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This paper proposes a novel concept we call musical commonness, which is the similarity of a

song to a set of songs; in other words, its typicality. This commonness can be used to retrieve

representative songs from a set of songs (e.g. songs released in the 80s or 90s). Previous research
on musical similarity has compared two songs but has not evaluated the similarity of a song to a

set of songs. The methods presented here for estimating the similarity and commonness of

polyphonic musical audio signals are based on a uni¯ed framework of probabilistic generative

modeling of four musical elements (vocal timbre, musical timbre, rhythm, and chord progres-
sion). To estimate the commonness, we use a generative model trained from a song set instead of

estimating musical similarities of all possible song-pairs by using a model trained from each

song. In experimental evaluation, we used two song-sets: 3278 Japanese popular music songs

and 415 English songs.Twenty estimated song-pair similarities for each element and each song-
set were compared with ratings by a musician. The comparison with the results of the expert

ratings suggests that the proposed methods can estimate musical similarity appropriately.

Estimated musical commonnesses are evaluated on basis of the Pearson product-moment cor-
relation coe±cients between the estimated commonness of each song and the number of songs

having high similarity with the song. Results of commonness evaluation show that a song having

higher commonness is similar to songs of a song set.

Keywords: Musical similarity; musical commonness; typicality; latent Dirichlet allocation;

variational Pitman-Yor language model.

1. Introduction

The digitization of music and the distribution of content over the web have greatly

increased the number of musical pieces that listeners can access but are also causing

problems for both listeners and creators. Listeners ¯nd that selecting music is getting

more di±cult, and creators ¯nd that their creations can easily just disappear into
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obscurity. Musical similarity [1–3] between two songs can help with these problems

because it provides a basis for retrieving musical pieces that closely match a listener's

favorites, and several similarity-based music information retrieval (MIR) systems [1,

3–7] and music recommender systems [2, 8] have been proposed. None, however, has

focused on the musical similarity of a song to a set of songs, such as those in a

particular genre or personal collection, those on a speci¯c playlist, or those released in

a given year or a decade.

This paper focuses onmusical similarity andmusical commonness that can be used

inMIR systems andmusic recommender systems.As shown inFig. 1, we de¯nemusical

commonness as a similarity assessed by comparing a songwith a set of songs. Themore

similar a song is to songs in that set, the higher its musical commonness. Our de¯nition

is based on central tendency, which, in cognitive psychology, is one of the determinants

of typicality [9]. Musical commonness can be used to recommend a representative or

introductory song for a set of songs (e.g. songs released in the 80s), and it can help

listeners understand the relationship between a song and such a song set.

To estimate musical similarity and commonness, we propose a generative

modeling of four musical elements: vocal timbre, musical timbre, rhythm, and chord

progression (Fig. 2). Previous works on music information retrieval have extracted

various featuresa [1, 3, 5] including these four elements. We selected them to achieve

diverse similarities and commonnesses via our estimation method. Two songs are

considered to be similar if one has descriptions (e.g. chord names) that have a high

probability in a model of the other. This probabilistic approach has previously been

mentioned/used to compute similarity between two songs [10, 11]. To compute

commonness for each element, a generative model is derived for a set of songs. A song

is considered to be common to that set if the descriptions of the song have a high

probability in the derived model.

The following sections describe our approach and the experimental results of its

evaluation. Section 2 presents acoustic features and probabilistic generative models

and Sec. 3 describes estimation experiments and their evaluation. Section 4 con-

siders our contribution in relation to previous works, Sec. 5 discusses the importance

of musical commonness, and Sec. 6 concludes the paper, with directions for future

work.
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Fig. 1. Musical similarity and commonness.

aFor example, the following have all been used as features: singer voice, timbre, rhythm, onset, beat,

tempo, melody, pitch, bass, harmony, tonality, chord, key, loudness, musical structure, and lyrics.
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2. Methods

From polyphonic musical audio signals including a singing voice and sounds of

various musical instruments we ¯rst extract vocal timbre, musical timbre, and

rhythm and estimate chord progression. We then model the timbres and rhythm by

using a vector quantization method and latent Dirichlet allocation (LDA) [12]. The

chord progression is modeled by using a variable-order Markov process (up to a

theoretically in¯nite order) called the variable-order Pitman-Yor language model

(VPYLM) [13, 14].

When someone compares two pieces of music, they may feel that they share some

factors that characterize their timbres, rhythms and chord progressions, even if they

cannot articulate exactly what these factors are. We call these `̀ latent factors" and

would like to estimate them from low-level features. This is di±cult to do for indi-

vidual songs, but using the above methods (LDA and VPYLM) we can do so using

many songs.

Finally, for each element we calculate two probabilities (Fig. 2). One is for sim-

ilarity estimation and is calculated by using a generative model trained from a

musical piece (this model is called a song model). The other is for commonness

estimation and is calculated by using a generative model trained from a set of musical

pieces (this model is called a song-set model).

2.1. Similarity and commonness: Vocal timbre, musical timbre, and

rhythm

The method used to train song models of vocal timbre, musical timbre, and rhythm is

based on a previous work [15] on modeling vocal timbre. In addition, we propose a

method to train song-set models under the LDA-based modeling.
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Fig. 2. Musical similarity and commonness based on probabilistic generative modeling of four musical
elements: vocal timbre, musical timbre, rhythm, and chord progression.
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2.1.1. Extracting acoustic features: Vocal timbre

We use the mel-frequency cepstral coe±cients of the LPC spectrum of the vocal

(LPMCCs) and the �F0 of the vocal to represent vocal timbre because they are

e®ective for identifying singers [11, 15]. In particular, the LPMCCs represent the

characteristics of the singing voice well, since singer identi¯cation accuracy is greater

when using LPMCCs than when using the standard mel-frequency cepstral coe±-

cients (MFCCs) [11].

We ¯rst use Goto's PreFEst [16] to estimate the F0 of the predominant melody

from an audio signal and then the F0 is used to estimate the�F0 and the LPMCCs of

the vocal. To estimate the LPMCCs, the vocal sound is re-synthesized by using a

sinusoidal model based on the estimated vocal F0 and the harmonic structure esti-

mated from the audio signal. At each frame the �F0 and the LPMCCs are combined

as a feature vector.

Then reliable frames (frames little in°uenced by accompaniment sound) are se-

lected by using a vocal GMM and a non-vocal GMM (see [11] for details). Feature

vectors of only the reliable frames are used in the following processes (model training

and probability estimation).

2.1.2. Extracting acoustic features: Musical timbre

We use mel-frequency cepstral coe±cients (MFCCs) [17], their derivatives

(�MFCCs), and �power to represent musical timbre, combining them as a feature

vector. This combined feature vector is often used in speech recognition. The MFCCs

are musical timbre features used in music information retrieval [18] and are robust to

frame/hop sizes and lossy encoding provided that a minimum bitrate of approxi-

mately 160Kbps is used [19].

2.1.3. Extracting acoustic features: Rhythm

To represent rhythm we use the °uctuation patterns (FPs) designed to describe the

rhythmic signature of musical audio [18, 20]. They are features e®ective for music

information retrieval [18] and for evaluating musical complexity with respect to

tempo [21].

We ¯rst calculate the speci¯c loudness sensation for each frequency band by using

an auditory model (i.e. the outer-ear model) and the Bark frequency scale. The FPs

are then obtained by using a FFT to calculate the amplitude modulation of the

loudness sensation and weighting its coe±cients on the basis of a psychoacoustic

model of the °uctuation strength (see [18, 20] for details). Finally, the number of vector

dimensions of the FPs was reduced by using principle component analysis (PCA).

2.1.4. Quantization

All acoustic feature vectors of each element are converted to symbolic time series by

using a vector quantization method called the k-means algorithm. In that algorithm
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the vectors are normalized by subtracting the mean and dividing by the standard

deviation and then the normalized vectors are quantized by prototype vectors

(centroids) trained previously. Hereafter, we call the quantized symbolic time series

acoustic words.

2.1.5. Probabilistic generative model

The observed data we consider for LDA are D independent songs ~X ¼ f~X1; . . . ; ~XDg.
A song ~Xd is Nd acoustic words ~Xd ¼ f~xd;1; . . . ; ~xd;Nd

g. The size of the acoustic words
vocabulary is equivalent to the number of clusters of the k-means algorithm (¼ V ),

~xd;n is a V -dimensional `̀ 1-of-V" vector (a vector with one element containing a 1

and all other elements containing a 0). The latent variable of the observed ~Xd

is ~Zd ¼ f~zd;1; . . . ;~zd;Nd
g. The number of topics is K , so zd;n indicates a K -dimensional

1-of-K vector. Hereafter, all latent variables of D songs are indicated
~Z ¼ f~Z 1; . . . ; ~ZDg.

The full joint distribution of the LDA model is given by

pð~X ; ~Z ; ~�; ~�Þ ¼ pð~X j~Z ; ~�Þpð~Z j~�Þpð~�Þpð~�Þ ð1Þ

where ~� indicates the mixing weights of the multiple topics (D of the K -dimensional

vector) and ~� indicates the unigram probability of each topic (K of the V -dimen-

sional vector). The ¯rst two terms are likelihood functions, and the other two are

prior distributions. The likelihood functions are de¯ned as

pð~X j~Z ; ~�Þ ¼
YD
d¼1

YNd

n¼1

YV
v¼1

YK
k¼1

�
zd;n;k
k;v

 !
xd;n;v

ð2Þ

and

pð~Z j~�Þ ¼
YD
d¼1

YNd

n¼1

YV
v¼1

�
zd;n;k
d;k : ð3Þ

We then introduce conjugate priors as follows:

pð~�Þ ¼
YD
d¼1

Dirð~�d j~� ð0ÞÞ ¼
YD
d¼1

Cð~� ð0ÞÞ
YK
k¼1

�� ð0Þ�1
d;k ; ð4Þ

pð~�Þ ¼
YK
k¼1

Dirð~�k j~� ð0ÞÞ ¼
YK
k¼1

Cð~� ð0ÞÞ
YV
v¼1

�� ð0Þ�1
k;v ; ð5Þ

where p(~�) and p(~�) are products of Dirichlet distributions, ~� ð0Þ and ~�
ð0Þ

are

hyperparameters of prior distributions (with no observation), and C ð~� ð0ÞÞ and

Cð~� ð0ÞÞ are normalization factors.
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2.1.6. Similarity estimation

The similarity between song a and song b is represented as a probability of song b

calculated using a song model of song a. This probability pgðbjaÞ is de¯ned as follows:

log pgðbjaÞ ¼
1

Nb

XNb

n¼1

log pð~xb;njE½~�a�;E½~��Þ; ð6Þ

pð~x b;njE½~�a�;E½~��Þ ¼
XK
k¼1

E½�a;k � � E½�k;v�
� �

; ð7Þ

where E½�� is the expectation of a Dirichlet distribution and v is the corresponding

index (the word id) of the K -dimensional 1-of-K observation vector ~xb;n.

2.1.7. Commonness estimation

To estimate the commonness, we propose a method for obtaining a generative model

from a song set without using the LDA-model-training process again. In this case,

hyperparameters �d;k of the posterior distribution can be interpreted as e®ective num-

bers of observations of the corresponding values of the 1-of-K observation vector ~xd;n.

This means that a song-set model of a song set A can be obtained by summing

those hyperparameters ~�d ¼ f�d;1; . . . ; �d;Kg. This model ~�A is de¯ned as follows:

~�A ¼
X
d2A

~�d � ~� ð0Þ� �þ ~� ð0Þ; ð8Þ

where the prior (~� ð0Þ) is added just once. Musical commonness between the song set

A and the song a is represented as a probability of song a that is calculated using the

song-set model of the song set A: log pgðajAÞ.

2.2. Similarity and commonness: Chord progression

We ¯rst estimate key and chord progression by using modules of Songle [22], a web

service for active music listening.

Before modeling, estimated results of chord progression are normalized. The root

note is shifted so that the key will be /C/, °at notes ([) are uni¯ed into sharp notes

(]), and the ¯ve variants of major chords with di®erent bass notes are uni¯ed (they

are dealt with as the same chord type). When same chord types continue, they are

collected into a single occurrence (e.g. /C C C/ into /C/).

2.2.1. Probabilistic generative model

For modeling of chord progression of a set of musical pieces, the VPYLM used as

a song-set model is trained using a song set used to compute musical commonness.

In the song modeling process, however, suitable training cannot be done using only

a Bayesian model (VPYLM) because the amount of training data is not su±cient.
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To deal with this problem, we use as a song model a trigram model trained by

maximum likelihood estimation.

2.2.2. Similarity and commonness estimation

Similarity and commonness are represented by using as the generative probability

the inverse of the perplexity (average probability of each chord). To avoid the zero-

frequency problem, chord similarity between two songs is estimated by calculating

weighted mean probabilities of the song model and the song-set model. The weights

are ð1� rÞ and r, respectively (with r set to 10�5).

3. Experiments

The proposed methods were tested in experiments evaluating the estimated simi-

larity (Experiments A1 and A2) and the estimated commonness (Experiments B1

and B2).

3.1. Dataset

The song set used for model training, similarity estimation, and commonness esti-

mation comprised 3278 Japanese popular songsb that appeared on a popular music

chart in Japan (http://www.oricon.co.jp/) and were placed in the top twenty on

weekly charts appearing between 2000 and 2008. Here we refer to this song set as the

JPOP music database (JPOP MDB). The twenty artists focused on for similarity

evaluation are listed in Table 1.

Another song set used for model training, similarity estimation, and commonness

estimation comprised 415 English songs performed by various types of artists (solo

singers, male/female singers, bands, or groups). They were taken from commercial

music CDs (Billboard Top Rock 'n 'Roll Hits 1968–1972, Billboard Top Hits 1975–

1989, and GRAMMY NOMINEES 1996–2005). Here we refer to this song set as the

English music database (ENG MDB). The twenty artists focused on for similarity

evaluation are listed in Table 2.

The song set used for GMM/k-means/PCA training to extract the acoustic fea-

tures consisted of 100 popular songs from the RWCMusic Database (RWC-MDB-P-

2001) [23]. These 80 songs in Japanese and 20 in English re°ect styles of the Japanese

popular songs (J-Pop) and Western popular songs in or before 2001. Here we refer to

this song set as the RWC MDB.

3.2. Experimental settings

Conditions and parameters of the methods described in Sec. 2 are described here in

detail.

bNote that some are English songs in them.
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Table 1. Singers of the 463 songs used in the experiments A1 and B1.

Gender of vocalist(s)

ID Artist name (* more than one singer) Number of songs

A Ayumi Hamasaki female 33
B B'z male 28

C Morning Musume female* 28

D Mai Kuraki female 27

E Kumi Koda female 25
F BoA female 24

G EXILE male* 24

H L'Arc-en-Ciel male 24
I Rina Aiuchi female 24

J w-inds. male* 23

K SOPHIA male 22

L Mika Nakashima female 22
M CHEMISTRY male* 21

N Gackt male 21

O GARNET CROW female 20

P TOKIO male* 20
Q Porno Gra±tti male 20

R Ken Hirai male 20

S Every Little Thing female 19
T GLAY male 19

Total 11 male. 9 female 463

Table 2. Singers of the 62 songs used in experiments A2 and B2.

Gender of vocalist(s)

ID Artist name (* more than one singer) Number of songs

BO Billy Ocean male 4

ST Sting male 4
U2 U2 male 4

BB Backstreet Boys male* 3

BL Blondie female 3

BS Britney Spears female 3
CA Christina Aguiler female 3

DJ Daryl Hall & John Oates male* 3

EJ Elton John male 3

EM Eminem male 3
EC Eric Clapton male 3

KT KC & The Sunshine Band male* 3

PS Pointer Sisters female* 3
RK R. Kelly male 3

RM Richard Marx male 3

SC Sheryl Crow female 3

SS Starship male* 3
TH Three Dog Night male* 3

TT Tommy James & The Shondells male 3

AC Ace Of Base female* 2

Total 14 male. 6 female 62
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3.2.1. Extracting acoustic features

For vocal timbre features, we targeted monaural 16-kHz digital recordings and

extracted �F0 and 12th-order LPMCCs every 10ms. The analysis frame length

was 32 ms. To estimate the features, the vocal sound was re-synthesized by using

a sinusoidal model with the frequency and amplitude of the lth overtone

(l ¼ 1; . . . ; 20). The �F0 was calculated every ¯ve frames (50ms), the order of LPC

analysis was 25, the number of Mel-scaled ¯lter banks was 15.

The feature vectors were extracted from each song, using as reliable vocal frames

the top 15% of the feature frames. Using the 100 songs of the RWC MDB, a vocal

GMM and a non-vocal GMMwere trained by variational Bayesian inference [24]. We

set the number of Gaussians to 32 and set the hyperparameter of a Dirichlet dis-

tribution over the mixing coe±cients to 1.0. The trained GMMs were models in

which the number of Gaussians was reduced, to 12 for the vocal GMM and to 27 for

the non-vocal GMM.

For musical timbre features, we targeted monaural 16-kHz digital recordings and

extracted �power, 12th-order MFCCs, and 12th-order �MFCCs every 10 ms. The

� features were calculated every ¯ve frames (50 ms), the pre-emphasis coe±cients for

was 0.97, the number of Mel-scaled ¯lter banks was 15, and the cepstral liftering

coe±cient was 22. The feature vectors were extracted from 15% of the frames of each

song and those frames were selected randomly.

For rhythm-based features, we targeted monaural 11.025-kHz digital recordings

and extracted FPs by using the Music Analysis (MA) toolbox for Matlab [18]. A

1200-dimension FP vector was estimated every 3 seconds and the analysis frame

length was 6 seconds. We then reduced the number of vector dimensions by using

PCA based on the cumulative contribution ratio (� 95%). A projection matrix

for PCA was computed by using the 100 songs of the RWC MDB. Finally, a

78-dimensional projection matrix was obtained.

The conditions described above (e.g. the 16- and 11.025-kHz sampling frequen-

cies) were based on previous work [15, 18].

3.2.2. Quantization

To quantize the vocal features, we set the number of clusters of the k-means algo-

rithm to 100 and used the 100 songs of the RWC MDB to train the centroids. This k

is same number used in our previous work [15]. The number of clusters used to

quantize the musical timbre and rhythm features was set to 64 in this evaluation.

3.2.3. Chord estimation

With Songle, chords are transcribed using 14 chord types: major, major 6th, major

7th, dominant 7th, minor, minor 7th, half-diminished, diminished, augmented, and

¯ve variants of major chords with di®erent bass notes (/2, /3, /5, /b7, and /7). The

resulting 168 chords (14 types � 12 root notes) and one `̀ no chord" label are esti-

mated (see [22] for details).
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3.2.4. Training the generative models

Training song models and song-set models of the 4 musical elements by LDA and

VPYLM, we used all of the 3278 original recordings of the JPOP MDB and all of the

415 recordings of the ENG MDB.

The number of topics K was set to 100, and the model parameters of LDA were

trained using the collapsed Gibbs sampler [25]. The hyperparameters of the Dirichlet

distributions for topics and words were initially set to 1 and 0:1, respectively. The

conditions were based on our previous work [15].

The number of chords used to model chord progression was 97: the 8 chord types

(major, major 6th, major 7th, dominant 7th, minor, minor 7th, diminished, aug-

mented) for each of the 12 di®erent root notes, and one `̀ no chord" label

(97 ¼ 8� 12þ 1).

3.2.5. Baseline methods

The baseline methods used to estimate similarity and commonness were simple

methods.

The baseline methods used to estimate the similarity of vocal timbre, musical

timbre, and rhythm calculated the Euclidean distance between mean feature vectors

of two songs. In the baseline methods used to estimate the commonness of these

elements, the mean feature vectors were calculated for a song-set and used to cal-

culate the Euclidean distance from a target song. Each mean vector was normalized

by subtracting the mean and dividing by the standard deviation.

To model chord progression, we used as a song model a unigram model trained by

maximum likelihood estimation. The baseline modeling of chord progression of a set

of musical pieces, used as a song-set model the HPYLM n-gram model [26] (with n set

to 1). To avoid the zero-frequency problem, chord similarity between two songs was

also estimated by calculating weighted mean probabilities of the song model and the

song-set model. The weights were ð1� rÞ and r, respectively (with r set to 10�5).

3.3. Experiment A1: Similarity estimation (JPOP MDB)

To evaluate musical similarity estimation based on probabilistic generative models,

experiment A1 used all 3278 songs for modeling and estimated the similarities of the

463 songs by the artists listed in Table 1 (DA1 ¼ 463). Those 463 songs were sung by

the twenty artists with the greatest number of songs in the modeling set. The

evaluation set was very diverse: artists include solo singers and bands, and a balance

of male and female vocalists.

3.3.1. Similarity matrix

We ¯rst estimated the similarities between the 463 songs with respect to the four

musical elements. Figures 3(a) through (d) show the similarity matrix for each of

these elements, and Fig. 4 shows the baseline results. In each ¯gure the horizontal
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axis indicates song number (song model used as a query) and the vertical axis

indicates target song number for similarity computation.

A similarity matrix represents 214,369 (463 � 463) pairs, and in each of the

matrices only the 46 target songs (10% of DA1) having the highest similarities for

each of the queries are colored black.

3.3.2. Comparing estimated similarities with expert human ratings

We next evaluated the song models by using expert ratings. Twenty song pairs

belonged to two groups, referred to as the top10 and bottom10. The top10 group
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Fig. 3. Similarities among all 463 songs by the artists listed in Table 1 (similarities estimated using

probabilistic generative models).
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included the ten song pairs having the highest similarities for each of the musical

elements, under the selection restriction that there was no overlapping of singer

names in the group. This means that this group comprised only pairs of songs sung

by di®erent singers. The bottom10 group included the ten song pairs (also selected

under the no-overlapping-name condition) having the lowest similarities for each of

the musical elements. Table 3 shows the top10 and bottom10 groups based on the

similarity estimated using the proposed methods and the baseline methods.

A music expert (a male musician) who was professionally-trained for music at his

graduating school and had experience with audio mixing/mastering, writing lyrics,

and arrangement/composition of Japanese popular songs was asked to rate song-pair
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Fig. 4. Baseline similarities among all 463 songs by the artists listed in Table 1.
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similarity on a 7-point scale ranging from 1 (not similar) to 7 (very similar). Rating

to a precision of one decimal place (e.g. 1.5) was allowed.

Figure 5 shows the results of the rating by the musician, and Fig. 6 shows the

results of rating based on the baseline results. The statistics of the ratings are shown

by box plots indicating median values, 1/4 quantiles, 3/4 quantiles, minimum values,

and maximum values. Testing the results by using Welch's t-test [27] revealed that

the di®erences between the two groups were signi¯cant at the 0.1% level for vocal

and musical timbre, the 1% level for rhythm, and the 5% level for chord progression

(Fig. 5).

3.4. Experiment A2: Similarity estimation (ENG MDB)

To evaluate musical similarity estimation based on probabilistic generative models,

experiment A2 used all 415 songs for modeling and estimated the similarities of the

songs by the artists listed in Table 2 (DA2 ¼ 62). Those 62 songs were sung by the

twenty artists with the greatest number of songs in the modeling set.

We evaluated the song models by using expert ratings. As in experiment A1,

twenty song pairs belonged to two groups, referred to as the top10 and bottom10.

Table 4 shows the top10 and bottom10 groups based on the similarity estimated

Table 3. The twenty song pairs belonged to two groups: Experiment A1 (JPOP MDB).

Proposed method Baseline method

Vocal Musical Chord Vocal Musical Chord

timbre timbre Rhythm progression timbre timbre Rhythm progression

top10

L – O B – A K – G D – I F – E F – E N – L F – E
F – S H – T I – S O – B A – C M – I O – E M – I

J – I Q – K D – C K – N L – I P – J B – I P – J

A – D M – R E – Q A – J N – K B – S R – G B – S

B – Q D – L A – F H – T R – G K – D C – A K – D
M – R S – I O – H P – C T – Q A – O T – K A – O

H – P P – N R – L S – L B – H H – N S – P H – N

E – C O – G N – T F – E D – O T – C F – D T – C

G – N E – F P – B Q – G M – J G – R M – H G – R
K – T J – C J – M M – R P – S L – Q Q – J L – Q

bottom10

F – E G – J P – O O – P C – T P – O N – T P – O

T – J O – E H – C T – R H – S S – T L – H S – T
H – D C – B G – S B – M K – B Q – B O – B Q – B

P – A T – R N – E Q – N P – F H – D E – A H – D

Q – L Q – A M – Q J – A E – M I – G S – P I – G

O – B P – F B – R D – K N – D M – K C – F M – K
G – S I – M K – F S – G A – J A – L J – K A – L

C – N S – N L – D H – F L – Q N – C R – M N – C

M – K H – L T – J I – C G – I R – E G – I R – E

R – I K – D A – I L – E O – R F – J D – Q F – J

(L – O, for example, means a song of singer L and a song of singer O)
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using the proposed methods and the baseline methods. Figure 7 shows the results of

the rating by the musician, and Fig. 8 shows the results of rating based on the

baseline results.

3.5. Discussion for experiments A1 and A2

From the similarity matrices for the JPOP MDB one sees that songs by the same

artist have high similarity for vocal timbre and musical timbre. For rhythm and

chord progression, on the other hand, some songs by the same artist have high

similarity (indicated by arrows in Figs. 3(c) and 3(d)) but most do not. These results

re°ect musical characteristics qualitatively and can be understood intuitively.

Although the similarity matrices for the ENG MDB are not shown, they indicated

a similar tendency.
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On the similarity matrix for rhythm, horizontal lines can be seen. This means that

there are songs that in most cases get high similarity regardless of which song is the

query song. On the other hand, there are also songs that get low similarity with most

query songs. LDA topic distributions for both kinds are shown in Fig. 9. The former

Table 4. The twenty song pairs belonged to two groups: Experiment A2 (ENG MDB).

Proposed method Baseline method

Vocal Musical Chord Vocal Musical Chord

timbre timbre Rhythm progression timbre timbre Rhythm progression

top10

EC – RK BB – RM RM – ST PS – BL BB – SC EJ – U2 RM – ST EC – BL
BL – TH ST – EJ BO – BB U2 – TH EJ – SS DJ – KT EC – KT SC – TH

EM – EJ U2 – TT KT – U2 EC – SC BO – KT BO – TH CA – RK PS – TT

BB – TT SS – DJ EJ – CA AC – SS EC – RK EC – SS SS – U2 AC – SS

KT – DJ SC – RK DJ – EC BB – KT BL – DJ BL – CA EJ – TH EJ – KT
PS – BS BO – TH AC – BS RM – BO PS – U2 RK – SC DJ – TT RM – BO

CA – AC BS – CA TH – PS DJ – TT AC – CA PS – ST BB – SC BS – CA

U2 – ST PS – BL SC – RK CA – EJ BS – TT RM – TT BL – PS ST – BB

SS – SC EC – EM SS – TT RK – ST RM – ST BS – EM AC – BS EM – U2
BO – RM AC – KT EM – BL EM – BS EM – TH AC – BB BO – EM RK – DJ

bottom10

BS – BB EJ – BB RM – TT SC – TH SS – BS SS – SC RM – RK RM – PS

U2 – SS DJ – SC TH – SC RM – U2 PS – BB RM – EJ TT – EJ TH – BO
SC – KT TH – KT RK – BL CA – BB SC – BO TT – BB SS – SC SC – EC

TH – CA RK – BO SS – PS BL – BO KT – EJ RK – PS U2 – ST DJ – BS

EM – BO ST – PS EJ – BO EC – AC U2 – CA KT – EM TH – BL U2 – BB

TT – EC U2 – BS DJ – U2 ST – PS EM – AC EC – BO KT – CA BL – CA
RM – AC BL – EC EC – CA SS – BS TH – EC TH – BL EC – BO SS – ST

EJ – PS TT – EM BB – BS DJ – EM ST – BL ST – BS PS – BB AC – EM

DJ – ST RM – CA KT – AC KT – RK RK – DJ U2 – DJ DJ – BS EJ – TT

RK – BL SS – AC ST – EM EJ – TT TT – RM CA – AC EM – AC KT – RK

EC – RK, for example, means a song of singer EC (Eric Clapton) and a song of singer RK (R. Kelly)
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Fig. 7. Box plots showing the statistics for the song-pair similarity ratings by a musician: Experiment A2

(ENG MDB).
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kind's is °at and has some topics having value, and the latter kind's has a few topics

having value. On the similarity matrix for chord progression, there are query songs

that get high similarity with all other songs (e.g. a song of singer A) and there are

query songs that get low similarity with all other songs (see, e.g. Fig. 10: Top). In the

baseline unigram setting, on the other hand, the query song of singer A has di®erent

similarities with all other songs (Fig. 10: Bottom).

The comparison with the results of the expert ratings suggests that the proposed

methods can estimate musical similarity appropriately. The musician was asked for

the judgment (evaluation) criteria after the all ratings, and they were as follows:

vocal timbre (1) ringing based on the distribution of the harmonic overtone,

(2) pitch (F0, fundamental frequency), (3) degree of breathy voice.

musical timbre (1) composition of the musical instruments, (2) balance of loudness

of each instruments, reverberation, and dynamics via the audio mixing/mastering.

(3) music genre,

rhythm (1) rhythm pattern, (2) beat structure or degree of shu®le (swing),

(3) music genre, (4) tempo.

10 20 30 40 50 60 70 80 90

0

0.1

0.2

0

0.1

0.2 a song of artist D

a song of artist T

m
ix

in
g 

w
ei

gh
t

topic

topic distribution (rhythm)

Fig. 9. Top: topic distribution of a song that gets high similarity with most songs. Bottom: topic dis-

tribution of a song that gets low similarity with most songs.
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chord progression (1) the pattern of chord progression, (2) chords used in the

songs.

To improve the performance with regard to all elements, conditions such as those for

extracting acoustic features, for quantization, for chord estimation, and for model

training can be considered in future work. Especially, in the results of the comparison

of the estimated similarity with the expert ratings for the ENG MDB, there is no

signi¯cant di®erence for musical timbre and rhythm (Fig. 7). The musician said that

there are di®erences for the musical timbre and rhythm among the songs because of

the released date of songs are wide-ranging (1968–2005).

3.6. Experiment B1: Commonness estimation (JPOP MDB)

To evaluate musical commonness estimation based on probabilistic generative

models, experiment B1 also used the 3278 songs of the JPOP MDB to train the song-

set models and for evaluating each musical element.

When evaluating the commonness estimation method, we ¯rst evaluated the

number of songs having high similarity. For example, in Fig. 1 the song a has many

similar songs in the song set A. If a song having higher (lower) commonness is very

similar (is not similar) to songs of a song set.

Figure 11 shows the relationships between the estimated commonness of songs

contained in the JPOP MDB to the number of songs having high similarity. We used

as the threshold for deciding the similarity of an element to be high the 3/4 quantile

value of all similarities among all 10,745,284 (3278� 3278) possible song-pairs in the

JPOP MDB.

The Pearson product-moment correlation coe±cients are shown in each part of

the ¯gure and are also listed in Table 5. The reliability of the estimated similarity can

be evaluated by using the results shown in Figs. 5 and 6. The asterisk mark (*) and
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Table 5. Pearson product-moment correlation coef-

¯cients between estimated commonness of the four

elements each song and the number of songs having
high similarity with the song: Experiment B1 (JPOP

MDB). Conditions: S) The number of songs having

high similarity, SB) The number of songs having high
similarity (baseline), C) Commonness, CB) Common-

ness (baseline).

Correlation coe±cients

Element Condition C CB

vocal S** 0.766 �0.175

musical timbre S** 0.834 0.350

rhythm S* 0.735 0.650

chord progression S 0.670 0.886

vocal SB* 0.137 0.960
musical timbre SB 0.402 0.958

rhythm SB 0.774 0.898

chord progression SB** 0.759 0.846

Estimated similarity is comparable to ratings by a

musician

** at the 0.1% signi¯cance level (Figs. 5 and 6)
* at the 1% signi¯cance level (Figs. 5 and 6)
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the double-asterisk mark (**) in Table 5 indicate di®erences between the top10 and

bottom10 groups that are signi¯cant at the 1% and 0.1% levels, respectively.

Under conditions of the relatively reliable similarities (`̀ vocal S**", `̀ musical

timbre S**", and `̀ rhythm S*") the correlation coe±cient of the proposed method

(`̀ C": 0.766, 0.834, and 0.735) are larger than those of the baseline method (`̀ CB":

�0.175, 0.350, and 0.650). The results suggest that the more similar a song is to songs

of the song set, the higher its musical commonness in the proposed method. Although

two coe±cients of the condition `̀ vocal SB*" and `̀ chord progression SB**" are

positive values (`̀ C": 0.137 and 0.759), the corresponding coe±cients for the baseline

method (`̀ CB": 0.960 and 0.846) are larger. The improvement of the correlation

coe±cients is a subject for future investigation.

3.7. Experiment B2: Commonness estimation (ENG MDB)

To evaluate musical commonness estimation based on probabilistic generative

models, experiment B2 also used the 415 songs of the ENGMDB to train the song-set

models and for evaluating each musical element. As in experiment B1, we evaluated

the number of songs having high similarity.

Figure 12 shows the relationships between the estimated commonness of songs

contained in the ENG MDB to the number of songs having high similarity. We used

as the threshold for deciding the similarity of an element to be high the 3/4 quantile

value of all similarities among all 172,223 (415� 415) possible song-pairs in the ENG

MDB.

The Pearson product-moment correlation coe±cients are shown in each part of

the ¯gure and are also listed in Table 6. The reliability of the estimated similarity can

be evaluated by using the results shown in Figs. 7 and 8. The asterisks (*) in Table 6
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songs having high similarity with the song: Experiment B2 (ENG MDB).
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indicate di®erences between the top10 and bottom10 groups that are signi¯cant at

the 5% level.

Under conditions of the relatively reliable similarities (`̀ vocal S*" and `̀ chord

progression S*") the values of the correlation coe±cient of the proposed method

(`̀ C": 0.888 and 0.740) are bigger than the baseline method (`̀ CB": �0.050 and

0.707). Moreover, the coe±cients based on the proposed methods (row `̀ S" and

column `̀ C") are all high (greater than 0.7). The results suggest that the similarity

and commonness estimated using the proposed methods have a mutual relationship.

This relationship is useful to use the commonness under the typicality de¯nition. In

other words, the commonness can be used instead of the number of songs having high

similarity among the songs.

3.8. Application of commonness in terms of vocal timbre

Only the song-set models of vocal timbre can be evaluated quantitatively by using

the singer's gender. These models are integrated song models with di®erent ratios of

the number of male singers to female singers.

To train song-set models, we used 14 songs by di®erent solo singers (6 male and 8

female) from the JPOPMDB. We trained three types of song-set models: one trained

by using all 14 songs, one trained by using one female song and all 6 male songs, and

one is trained by using one male song and all 8 male songs.

Figure 13 shows the vocal timbre commonnesses based on the 3 di®erent song-set

models. When a model with a high proportion of female songs is used, the com-

monness of songs sung by females is higher than the commonness of songs sung by

males (and vice versa). In Fig. 14 the statistics of the commonnesses are shown by

box plots. The results suggest the commonnesses can re°ect vocal tract features.

Table 6. Pearson product-moment correlation coe±cients

between estimated commonness of the four elements of each

song and the number of songs having high similarity with
the song: Experiment B2 (ENG MDB). Conditions: S) The

number of songs having high similarity, SB) The number of

songs having high similarity (baseline), C) Commonness, CB)
Commonness (baseline).

Correlation coe±cients

Element Condition C CB

vocal S* 0.888 �0.050
musical timbre S 0.857 �0.421

rhythm S 0.761 �0.820

chord progression S* 0.740 0.707

vocal SB �0.172 0.959

musical timbre SB 0.104 0.077
rhythm SB 0.004 0.070

chord progression SB 0.891 0.908

*Estimated similarity is comparable to ratings by a musician
at the 5% signi¯cance level (Figs. 7 and 8).
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3.9. Applying the proposed method to other elements

The proposed LDA-based method and the VPYLM-base method can be applied to

various music-related characteristics. Lyrics, for example, are an important element

of music in various genres, especially in popular music. Since the LDA and the

VPYLM were originally proposed for text analysis, they can be used for lyrics

modeling. In fact, there are three papers on work that used lyrics for LDA-based

music retrieval [28–30].

Figure 15 shows that the results of the expert rating comparing with LDA-based

estimated similarities and correlation coe±cients between estimated commonness of

the lyrics each song and the number of songs having high similarity with the song.

This results are based on a set of lyrics of 1996 songs: 1896 Japanese popular lyrics a

part of the JPOP MDB and 100 lyrics of the RWC MDB. 340 lyrics of the twenty

artists with the greatest number of lyrics in the lyrics set are used to select the twenty
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lyrics pairs, the top10 and bottom10. The number of topics K was set to 100, and

MeCab [31] was used for the morphological analysis of Japanese lyrics. 19,390 words

(morphemes) is the vocabulary size in the 1996 lyrics. The results suggest that the

proposed method can be applied to music lyrics.

As other characteristics, artist properties provide di®erent type of relations

among songs. The artist-level information obtained from web such as Wikipedia

(http://www.wikipedia.org/) and its commonness (typicality) can be used to

visualize the relations [32].

4. Related Studies

Musical similarity is a central concept of MIR and is also important for purposes

other than retrieval. For example, the use of similarity to automatically classify

musical pieces (into genres, music styles, etc.) is being researched [1, 2], and musical

similarity can also be used for music auto-tagging [3]. However, each of these

applications is di®erent from the idea of musical commonness: musical similarity is

usually de¯ned by comparing two songs, music classi¯cation is de¯ned by classifying

a given song into one out of a set of categories (category models, centroids, etc.), and

music auto-tagging is de¯ned by comparing a given song to a set of tags (tag models,

the closest neighbors, etc.). To the best of our knowledge, there is no research about

the automatic estimation of musical commonness, de¯ned as the typicality of a song

with respect to a set of songs. Therefore, we think that music commonness is a novel

concept which can be used to retrieve representative songs from a set of songs.

This paper has proposed a uni¯ed framework of probabilistic generative modeling

to estimate musical similarity and commonness. To realize the framework, we have

introduced latent analysis of music. There are previous works related to latent

analysis of music, such as music retrieval based on LDA of lyrics and melodic features

[28], lyrics retrieval based on LDA [29], assessing quality of lyrics topic model (LDA)

[30], chord estimation based on LDA [33, 34], combining document and music spaces

by latent semantic analysis [35], music recommendation by social tag and latent

semantic analysis [36], and music similarity based on the hierarchical Dirichlet pro-

cess [37]. In contrast to these previous reports, we showed that LDA and VPYLM can

be combined to do musical similarity and commonness estimation using four musical

elements (vocal timbre, musical timbre, rhythm, and chord progression) and lyrics.
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5. Discussion

The contributions of this paper are 1) proposing the concept of musical commonness,

2) showing that a generative model trained from a song set can be used for com-

monness estimation (instead of estimating musical similarities of all possible song-

pairs by using a model trained from each song), 3) showing how to evaluate the

estimated commonness.

Described as in Sec. 1, the amount of digital content that can be accessed by

people has been increasing and will continue to do so in the future. This is desirable

but unfortunately makes it easier for the work of content creators to become buried

within a huge amount of content, making it harder for viewers and listeners to select

content. Furthermore, since the amount of similar content is also increasing, creators

will be more concerned that their content might invite unwarranted suspicion of

plagiarism. All kinds of works are in°uenced by existing content, and it is di±cult

to avoid the unconscious creation of content partly similar in some way to prior

content.

However, human ability with regard to similarity is limited. Judging similarity

between two songs one hears is a relatively simple task but takes time. One simply

does not have enough time to search a million songs for similar content. Moreover,

while humans are able to make accurate judgments based on past experience, their

ability to judge `̀ commonness" or `̀ typicality" ��� the probability of an event's

occurrence ��� is limited. When an uncommon event happens to be frequently ob-

served recently, for example, people tend to wrongly assume that it is likely to occur.

And when a frequent event happens to not be encountered, people tend to wrongly

assume that it is rare. Consequently, with the coming of an `̀ age of billions of

creators" in which anyone can enjoy creating and sharing works, the monotonic

increase in content means that there is a growing risk that one's work will be de-

nounced as being similar to someone else's. This could make it di±cult for people to

freely create and share content.

The musical commonness proposed in this paper can help create an environment

in which specialists and general users alike can know the answers to the questions

`̀ What is similar here?" and `̀ How often does this occur?" Here we aim to make it

possible for people to continue creating and sharing songs without worry. Further-

more, we want to make it easy for anyone to enjoy the music content creation

process, and we want to do this by developing music-creation support technology

enabling `̀ high commonness" elements (such as chord progressions and conventional

genre-dependent practices) to be used as knowledge common to mankind. We also

want to promote a proactive approach to encountering and appreciating content by

developing music-appreciation support technology that enables people to encounter

new content in ways based on its similarity to other content.

We hope to contribute to the creation of a culture that can mutually coexist with

past content while paying appropriate respect to it. This will become possible by

supporting a new music culture that enables creators to take delight in ¯nding their
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content being reused, in much the same way that researchers take delight in ¯nding

their articles being cited. We feel that the value of content cannot be measured by

the extent to which it is not similar to other content and that pursuing originality at

all costs does not necessarily bring joy to people. Fundamentally, content has value

by inducing an emotional and joyous response in people. We would like to make it a

matter of common sense that content with emotional appeal and high-quality form

has value. In fact, we would like to see conditions in which it is exactly the referring

to many works that gives content its value, similar to the situation with academic

papers. Through this approach, we aim to create a content culture that emphasizes

emotionally touching experiences.

6. Conclusions and Future Work

This paper describes an approach to musical similarity and commonness estimation

that is based on probabilistic generative models: LDA and the VPYLM. Four mu-

sical elements are modeled: vocal timbre, musical timbre, rhythm, and chord pro-

gression. The commonness can be estimated by using song-set models, which is easier

than estimating the musical similarities of all possible pairs of songs.

The experimental results showed that our methods are appropriate for estimate

musical similarity and commonness. And these methods are potentially applicable

with other elements of music, such as lyrics. The probability calculation can be

applied not only to a musical piece but also to a part of a musical piece. This means

that musical commonness is also useful to creators because a musical element that

has high commonness (e.g. a chord progression) is an established expression and can

be used by anyone creating and publishing musical content.

This paper showed the e®ectiveness of the proposed methods with song sets of

di®erent sizes. The JPOP MDB was used as a large song set (more than 1000 songs)

and the ENG MDB was used as a medium-size song set (between 100 and 1000

songs). In [32] we used musical commonness for visualization and changing playback

order with a small song set (less than 100 songs) as a personal music playlist. And the

experimental results in Sec. 3.8 also show the e®ectiveness of the musical common-

ness with a small song set.

Since this paper focused on the above four elements, we plan to use melody (e.g.

F0) as the next step. Future work will also include the integration ofs generative

probabilities based on di®erent models, calculating probabilities of parts of one song,

investigating e®ective features, and developing an interface for music listening or

creation by leveraging musical similarity and commonness.
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