methods exhibited stably favorable performances compared to the
other subspace-based methods.
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