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Abstract A contact resistance between a carbon nanotube
and metallic electrode is studied in a tight-binding model.
A model of dirty contact is employed for electrode weakly
coupled to the carbon nanotube. Both weak coupling and
large contact area make perfect transmission possible in two-
terminal measurement.

1 Introduction

Carbon nanotubes (CN’s) are new kinds of quantum
wires topologically different from conventional wires fab-
ricated at semiconductor heterostructures. Transport prop-
erties of CN’s are interesting because of their unique
topological structure. The absence of backward scatter-
ing was predicted even if there are scatterers having a po-
tential range longer than the lattice constant [1], whose
origin was related to Berry’s phase [2].

For experimental measurement of transport proper-
ties in CN’s themselves, it is important to know proper-
ties of contact between the CN and electrode, which are
currently the subject of intensive theoretical study. For
example, the transmission probability between a single-
wall CN and a jellium metal was discussed [3] and explic-
itly calculated [4]. A coupling of CN with a copper chain
was discussed using pseudopotential [5] and that with a
metal in a jellium model [6]. The purpose of this paper
is to study effects of the contact between a carbon nan-
otube and dirty electrode and to show the condition of
the observation of a perfect conductance in two-terminal
measurement.

2 Model of Contact

We consider a semi-infinite armchair nanotube with cir-
cumference L=

√
3aM/2 as shown in Fig. 1, where M

is an integer and a is the lattice constant. We attach
ideal leads to carbon atoms lying close to the left edge
and calculate the conductance between the leads and
CN. The conductance is proportional to the transmis-
sion probability from leads to the tube region infinitely
away according to Landauer’s formula.

The ideal leads consisting of a one-dimensional lattice
are connected to many carbon atoms in CN as long as
leads attached to different carbon atoms are independent
of each other. The equation of motion for amplitude C0

of a wave function at j=0 on the graphite sheet is given
by

(ε−Σ)C0 + γ0

3∑

i=1

Cτ i
=

ih̄
√|v(k′)|

a′ . (1)
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Fig. 1 Schematic illustration of the lattice structure of arm-
chair CN and ideal leads. Only some part of CN is shown
in the circumference direction. The cells n = 1 and N are
with shadow and the cell with n=N + 1 is connected to an
“ideal lead” of CN. Carbon atoms in cells n = 1 to N are
connected to a reservoir through an ideal lead characterized
by the transfer integral t and lattice constant a′.

with

Σ = −t exp(ik′a′), (2)

where v(k′) is the group velocity of the states k′ on the
ideal lead and γ0 is the transfer integral between three
nearest-neighbor sites, which are connected by vectors
τ 1, τ 2, and τ 3 in CN as shown in Fig. 1. The term Σ can
be viewed as a self-energy arising from the interaction of
CN with the ideal lead and t = |Σ| is the parameter
describing the coupling strength between the electrode
and CN.

We introduce time τφ = h̄/|ImΣ| during which an
electron stays on a carbon atom in the contact region
without going into ideal leads. By multiplying the veloc-
ity γ/h̄ in CN, the corresponding length is defined by
lφ = γτφ/h̄. This “phase coherence” length corresponds
to the length of the nanotube covered by an electron
before going into ideal leads in the contact region.

3 Numerical Results

Figure 2 shows calculated conductance as a function of
t/γ0 for several values of N . The conductance increases
with t for small t, takes a maximum, and then starts
to decrease. The value of t corresponding to the maxi-
mum conductance becomes smaller with the increase of
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Fig. 2 Calculated conductance of CN with L/a=50
√
3 as a

function of the coupling t for several values of N .

the length of the region connected to ideal leads. In the
limit N → ∞ the conductance comes up to the ideal
value G = 2e2/πh̄ at t/γ0 = 0 and decreases with the
increase of t/γ0. This reduction from the ideal value for
nonzero t/γ0 is due to reflection of the electron wave at
the ‘junction’ between the nanotube with attached leads
and the ideal nanotube lead. The results show clearly
that a weak coupling between contacts and CN and a
sufficiently large contact area are appropriate conditions
for ideal electrodes, i.e., ideal for the observation of the
conductance of a nanotube itself without any contact
resistance.

Although not shown explicitly, the contribution to
the conductance depends strongly on the lead position
[7]. For small t and Na/2<∼ lφ, the conductance increases
with N , where all cells contribute to the conductance
almost equally. With the further increase of N , the con-
ductance becomes independent of N when Na/2� lφ. In
this case, the contribution to the conductance is larger
for a cell with large n, i.e., away from the left end, and
becomes negligibly small for n�N . The reason is that
an electron transmitted into the tube from a lead in a cell
close to the left end is almost always scattered into other
leads before being going into the region of the nanotube
without leads.

The most crucial assumption of the model is that
leads connected to different carbon atoms are completely
independent of each other. Strictly speaking, this can be
justified only when the phase coherence length in the
metallic electrode is smaller than or of the same order
as the lattice constant of CN. Even if such conditions
are not completely satisfied, the model may describe es-
sential features in the case that the electrode consists of

dirty metals without translational symmetry. In actual
experiments, various different metals are used as elec-
trodes including liquid metals. They are mostly dirty
metals without translational symmetry.

In realistic cases the transfer integral t′ between a
carbon atom and a metal atom can be quite different
form t and may be reduced considerably by randomness
of the contact surface or mismatch of a lattice constant.
We find that the calculation can be extended easily to
such a case and the important coupling parameter t is
replaced by t′2/t which can be much smaller than t [7].

When a contact metal is not ideal, some carbon atoms
are strongly coupled to electrode and others are weakly
coupled due to randomness present in the contact re-
gion. Such disorder effects can be studied by varying the
transfer integral t of ideal leads among different leads.
In this case the effective coupling is characterized by the
average transfer tav and its width δt of the distribution.
Explicit numerical calculations show that such disorder
effect is not important and that t in the results should
be replaced by tav in the presence of randomness [7].

4 Summary and Discussion

We have studied the conductance between CN and a
dirty metallic contact using the model in which a single
ideal lead is attached to each carbon atom in the contact
region. The result shows that the negligible contact resis-
tance can be realized if we make the coupling between
CN and the electrode sufficiently small, i.e., t/γ0 � 1,
and the contact area sufficiently large. For such contacts,
fluctuations in the coupling strength due to randomness
are not important because the effective coupling between
CN and an electrode is essentially determined by an av-
erage over a large area.
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