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Numerical Study of Impurity Scattering in Carbon Nanotubes
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The transmission and reflection coefficients of a carbon nanotube with a scatterer are calculat-
ed in a tight-binding model. The result obtained in a k·p scheme is shown to be essentially valid,
including the complete absence of back scattering for scatterers with range larger than the lattice
constant, unless the strength of the potential becomes comparable to the band width. When the
potential strength is comparable to the band width, a resonant enhancement of back scattering
appears and the result becomes completely different from that in the k·p scheme.
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§1. Introduction
A carbon nanotube (CN) is a new quantum wire

consisting of rolled graphite sheets.1) Because the dis-
tance between adjacent sheets is much larger than the
distance between the nearest neighbor carbon atoms,
electronic properties of CN’s are determined essential-
ly by those of a single-wall CN. A single-wall CN has
also been synthesized.2,3) The purpose of this paper is to
study impurity scattering in metallic single-wall CN in a
tight-binding model.

Transport properties of CN’s are interesting because
of their unique topological structure. There have been
some reports on experimental study of transport in CN
bundles.4) Measurements of magnetotransport of a sin-
gle nanotube became possible.5,6) Recently transport of
a single-wall CN was observed,7−9) where experiments
show large charging effects due to nonideal contacts or
bending defects. Tunneling probabilities of a finite-
length CN10) and a connection of different CN’s11−15)

were calculated. The conductivity was calculated also in
a constant-relaxation-time approximation in the absence
of a magnetic field.16) The magnetoconductivity was cal-
culated using the Boltzmann transport equation17) and
in a transmission approach18) for a model of short-range
scatterers. The results were shown to have a close con-
nection with transport in a two-dimensional graphite
sheet.19)

In a previous paper,20) effects of impurity scatter-
ing in CN’s were studied in detail and a possibility of
complete absence of back scattering was predicted and
proved rigorously except for scatterers having a potential
range smaller than the lattice constant. This intriguing
fact was related to Berry’s phase acquired by a rotation
in the wave vector space in the system described by a
k·p Hamiltonian which is the same as Weyl’s equation
for a neutrino.21)

In this paper the conductance is calculated for an
impurity with a model potential in a tight-binding mod-
el by varying the strength of the potential. The result

confirms the absence of back scattering when the po-
tential is sufficiently small, i.e., the maximum value is
smaller than the typical width of the conduction and va-
lence bands. When the potential becomes strong, a small
probability of back scattering appears. It can be partly
explained by higher-order Born scattering in the pres-
ence of higher-order terms in k·p perturbations giving
rise to a trigonal warping of the bands.21) For a suffi-
ciently large potential, the back scattering probability is
enhanced resonantly at some specific values of the po-
tential strength and range. In §2, the model and the
method of the calculation are discussed. The results are
presented in §3. A summary and conclusion are given in
§4.

§2. Model and Method

Figure 1 shows the structure of a two-dimensional
graphite together with a corresponding Brillouin zone.
A unit cell contains two carbon atoms denoted as A and
B. The coordinate system (x, y) is chosen in such a way
that the x axis is in the chiral direction, i.e., the direction
along the circumference or the chiral vector L, and the y

axis in the direction of the axis. In the following, we
consider an armchair nanotube with chiral angle η =
−π/2. We use a tight-binding model with a nearest-
neighbor hopping integral γ0 and a lattice constant a.

The armchair nanotube is known to be always
metallic and have two bands in the vicinity of the Fermi
energy crossing at ky =2π/3a (K point) and ky =−2π/3a

(K’ point) as shown in Fig. 2.22−24) The dispersion near
the Fermi energy is approximately given by ε = ±γk,
where k is the wave vector measured from the K and K’
point and γ =

√
3aγ0/2 with a being the lattice constant.

Two channels denoted as K and K’ with positive velocity
γ/h̄ have the dispersion ε =+γk and two with negative
velocity −γ/h̄ have that of ε=−γk.
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Fig. 1 Schematic illustration of the lattice struc-
ture of two-dimensional graphite and the first Bril-
louin zone. An armchair nanotube is characterized
by the chiral vector L and angle η=−π/2 shown in
the figure. An impurity with anisotropic Gaussian
potential is located at R0

B . The mapping of the cor-
ner points K and K’ of the first Brillouin zone onto
a one-dimensional Brillouin zone is shown also.
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Fig. 2 Calculated band structure of an armchair
nanotube with L/a=14
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We shall calculate a scattering matrix S = (Snm),
where m and n denote in-coming and out-going channels,
respectively. In the vicinity of ε=0, we have two right-
going channels K+ and K ′+, and two left-going channels
K− and K ′−. We shall write the scattering matrix as

S =




K+ K ′+ K− K ′−
K− rKK rKK′ t′KK t′KK′

K ′− rK′K rK′K′ t′K′K t′K′K′

K+ tKK tKK′ r′KK r′KK′

K ′+ tK′K tK′K′ r′K′K r′K′K′


. (2.1)

This scattering matrix is calculated numerically using a
recursive Green’s function technique25) as in a previous
work.14)

In terms of T matrix defined by

T =V +V
1

ε−H0+i0
V +V

1
ε−H0+i0

V
1

ε−H0+i0
V +· · · ,

(2.2)
with V the impurity potential, ε the energy, and H0 the
Hamiltonian in the absence of an impurity, the scattering
matrix can be written formally as

S = S(0) + S(1), (2.3)

with

S(0) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , (2.4)

and

S(1)
nm = −i

A

h̄
√|vnvm|Tnm, (2.5)

where A is the length of the nanotube, and vm and vn

are the velocity of channels m and n.
In the presence of the time reversal symmetry, we

have the following relation between the matrix elements
of the impurity potential:

Vab = (ψ∗
a, V ψb) = (e−iφaψā, V eiφbψ∗̄

b ) = ei(φb−φa)Vb̄ā,

(2.6)
where ψā = eiφaψ∗

a and ψb̄ = eiφbψ∗
b are the states ob-

tained from ψa and ψb, respectively, by the time reversal
operation, and φa and φb are appropriate phases of the
wave function. If we choose the phase such that the
eigenfunction for the state K ′− is complex conjugate to
that for K+ and that for K ′+ is conjugate to K−, we
can show, using eqs. (2.2) and (2.6),

S̃ =




r1 r3 t2 t4
r2 r1 t3 t1
t1 t4 r′1 r′3
t3 t2 r′2 r′1


 , (2.7)

where r1, r2, r3, r′1, r′2, r′3, t1, t2, t3, and t4 should satisfy
the unitarity condition S̃+S̃ = S̃S̃+ = 1. In general, the
scattering matrix can be written in terms of S̃ as

S =




e−iφ− 0 0 0
0 e−iφ′

− 0 0
0 0 e−iφ+ 0
0 0 0 e−iφ′

+


 S̃




eiφ+ 0 0 0
0 eiφ′

+ 0 0
0 0 eiφ− 0
0 0 0 eiφ′

−


 ,

(2.8)
where eiφ± and eiφ′

± are determined by the phase of the
wave functions. In particular, we have |rKK |= |rK′K′ |,
|r′KK | = |r′K′K′ |, tKK = t′K′K′ , tK′K′ = t′KK , |tKK′ | =
|t′KK′ |, and |tK′K |= |t′K′K |.

In the Born approximation, we have

S(1)
nm = −i

AVnm

h̄
√|vnvm| . (2.9)

Exactly at ε = 0, the wave function in the k·p approx-
imation is exact in the absence of an impurity and the
matrix element is exactly the same as that given in the
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previous paper:20)

VK±K+ = VK′±K′+ =
1
2
(±uA+uB),

VK±K′+ = V ∗
K′±K+ =

1
2
(∓u′

Aeiη−ω−1e−iηu′
B),

(2.10)

with

uA =
√

3a2

2

∑
RA

V (RA),

u′
A =

√
3a2

2

∑
RA

ei(K′−K)·RAV (RA),

uB =
√

3a2

2

∑
RB

V (RB),

u′
B =

√
3a2

2

∑
RB

ei(K′−K)·RBV (RB),

(2.11)

where ω =exp(2πi/3),
√

3a2/2 is the area of a unit cell,
and V (RA) and V (RB) are the local site energy at RA

and RB , respectively. The above results show that we
have r∗K′K = −rKK′ , tKK = tK′K′ , r′∗K′K = −r′KK′ , and
t′KK = t′K′K′ in the Born approximation.

It should be noted that |rKK′ | can be different from
|rK′K | in general and the same is true of |tKK | and
|tK′K′ |. In fact, results of numerical calculations pre-
sented in the next section show that |rKK′ | 6= |rK′K | and
|tKK | 6= |tK′K′ | for a scatterer with a strong potential.

Depending on the symmetry of the system, we can
show various relations among the transmission and re-
flection coefficients in a manner similar to above in arm
chair nanotubes. In the presence of a mirror symme-
try around the x axis (y → −y), for example, we have
|tK′K | = |tKK′ | and |rKK | = |r′KK | = |rK′K′ | = |r′K′K′ |.
The same is applicable in the presence of an inversion
symmetry around a mid point between neighboring car-
bon A and B sites. In the presence of a mirror symme-
try around the y axis (x→−x), on the other hand, we
have rKK = rK′K′ = r′KK = r′K′K′ = 0.15) We have also
|rKK′(−V )|= |rK′K(V )| and |tKK(−V )|= |tK′K′(V )| for
arbitrary V , corresponding to the presence of the symme-
try of the energy band around ε=0 in the tight-binding
model.

As a model of a scatterer, we consider an anisotropic
Gaussian potential with its center at a B site and its
range d which is much shorter than the circumference
length L. The local site energy is given by

V (r)=V0 exp
[
− (x cos θ+y sin θ)2

(cd)2
− (−x sin θ+y cos θ)2

d2

]
,

(2.12)
with the maximum of the potential

V0 =
f(d/a, c)u

πcd2
, (2.13)

where f(d/a, c) is determined by the normalization con-
dition:

∑
i=A,B

∑
Ri

√
3a2

4
V (Ri−R0

B)=u, (2.14)

where RA and RB are positions of A and B atoms,

respectively, R0
B is the impurity position, and

√
3a2/4

is the half of the area of a unit cell. An equi-energy line
is given by an ellipse whose major axis is rotated from the
direction of the x axis by θ. For c=1, eq. (2.12) reduces
to an isotropic Gaussian potential used previously.20)

For the present model impurity potential, we have
following relations:

uA + uB =2u. (2.15)

In the limit of short-range scatterers, i.e., d¿a, we have

uA = 0, uB = 2u, u′
A = 0, u′

B = 2u. (2.16)

In the limit of long-range scatterers, i.e., dÀ a, on the
other hand, we have

uA = u, uB = u, u′
A = 0, u′

B = 0. (2.17)

Except in the isotropic case c=1, we have u′
A 6=0 because

of the absence of symmetry under 120◦ rotation.
In the conventional k·p scheme, intervalley terms

can be neglected and the impurity potential appears only
as a diagonal term, when the impurity potential has a
range much larger than the lattice constant. The results
obtained in this long-range limit within the k·p scheme
can be summarized as follows:20,21) In the lowest order
k·p theory neglecting terms of the order of (ka)2, this
potential cannot cause back scattering. When a higher
order k·p term giving a trigonal warping of the band
is included, a weak back scattering appears usually in
a higher order Born approximation for ε = 0. For ε 6= 0,
back scattering becomes possible even in the lowest order
Born approximation except in armchair nanotubes. In
an armchair nanotube and for impurity potential having
a mirror symmetry about a plane containing the axis of
the nanotube, however, the back scattering is not allowed
up to an infinite order of Born series.

§3. Numerical Results

In the following calculations, we shall consider a
thick nanotube L/a = 50

√
3 and vary the strength of

the potential V0 in the range −3<V0/γ0 <3. In the k·p
scheme, the strength of the potential is characterized by
the parameter u/γL.18) We have

u

γL
=

2π√
3

cd2

aL

1
f(d/a, c)

V0

γ0
, (3.1)

which satisfies |u|/γL¿ 1 for d/a <∼ 1.5 and |V0|/γ0 <∼ 1
because f(d/a, c) ∼ 1 except in the case d/a ¿ 1. This
shows that the lowest Born approximation is always valid
in the k·p scheme for this range of the parameters excep-
t in some special cases where the lowest term vanishes
identically or is extremely small. Therefore, any differ-
ence from the Born result obtained in the tight-binding
model usually indicates a deviation from the lowest order
k·p approximation.

Figure 3 shows the calculated transmission and re-
flection coefficients for an isotropic scatterer (c=1) as a
function of the potential range d/a. In the case of (a)
V0/γ0 = 0.1, the difference from the result of the Born
approximation is negligible. For a large potential (b)
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V0/γ0 = 0.5, on the other hand, the deviation from the
Born result becomes appreciable. Higher order effects
are important in particular for intervalley terms. There-
fore, the potential range necessary for the back scatter-
ing to vanish becomes larger with the increase of the
potential strength. Due to the mirror symmetry around
the x axis the transmission coefficients satisfy the rela-
tion |tKK′ | = |tK′K |. Further, we have approximately
|rKK′ | ≈ |rK′K | (the difference is unrecognizable in the
figure).
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Fig. 3 Calculated transmission and reflection co-
efficients versus the potential range at ε=0 and for
an isotropic scatterer c = 1. (a) V0/γ0 = 0.1. (b)
V0/γ0=0.5.

Figure 4 shows the calculated transmission and re-
flection coefficients for an anisotropic scatterer (c=2 and
θ = π/3). In the case of (a) V0/γ0 = 0.1, the difference
between |rK′K | and |rKK′ | remains still very small. For
a large potential (b) V0/γ0 =0.5, both deviation from the
Born result and difference between |rK′K | and |rKK′ | be-
come appreciable. The absence of back scattering for the
range comparable to the lattice constant is destroyed for
intervalley terms. Because of the absence of the mirror
symmetry, the transmission coefficients |tKK′ | and |tK′K |
are now different, but the difference remains extremely
small.
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Fig. 4 Calculated transmission and reflection co-
efficients versus the potential range at ε = 0 for
an anisotropic scatterer c = 2 and θ = π/3. (a)
V0/γ0 =0.1. (b) V0/γ0 =0.5.
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Fig. 5 Calculated reflection coefficients versus the
potential strength V0/γ0 at ε = 0 for an isotropic
scatterer (c=1) with range d/a=1.5.
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Fig. 6 Calculated reflection coefficients versus the
potential strength V0/γ0 at ε=0 for an anisotropic
scatterer (c=2 and θ=π/3) with range d/a=1.5.

Figure 5 shows the calculated reflection coefficients
as a function of the potential strength for an isotropic
scatterer (c = 1) with range d/a = 1.5. For small V0/γ0

the intervalley reflection coefficients |rK′K | and |rKK′ |
increase in proportion to V0/γ0 following the lowest Born
result, while the intravalley coefficient |rKK |= |rK′K′ | is
quite small and proportional to (V0/γ0)3. The origin
of this dependence remains to be understood. Higher
order effects and therefore the back scattering become
appreciable when V0/γ0 >∼ 0.5. There seems to be a
resonant enhancement of back scattering at a certain
potential strength in the region V0/γ0 >1.
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Fig. 7 Calculated total reflection probability of
an isotropic scatterer (c = 1) versus the potential
strength V0/γ0 at ε = 0 for various values of the
potential range d/a.

Figure 6 shows the calculated reflection coefficients
for an anisotropic scatterer (c = 2 and θ = π/3). For
small V0/γ0 the intervalley coefficients |rK′K | and |rKK′ |
increase roughly in proportion to V0/γ0 following the
lowest Born result, but they become different from each
other due to higher order effects. Around V0/γ0 =0.007,
|rK′K | exhibits a sharp dip. This is a result of an
interference of the lowest Born term and higher order
terms presumably arising from the absence of the mirror
symmetry around the y axis combined with higher order
k·p terms. The intravalley term |rKK |= |rK′K′ | is much
larger than that for the isotropic case shown in Fig.
5 and increases in proportion to (V0/γ0)2. This is a
result of the combined effects of higher order terms in the
k·p approximation leading to a trigonal warping of the
band and higher order Born approximation as mentioned
above.

Figure 7 shows the total reflection probability |rK′K |2
+ |rKK′ |2 as a function of the absolute value of the po-
tential strength for various values of d/a. The reflection
exhibits a complicated resonance behavior when the po-
tential strength exceeds γ0 and the lowest resonance po-
sition approaches V0/γ0 = ±1 with the increase of d/a.
This shows clearly that this resonance is closely related
to the band structure shown in Fig. 2, i.e., the pecu-
liar behaviors at the Brillouin zone edge and center for
ε/γ0 = ±1. It is likely that some virtual bound states
are formed associated with the impurity potential, but
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detailed mechanisms remain to be understood yet.

§4. Summary and Conclusion

In summary, we have studied the transmission and
reflection coefficient of an armchair CN with a scatter-
er within a tight-binding model. It has been shown
that the result in a k·p scheme is essentially valid un-
less the strength of the potential becomes comparable to
the band width. A small probability of back scattering
proportional to the square of potential strength appears
for a scatterer with a potential without the mirror sym-
metry with respect to a line parallel to the tube axis.
This is a result of a combination of the trigonal warping
of the band arising in higher order k·p perturbations and
higher order scattering. When the potential strength is
comparable to the band width, a resonant enhancement
of back scattering appears presumably due to the pecu-
liar band structure of the two-dimensional graphite.
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