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Effects of a contact between a carbon nanotube and metallic electrode are studied in a tight-
binding model. A model of dirty contact is introduced and discussed for electrode weakly coupled
to a carbon nanotube. Measurements of a perfect transmission in two-terminal measurement
may be possible by the using of the contact with both weak coupling and large area.
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§1. Introduction

Carbon nanotubes (CN’s) are a new quantum wire
consisting of rolled graphite sheets.1) They possess
unique electronic properties due to their small diame-
ter and intriguing lattice structure of a two-dimensional
graphite. The purpose of this paper is to study a contact
between an electrode and a metallic single-wall CN.

Transport properties of CN’s are interesting because
of their unique topological structure. There have
been some reports on experimental study of transport
in CN bundles connected at both ends to two gold
pads.2, 3) The magnetotransport of a single multi-wall
nanotube was measured using tungsten or gold wires as
an electrode.4-7) A single-wall CN was synthesized,8, 9)

and its transport was measured. Experiments showed
large charging effects presumably due to nonideal con-
tacts.10-14) By using liquid metal as a contact, a quan-
tized conductance was observed in a multi-wall nan-
otube,15) but the quantized value turned out to be a
half of the ideal value.

Various theoretical calculations were made on trans-
port properties of CN. Tunneling probabilities of a finite-
length CN16) and a connection of different CN’s17-23)

were calculated. The conductivity was calculated also in
a constant-relaxation-time approximation in the absence
of a magnetic field.24) The magnetoconductivity was cal-
culated using the Boltzmann transport equation25) and
in a transmission approach26) for a model of short-range
scatterers. The results were shown to have a close con-
nection with transport in a two-dimensional graphite
sheet.27)

Effects of impurity scattering in CN’s were studied and
the complete absence of back scattering was proved rig-
orously except for scatterers having a potential range
smaller than the lattice constant.28) This intriguing fact
was related to Berry’s phase acquired by a rotation in

the wave vector space in the system described by a k·p
Hamiltonian29) which is the same as Weyl’s equation
for a neutrino.30) The conductance was calculated in a
tight-binding model by varying the strength of the po-
tential.31, 32)

Effects of scattering by a short-range and huge poten-
tial were studied in CN’s in the presence and absence of
a magnetic field.19, 33-37) The conductance was shown to
be quantized into zero, one, and two times of the con-
ductance quantum e2/πh̄ depending on the type of the
vacancy.

For the observation of such intriguing transport prop-
erties of CN realization of low contact resistance is ab-
solutely necessary. Theoretically, such contact problems
are quite interesting and are currently the subject of in-
tensive study. For example, the transmission probability
between a single-wall CN and a jellium metal was dis-
cussed38) and explicitly calculated.39) A coupling of CN
with a copper chain was discussed using pseudopoten-
tial40) and that with a metal in a jellium model.41)

In this paper, the contact resistance between a metallic
electrode and CN is studied in a model of a dirty metallic
contact. In §2, a model of the contact is introduced and
the method of the calculation is described. Results are
presented in §3 and discussed in §4. A summary and
conclusion are given in §5.

§2. Model of Contact and Methods

We consider a semi-infinite armchair nanotube with
circumference L=

√
3aM/2 as shown in Fig. 1, where M

is an integer and a is the lattice constant. A set of car-
bon atoms in the circumference direction will be called
a cell and each cell is specified by an integer n starting
with n = 1 at the left end. We attach ideal leads to
carbon atoms lying close to the left edge and calculate
the conductance between the leads and CN. The con-
ductance is proportional to the transmission probability
from leads to the tube region infinitely away according
to Landauer’s formula.42)

Consider first the case that a single ideal lead con-
nected to a single carbon atom at a B site of a cell n=N .
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nents, respectively. Then, we have

C1 = exp(−ik′a′)C
(−)
0 + exp(+ik′a′)C

(+)
0

= exp(−ik′a′)C
(−)
0 + exp(+ik′a′)[C0−C

(−)
0 ], (2.6)

where k′>0 for a given ε (−2t≤ε≤+2t). The substitu-
tion of this into eq. (2.2) gives

(ε−Σ)C0 + γ0

3∑
i=1

C~τ i =
ih̄v(k′)

a′
C

(−)
0 , (2.7)

with

Σ = −t exp(ik′a′). (2.8)

The term Σ can be viewed as a self-energy arising from
the interaction of CN with the ideal lead and t= |Σ| is
the parameter describing the coupling strength between
the electrode and CN.

An “ideal lead” consisting of an armchair CN with
infinite length is attached starting with the cell at n=N+
1. The condition that only right-going (out-going) waves
can exist at n=N+1 is included in a usual manner43)

and gives a self-energy term similar to Σ in eq. (2.7) at
the cell n=N+1. The Green’s function can be calculated
by inverting such effective Hamiltonian for n=1 to N+1
including such self-energy terms.

The transmission coefficient for a wave injected from
the ideal lead attached to a carbon atom to the ideal
lead of an armchair CN infinitely long can be calculated
using this Green’s function. In fact, we first calculate
the amplitude at the cell n = N +1 using the Green’s
function and treating the right hand side of eq. (2.7) as
a source term. Then, the resulting amplitude at n=N+1
is separated into traveling waves at the K and K′ points.
In the source term at a site j = 0 in the cell n=N , we
should put C

(−)
0 = 1/

√
|v(k′)| corresponding to a unit

flux of the in-coming wave and have

(ε−Σ)C0 + γ0

3∑
i=1

C~τ i =
ih̄
√
|v(k′)|

a′
. (2.9)

The traveling waves of CN at n=N+1 should also be
normalized such that they carry a unit flux.

Armchair nanotubes are always metallic and the con-
duction and valence bands have a linear dispersion and
cross the Fermi level at the K and K′ points correspond-
ing to K=2π/3a and K ′=−2π/3a, respectively. In fact,
we have ε(k)=γ(k−K) for k∼K and ε(k)=γ(k−K ′) for
k∼K ′, where γ =

√
3γ0a/2 and k is the wave vector in

CN along the axis direction. Therefore, in the nanotube
infinitely away from the ideal lead there are two traveling
modes associated with the K and K′ point.

It is straightforward to extend the calculation to the
case that ideal leads are connected to many carbon atoms
in CN as long as leads attached to different carbon atoms
are independent of each other. In this case N should
be chosen such that ideal leads are connected to atoms
in cells with n ≤ N but not in cells with n > N . The
conductance is given by

G =
e2

πh̄

∑
ν

(
|tKν |

2+|tK′ν |
2
)
, (2.10)

where − and + denote in-coming and out-going compo-

ε = −2t cos(k′a′), (2.3)

where a′ is the lattice constant and k′ is the wave vector,
and the corresponding velocity is given by

v(k′) =
2ta′

h̄
sin(k′a′). (2.4)

First, we have to separate C0 into in-coming and out-
going solutions in the ideal lead. We shall write

C0 = C
(−)
0 + C

(+)
0 , (2.5)

εCj + tCj+1 + tCj−1 = 0, (2.1)

εC0 + γ0

3∑
i=1

C~τ i = −tC1, (2.2)

where γ0 is the transfer integral between three nearest-
neighbor A and B sites, which are connected by vectors
~τ 1, ~τ 2, and ~τ 3 in CN as shown in Fig. 1. If the ideal
lead is connected to an A site in CN’s, ~τ i are replaced
by −~τ i in eq. (2.2).

In the ideal lead, we have

The equation of motion of the ideal lead consisting of a
one-dimensional lattice is written by

where ε is the energy, Cj describes the amplitudes of site
j, and t is the transfer integral between nearest neighbor
atoms (t > 0). An end of the ideal lead is connected
to a carbon atom chosen as j = 0 and the other end
infinitely away is connected to a reservoir. For simplicity,
the energy of each atom is chosen to be same as that of
a carbon, i.e., the band center of CN at the Fermi level.
At j=0,

Fig. 1. Schematic illustration of the lattice structure of armchair
CN and ideal leads. Only some part of CN is shown in the
circumference direction. The cells n=1 and N are with shadow
and the cell with n=N+1 is connected to an “ideal lead” of CN.

Carbon atoms in cells n= 1 to N are connected to a reservoir
through an ideal lead characterized by the transfer integral t
and lattice constant a′. The primitive translation vectors of the
two-dimensional graphite are given by a and b and the lattice
constant is a= |a|. A unit cell contains two carbon atoms called
A and B, which are connected by vectors ~τ1, ~τ2, and ~τ3.
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where ν specifies a carbon atom to which an ideal lead is
attached and tKν and tK′ν represent transmission from
ν to the K and K′ states in the ideal lead of CN. When
a contact metal is not ideal, some carbon atoms are
strongly coupled to electrode and others are weakly cou-
pled due to randomness present in the contact region.
Such disorder effects can be studied by varying the trans-
fer integral t of ideal leads among different leads. In this
case the effective coupling is characterized by the average
transfer tav and its width δt of the distribution.

We introduce time τφ during which an electron stays
on a carbon atom in the contact region without going
into ideal leads

τφ=
h̄

|Im Σ|
, (2.11)

where Σ is the self-energy defined in eq. (2.8). By multi-
plying the velocity γ/h̄ in CN, the corresponding length
lφ is defined by

lφ =
γτφ

h̄
, (2.12)

where t should be replaced by tav in the presence of ran-
domness. This “phase coherence” length corresponds to
the length of the nanotube covered by an electron be-
fore going into ideal leads when ideal leads are attached
to all carbon atoms. The situation is analogous to sys-
tems in the presence of inelastic scattering introduced by
Büttiker44) and used for the study of the voltage distri-
bution in the quantum Hall effect.45)

So far we have assumed that the transfer integral t′ be-
tween a carbon atom and a metal atom of the ideal lead is
same as the transfer integral t between neighboring metal
atoms. It is straightforward to extend the above discus-
sion to the case t′ 6= t as discussed in Appendix A. The
result shows that t in Σ given by eq. (2.8) and in v(k′) in
eq. (2.9) should simply be replaced by t′2/t, i.e., that the
transmission coefficient becomes a function of t′2/t and
k′. For ε = 0, we have k′a = π/2 independent of t and
t′, showing that the transmission coefficient is obtained
from that for t′ = t by the replacement t→ t′2/t. For
nonzero ε, the transmission coefficient becomes depen-
dent on individual values of t and t′ because k′ depends
on t through eq. (2.3). However, such dependence is neg-
ligible as long as |ε|/γ0¿1, which can be demonstrated
both analytically and numerically.

§3. Numerical Results

3.1 Single lead
In actual numerical calculations, carbon atoms are di-

vided into the cells n = 1, . . . , N as mentioned above
and Green’s functions are calculated in terms of recursive
Green’s function technique43) as in previous works.22, 31)

We choose ε=0 and L=50
√

3a in the following.
Figure 2 shows the calculated conductance between

CN and a single ideal lead connected to a carbon atom.
The probability of an electron to be transmitted into the
K channel is always same as that into the K′ channel
although not shown explicitly.

When the lead is attached to a carbon atom in cells
n=3m−1 or 3m−2 with an integer m, the conductance
increases linearly with the increase of coupling strength

same as that in the case of a single ideal lead, i.e., the
conductance increases with t for small t, takes a maxi-
mum, and then starts to decrease. The value of t corre-
sponding to the maximum conductance is much smaller
than that of a single ideal lead and becomes smaller with

t, reaches a perfect transmission at a certain value of
t, and then decreases. For small t the conductance in-
creases with t, because the coupling between CN and the
electrode becomes stronger. For large t, due to strong
coupling an electron is reflected back to the ideal lead
before being transmitted into the nanotube and as a re-
sult the conductance decreases with t. The value of t/γ0

at the maximum conductance is ∼ 60 and is unrealisti-
cally large [calculations for other values of L show that
t/γ0∼L/a at the maximum].

For the case n = 3m, on the other hand, we have a
perfect reflection. This singular behavior is caused by
interference of right-going and left-going waves in the
presence of the hard wall at the left end of CN. In fact,
because the Bloch phase of the wave functions at K and
K′ points changes as a function of n with period 3, the
wave function which vanishes at n=0 vanishes always at
n= 3m. As a result, the ideal lead cannot couple with
traveling modes in the nanotube when n=3m.

3.2 Many leads
Consider next the case that ideal leads with same t

(δt=0) are to all carbon atoms in several cells
(n = 1, · · · , N) of CN including the left end. Figure 3
shows the calculated conductance as a function of t for
several values of N . The dependence on t is qualitatively

connected

Fig. 2. Calculated conductance versus coupling strength t for CN
with circumference L/a=50

√
3, in which a single ideal lead is con-

nected to a carbon atom on a specified cell n. The conductance
for n=3m+1 and that for n=3m+2 are identical and that for
n=3m vanishes, where m is an integer.
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the increase of the length of the region connected to ideal
leads.

For N = 1, in particular, where only the left end cell
is connecting to ideal leads, the conductance G takes a
maximum at t/γ0 = 1. In this case the conductance can
be calculated analytically as

G=
e2

πh̄
4
√

3
γ0

t
+
t

γ0
+
√

3
−1

, (3.1)

a cell with large n, i.e., away from the left end, and be-
comes negligibly small for n¿N . The reason is that an
electron transmitted into the tube from a lead in a cell
close to the left end is almost always scattered into other
leads before being going into the region of the nanotube
without leads. Figure 4 shows that for t/γ0 & 2 the con-
tributions of two cells n=N and N−1 are dominant and
other contributions are much smaller. This is the reason

ideal nanotube lead. In fact, a small self-energy Σ ∝ t
is present in carbon atoms in cells n ≤ N and not in
n≥N+1, leading to a small reflection at n=N+1 whose
probability is proportional to (|Σ|/γ0)2. The results show
clearly that a weak coupling between contacts and CN
and a sufficiently large contact area are appropriate con-
ditions for ideal electrodes, i.e., ideal for the observation
of the conductance of a nanotube itself without any con-
tact resistance.

that the conductance is independent of N for t/γ0 & 2
for N≥2.

Figure 3 shows that the conductance exhibits an os-
cillatory dependence on N . The oscillation can be seen
clearly in Fig. 5 where the dependence on N is shown
for several values of t/γ0. For sufficiently small values of
t/γ0 and for Na/2 . lφ the conductance remains same
for N = 3m−1 and N = 3m with an integer m because
the cell n= 3m does not contribute to the conductance
as mentioned above. For other values of t/γ0, the con-
ductance has a small dip at N=3m presumably because
the cell n = 3m contributes more to a drain for elec-
trons injected from other leads rather than to an injec-
tion source. This oscillation does not disappear until the
condition Na/2À lφ is satisfied.

Figure 6 shows calculated conductance as a function
of t/γ0 for large N . In the limit N →∞ the conduc-
tance comes up to the ideal value G=2e2/πh̄ at t/γ0 =0
and decreases with the increase of t/γ0 in proportion to
(t/γ0)2. This reduction from the ideal value for nonzero
t/γ0 is due to reflection of the electron wave at the ‘junc-
tion’ between the nanotube with attached leads and the

Fig. 3. Calculated conductance of CN with L/a=50
√

3 as a func-
tion of the coupling t for several values of N .

Fig. 4. Contributions to the conductance injected from ideal
leads on each cell for N = 10. For cells with n = 3m they are

shown by dotted lines and for the others by solid lines. The
corresponding conductance is given by the sum and is shown in
Fig. 3.

( )

conductance takes a maximum and then decreases. For

although its derivation will not be discussed. It is inter-
esting that this conductance has a symmetry G(t/γ0) =
G(γ0/t).

Figure 4 shows the contributions to the conductance
injected from ideal leads on a specified cell for N = 10.
For small t/γ0¿

√
3/N , where lφÀNa/2, all cells with

n=3m−1 and n=3m−2 equally contribute to the conduc-
tance and their contribution is proportional to t, whereas
the contributions of cells with n= 3m are proportional
to t2 and much smaller. This behavior corresponds to
the main feature of the results for a single lead shown in
Fig. 2. In fact, for a small t the probability for an elec-
tron be scattered into other ideal leads is proportional
to t2 and can be neglected.

With the further increase of t, each contribution to the

to

large t, the contribution to the conductance is larger for
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3.3 Disorder effects
It is expected that the average coupling tav determines

the conductance even in the presence of disorder when
leads are attached to many cells. In order to see the
validity of this expectation, we calculate the conductance
for systems in which t is distributed uniformly in the

region tav−δt/2<t<tav +δt/2.
Figure 7 shows an example of the conductance aver-

aged over 2500 different samples as a function of the
number of the contact cells for tav/γ0 = 0.13 and δt =
2tav = 0.26. The results for L/

√
3a = 50 and 25 are

shown. The averaged conductance is identical for two
cases and agrees with the conductance shown in Fig. 5
in the absence of randomness for t=tav. The inset shows
the fluctuation given by ∆G=

√
〈(G−〈G〉)2〉, where 〈· · ·〉

denotes the sample average. It shows that the fluctua-
tion decreases with L and N in proportion to 1/

√
LN

for small N as is expected. For a sufficiently large N the
fluctuation becomes much smaller because the conduc-
tance approaches the ideal value.

§4. Discussion

If we consider a contact of a nanotube and surround-
ing uniform and ideal jellium metal, the conservation of
the wave-vector component parallel to the CN axis im-
poses a strong constriction for the injection of electrons
from a metal to CN.38, 39) Further, the Fermi level in the
metal should be same as that of CN. States satisfying the
conservation of the wave vector are usually located on a
closed circle on the Fermi sphere of the metal. Trans-
mission and reflection of waves having such a wave vec-
tor determine a contact resistance between the metallic
electrode and CN. An ab initio pseudopotential calcula-
tion of nanotubes in the presence of surrounding jellium
metal was reported recently,41) suggesting that there can
be considerable asymmetry in the coupling between to
bands crossing the Fermi level.

The present model corresponds to a completely op-
posite situation. The most crucial assumption of the

Fig. 5. Calculated conductance as a function of contact cells N
for t/γ0 =0.01, 0.02, 0.05, 0.13, 0.4, and 1.0. The corresponding
“phase coherence” lengths are lφ/(a/2) = 87, 35, 13, 4.3,

and 1.7. The vertical arrows indicate N= lφ/(a/2).

170,

Fig. 6. Calculated conductance as a function of the coupling t for
large N .

Fig. 7. The conductance averaged over 2500 different samples
with tav/γ0 = 0.13 and δt= 2tav = 0.26 in CN with L/

√
3a= 50

and L/
√

3a= 25. We have lφ/(a/2) = 13 for t/γ0 = 0.13. The
inset shows the fluctuation of the conductance.
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model is that leads connected to different carbon atoms
are completely independent of each other. Strictly speak-
ing, this can be justified only when the phase coherence
length in the metallic electrode is smaller than or of the
same order as the lattice constant of CN. Even if such
conditions are not completely satisfied, the model may
describe essential features in the case that the electrode
consists of dirty metals without translational symmetry.
In actual experiments, various different metals are used
as electrodes including liquid metals. They are mostly
dirty metals without translational symmetry.

When we use a known value of the Fermi velocity vF ,

for example, we can determine the parameter t/γ0 for
each metal using eq. (2.4) at ε = 0. In fact, we have
t/γ0∼0.762 for Cu, 0.679 for Au, and 0.766 for Hg cor-
responding to vF = 1.57, 1.40, and 1.58 in units of 108

cm/s. In realistic cases the transfer integral t′ between
a carbon atom and a metal atom can be quite different
form t and may be reduced considerably by randomness
of the contact surface or mismatch of a lattice constant.
As is discussed in Appendix A, the calculation can be
extended easily to such a case and the result shows that
the important coupling parameter t is replaced by t′2/t
which can be much smaller than t.

§5. Summary and Conclusion

We have studied the conductance between CN and a
dirty metallic contact using the model in which a single
ideal lead is attached to each carbon atom in the contact
region. The result shows that the negligible contact re-
sistance can be realized if we make the coupling between
CN and the electrode sufficiently small, i.e., t/γ0 ¿ 1,
and the contact area sufficiently large. For such contacts,
fluctuations in the coupling strength due to randomness
are not important because the effective coupling between
CN and an electrode is essentially determined by an av-
erage over a large area.
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Appendix: Generalization

Let t′ be the transfer integral between an ideal lead
defined by eq. (2.1) and a carbon atom in CN. Then, the
equations of motion become

εC0 + γ0

3∑
i=1

C~τ i = −t′C1, (A.1)

at j=0 and

εC1 + t′C0 + tC2 = 0, (A.2)

at j=1. They are given by eq. (2.1) for j>1. We sepa-

rate C1 into in-coming C
(−)
1 and out-going C

(+)
1 waves,

i.e.,

C1 = C
(−)
1 + C

(+)
1 . (A.3)

Then, we have

C2 = C
(−)
1 e−ik′a′ + C

(+)
1 eik′a′

= C
(−)
1 e−ik′a′ + [C1−C

(−)
1 ]eik′a′ . (A.4)

The substitution of this into eq. (A.2) gives

C1 =
t′

t
eik′a′C0 − i

h̄v(k′)

ta′
eik′a′C

(−)
1 . (A.5)

Define

C
(−)
0 = eik′a′C

(−)
1 , (A.6)

and substitute the above into eq. (A.1). Then, we have

(ε−Σ′)C0 + γ0

3∑
i=1

C~τ i = i
h̄t′v(k′)

ta′
C

(−)
0 , (A.7)

where

(ε−Σ′)C0 + γ0

3∑
i=1

C~τ i = i
h̄
√
|v′(k′)|

a′
, (A.9)

where

Σ′ = −
t′2

t
eik′a′ . (A.8)

This shows that the self-energy is obtained from eq. (2.8)
by the replacement t→t′2/t.

In order to calculate the transmission coefficient for a
wave injected from the ideal lead, we have to substitute
C

(−)
0 = 1/

√
|v(k′)| corresponding to a unit flux. Then,

we have

v′(k′) =
2t′2a′

h̄t
sin(k′a′). (A.10)

same order. In this case the explicit dependence on t
and t′ remains small and can be neglected. This can be
shown analytically and can be confirmed also by direct
numerical calculations.

This shows clearly that the equation of motion at j= 0
can be obtained from eq. (2.7) by the replacement t→
t′2/t.

For ε = 0, we have k′a = π/2 independent of t and
t′, showing that the transmission coefficient is obtained
from that for t′ = t by the replacement t→ t′2/t. For
nonzero ε, the transmission coefficient becomes depen-
dent on individual values of t and t′ because k′ depends
on ε and t explicitly [see eq. (2.3)]. However, as long
as the condition |ε|/γ0 ¿ 1 is satisfied, the condition
|ε|/t¿1 is fulfilled usually because |t| and γ0 are of the
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