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ABSTRACT

Image matting and segmentation, which are used to extract
a foreground object from the background, are primary tech-
niques for digital image and video editing. In digital matting,
the transparency of the foreground object is considered, while
segmentation performs a rigid extraction of the object. Re-
cently, several algorithms for matting and segmentation prob-
lems have been proposed and have provided high-quality re-
sults. In this paper, we propose a unified formulation for im-
age matting in the framework of the method of Quantification
IV based on a review of the previous studies from this frame-
work. Our method also utilizes discriminative information
provided by a user (a few strokes drawn by the user). The
experimental results show a favorable matting performance.

Index Terms— Matting, Object Extraction, Image Edit-
ing, Quantification IV, SVM classifier

1. INTRODUCTION

As a tool for image and video editing, image matting is used
to extract a foreground object from the background and place
it into a new image in such a way that it appears natural. The
matting problem is to estimate the opacity (called the alpha
value) and foreground and background elements at each pixel,
which are related each other by the following equation:

Ci = αiFi + (1− αi)Bi, (1)

where αi ∈ [0, 1] represents the opacity; Ci, the color vec-
tor in the image. Fi and Bi represent the foreground and
background color vectors at pixel i, respectively. The matting
problem for natural images is inherently ill-posed since there
are three observations (R,G,B in Ci) and seven unknowns to
be estimated in Eq.(1). Several algorithms have been pro-
posed in the computer vision community to deal with the ill-
posedness, and they have shown some high-quality results. In
these algorithms, some user interactions are required for indi-
cating the foreground object that is to be extracted; they also
function as clues (constraints) for solving the problem.

As shown in Fig.1, there are two types of user interac-
tions: trimap [1][2] and strokes [3][4]. The degree of user
interaction in the strokes type is much less than that in the
trimap type. The region of alpha estimation, however, is larger

(a) (b) (c) (d)

Fig. 1. (a) Original image. (b) Trimap: white/black pixels are
the fore/background, respectively, and the alpha values in the
gray pixels are estimated. (c) Strokes: a user draws red/blue
strokes in fore/background region, respectively. (d) Example
of an alpha matte. The opacities around the boundary are
represented as gray-level alpha values.

in the strokes type, which makes the matting problem more
difficult. In [3], the alpha estimation is iteratively propa-
gated from the strokes by using belief propagation. Levin
et al. [4] have assumed that in a local window, Fi and Bi lie
on a straight line in RGB color space, respectively, and have
transformed the above ill-posed problem into a closed-form
expression by using a least square solution for Fi and Bi.
Although Grady et al. [2] have used a trimap, their formula-
tion based on the random walker algorithm is also valid for
strokes type interactions. Moreover, the resulting formulation
is almost the same as that in [4].

Segmentation is a special case of image matting where
the alpha values in Eq.(1) are limited to either 0 (background)
or 1 (foreground). Some of the recent studies on segmenta-
tion are based on Graph Cuts [5][6]. The user interactions
in these are of the strokes type. On the other hand, the Nor-
malized Cut [7] has been proposed for region segmentation,
which does not extract a foreground object but segments the
regions in an image without the aid of user interactions.

In this paper, we first review the previous studies on both
matting and segmentation problems in terms of the frame-
work of Quantification IV (Q-IV) [8]. Based on this review,
we propose a unified formulation for image matting, which
naturally incorporates several constraints in the framework of
Q-IV. One of the constraints includes discriminative informa-
tion, which enables the unified formulation to deal with dif-
ficult images. The global solution of this formulation is also
obtained.
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Method Objective Constraint
Q-IV [8] min

∑
ij sij(αi − αj)2 (I)

∑
i α2

i = 1

Lazy Snapping [5] min
∑

ij sL
ij(αi − αj)2 αi ∈ {0, 1}, (II) min

∑
i{gb

i αi + gf
i (1− αi)}, (III) αk =

{
1 (k ∈ Pf )
0 (k ∈ Pb)

Normalized Cut [7] min
∑

ij sN
ij (αi − αj)2 (I’)

∑
i dN

i α2
i = 1

Closed Form [4] min
∑

ij sC
ij(αi − αj)2 (III) αk =

{
1 (k ∈ Pf )
0 (k ∈ Pb)

Table 1. Comparison of formulations in the framework of Q-IV

2. FRAMEWORK OF QUANTIFICATION IV

We first describe the formulation of the method of Q-IV [8];
then, we review some previous studies in terms of Q-IV.

2.1. Quantification IV

In the method of Q-IV, samples are scaled appropriately ac-
cording to the similarities among them, which is related to
multidimensional scaling [9].

For n samples {O1, · · · , On}, we assume that a similarity
sij is provided between Oi and Oj . Then, the problem is to
obtain the coordinate αi onto which sample Oi is mapped
according to the similarity sij . This is formulated as

min
α

∑
i,j

sij(αi − αj)2, s.t.
∑

i

α2
i = 1. (2)

By using a Lagrange multiplier η, this reduces to an eigen-
value problem:

(D − S)α = ηα, (3)

where S and D represent a symmetric similarity matrix (S=
{sij}) and a diagonal matrix (D = diag{di =

∑
j sij}), re-

spectively. The appropriate scaling for the samples consists
of the second (or latter) smallest eigenvectors in Eq.(3). The
minimization problem (2) implies that two samples with high
similarity are positioned close to each other and are subject
to the constraint of unit variance, which reduces the ambigu-
ity of the scale of the coordinates. The remaining ambiguity
of translation is eventually reduced because the second or lat-
ter smallest eigenvectors are orthogonal to 1 (vector), i.e., the
mean of samples is 0.

The formulation itself corresponds to that of a spectral
clustering which is based on a cut of graph. However, the
purpose of Q-IV is to scale samples, and not to cluster them;
this facilitates the interpretation of the roles of the constraints
and continuities of the alpha values in image matting.

2.2. Review of Previous Studies

We review some previous studies on segmentation and mat-
ting problems in terms of the framework of Q-IV. Here, the
sample Oi represents a pixel in an image, and the notations
Pf and Pb represent the sets of pixels marked by a user with

strokes as being definitely foreground and background, re-
spectively. We describe these formulations briefly and sum-
marize them in Table 1.
Segmentation The coordinate values α are regarded as

fore/background labels: α=1 for the foreground and α=0 for
the background. The formulation used in Lazy Snapping [5] is
similar to Eq.(2), and constraint (II) indicates that the energy
defined at each pixel is possibly minimized. Energy (II) is
based on the affinities to the fore/background, which is mini-
mized if alpha obeys the affinity, and the similarity sL

ij is de-
rived from the smoothness term in [5]. The formulation of [6]
is similar to that of [5]. In the Normalized Cut [7], a reverse
transformation from Eq.(3) to Eq.(2) can be performed, and
constraint (I’) is regarded as weighted (I) in Q-IV.
Matting We focus on the estimation of alpha values α

as in the previous studies [2][4]. The coordinate of αi may
be easily interpreted as the probability of being part of the
foreground at each pixel [2]. Constraint (III) determines the
approximate boundaries of the alpha values (αi ∈ [0, 1]). The
formulation of the Closed Form [4] is similar to Eq.(3) and
can be reversely transformed to Eq.(2) with constraint (III).
The similarity sC

ij used in [4] is

sC
ij =

∑
k|(i,j)∈wk

1
|wk|

{
1+(Ci−μk)(Σk+

ε

|wk|I)−1(Cj−μk)
}
,

(4)
where wk denotes k-th local window, μk and Σk denote the
mean vector and the covariance matrix of color vectors in the
local window, respectively, and ε represents a regularization
parameter.

The framework of Q-IV is interpreted as follows: the ob-
jective function, min

∑
sij(αi − αj)2, forms a system of α

values by taking into account the similarities; then, several
constraints actually define the coordinates (scaling) such as
α =1/0 for indicating definite fore/background. These con-
straints are classified into three types: hard, soft and mild con-
straints. The hard constraint corresponds to the user-drawn
strokes (III). This specifies the actual value (1 or 0) for the
pixels that have been selected by the user through interac-
tions. The soft constraints are those of Q-IV and the Normal-
ized Cut (I, I’), which limit the distribution of α according to
the (weighted) variance. The mild constraint is that of Lazy
Snapping (II). This constraint is an intermediate between the
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hard and soft constraints and possibly places α close to either
1 or 0 according to the affinities in a manner similar to that of
regularization terms.

3. PROPOSED METHOD FOR IMAGE MATTING

Based on the above review, we propose a unified formulation
for the matting problem in the Q-IV framework.

3.1. Formulation

The framework of Q-IV is particularly suitable for the matting
problem due to the continuity of the alpha values. As seen in
the review, several constraints are naturally incorporated in
the framework. Our formulation for estimating alpha values
is as follows:

min
α

∑
ij

sC
ij(αi − αj)2 (5)

s.t. min
∑
i∈P

di{Ωb
iα

2
i + Ωf

i (1− αi)2} (6)

and αk =
{

1 (k ∈ Pf )
0 (k ∈ Pb)

, (7)

where Ωf
i and Ωb

i indicate the affinities to the foreground and
background at pixel i, respectively. This formulation includes
both the hard and mild constraints. As described in the pre-
vious section, only the hard constraint (7) has been employed
for the matting problem and it is a natural extension to add
more constraints (here, the mild constraint (6)) in terms of Q-
IV. The minimization of Eq.(6) is possibly performed as in
Lazy Snapping. The similarity sC

ij of Closed Form [4] is sim-
ply employed, and we assume that sC

ii = 0 which does not
affect the final solution at all.

The affinities are defined as follows similarly to [10],

Ωf
i =

I[f(gi)]
maxj∈Pf

f(gj)
, Ωb

i =
I[−f(gi)]

maxj∈Pb
−f(gj)

, (8)

where f(gi) represents the output of the SVM classifier with
a Gaussian kernel exp(−γ||g − g′||2) for the vector gi, and
I[x] is equal to x for x > 0 and 0 otherwise. The vector
gi at pixel i is defined as the concatenation of color vectors
of pixel i and the 8-neighboring pixels, or the color vector
of pixel i. It is characterized by the number of concatenated
pixels (N ∈{1, 9}) which is a parameter decided by a user.
From the definition (8), the affinities range from 0 to nearly
1 and are based on discriminative information by SVM clas-
sification. It is noted that the discriminative information for
fore/background is naturally introduced into our matting for-
mulation through the mild constraint, whereas previous meth-
ods on image matting rarely include it. Thus, our method
deals with some difficult images for which the other methods
have failed. Furthermore, the global solution is also obtained
in spite of the addition of the constraints as described below.

The mild constraint (6) may be regarded as the combina-
tion of the constraints of Lazy Snapping and Normalized Cut;
at each pixel, the alpha value is constrained to be closer to ei-
ther 1 or 0 according to the affinities Ωf and Ωb, and the con-
straint is weighted by di. As described below, the weighted
mild constraint also works on computation. It is also noted
that this is a quadratic form of α. It encourages the alpha val-
ues to take intermediate values 0 < α < 1, because the alpha
values loose their sparseness due to the second order, whereas
the first order would enforce sparseness, nearly resulting in
segmentation (α=0/1).

3.2. Computation

With a (balancing) parameter λ ≥ 0, the proposed formula-
tion is transformed to the following:

min
α

[
α
δ

]T

L

[
α
δ

]
+ λ

[
α
δ

]T

D(Ωf + Ωb)
[

α
δ

]

−2λ

[
α
δ

]T

DΩf1 + λ1T DΩf1, (9)

where Ωf = diag(Ωf
1 , · · · ,Ωf

n),Ωb = diag(Ωb
1, · · · ,Ωb

n),
and δ is a vector composed of the alpha values satisfying the
hard constraint (7). Since this is the quadratic form of α, the
global minimum solution is obtained by linear equations:

{L0 + λD0(Ωf
0 + Ωb

0)}α = λD0Ω
f
01−L1δ, (10)

where

L=
[

L0 L1

LT
1 L2

]
=

[
D0 − S0 D1 − S1

DT
1 − ST

1 D2 − S2

]
=D − S,

and L0 + λD0(Ωf
0 + Ωb

0) ≡ L̃ is a positive definite matrix.
In this study, the multiscale method of [4] is also applied.

The weighted mild constraint (6) has two advantages in
the computational process of solving Eq.(10). First, it en-
forces the positive definiteness of the matrix L̃, thereby mak-
ing the computation more stable. Second, weight di normal-
izes the effect of the balancing parameter λ as follows. By
using sC

ii = 0, the i-th equation divided by di in Eq.(10) is{
1 + λ(Ωf

i + Ωb
i )

}
αi−

∑
j �=i

sijαj/di = λΩf
i −{L1δ}i/di,

(11)
whereas the unweighted version would be written as{
1 +

λ

di
(Ωf

i + Ωb
i )
}

αi−
∑
j �=i

sijαj/di =
λ

di
Ωf

i −{L1δ}i/di.

(12)
We focus on the balance between 1 and Ωf

i + Ωb
i (affinity)

which is approximately limited up to 1. In Eq.(12), λ would
be divided by di, and the balance would be controlled not
only by λ but also by di which is irrelevant to this balance.
By adopting the weight di, λ directly acts on the balance in
Eq.(11), and its effects are the same at any pixel in any images
and are independent of di.
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Image with strokes Wang&Cohen [3] Closed Form [4] Our method Composite image

(a) fire

(b) rabbit

(c) spider

(d) wheel

Fig. 2. Results of alpha mattes and composite images with extracted objects and a blue background.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

We applied the proposed method to various images and com-
pared it with other state-of-the-art algorithms [3][4] by using
the programs provided at their websites. We tuned the param-
eters of all the methods so that the appearance of the alpha
matte seemed optimal. Fig.2 shows the resulting alpha mattes
and composite images of four examples. Here, the upper two
images also appeared in [3][4] with similar strokes. In spite
of a few strokes, our method provides favorable results on
the whole. Except for the fire image, the other algorithms re-
sult in erroneous alpha mattes because the backgrounds have
similar colors to that of the foregrounds in Fig.2(b,c) and are
highly textured in Fig.2(b,d). Note that our method favor-
ably deals with two types of foreground objects –transparent
objects (Fig.2(a,c)) and solid objects (Fig.2(b,d))– for which
matting and segmentation approaches may be effective, re-
spectively. For the 300×200 pixels image of Fig.2(a), 0.12 sec
are required to calculate affinity and 2.65 sec to solve Eq.(10)
by using a 2.6GHz CPU with 3GB RAM.

Taking into account of a review of previous studies, we
have proposed a unified formulation for image matting in the
framework of Q-IV, and the experiments have demonstrated
its effectiveness. Two types of constraints are incorporated in
our formulation: hard and mild constraints. The hard con-
straint corresponds to user inputs (strokes), as in the previ-
ous studies. The mild constraint is derived from the affini-
ties based on the SVM classification result at each pixel. Our
method produces favorable results for several kinds of images

by using only a few user interactions (strokes).
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