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Kekulé pattern on conductance
images between two STM probes
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The conductance image between two probes of scanning-tunneling-microscopy (STM) is calculated in a zigzag carbon
nanotube within a tight-binding model and a realistic modelfor STM probes. A Kekulé-type pattern usually appears
due to interference of states at K and K’ points.
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1 Introduction Carbon nanotubes are regarded as bal-
listic conductors. In metallic nanotubes, in particular, the
backward scattering is entirely suppressed for scatterers
with potential range larger than the lattice constant of a
two-dimensional graphite and the conductance is quantized
into2e2/πh̄ [1,2]. When several bands are occupied, a per-
fectly conducting channel transmitting through the system
without being scattered back is present [3]. It is known that
scanning tunneling microscopy (STM) and spectroscopy
(STS) are a powerful technique for directly viewing elec-
tronic wave functions at the atomic level. Quite recently
multi-probe STM was developed [4]. The purpose of this
paper is to explicitly visualize interference effects in two-
probe STM images in ballistic carbon nanotubes.

STM measurements have been conducted in order to
observe the electronic wavefunctions in carbon nanotubes
[5,6]. Energy-dependent interference patterns in the wave-
functions were observed in nanotubes shortened to less than
40 nm [6]. Numerical calculations were made on electronic
states and STM images in a finite carbon nanotube [7].
Topographical STM images have been calculated within
a tight-binding model and the appearance of the honey-
comb structure has been demonstrated in infinitely long
nanotubes [8]. Electron transmission has been studied be-
tween two STM tips as leads which contact the nanotube
via single carbon atoms [9]. Recently, we have shown a
Kekulé type pattern in two-probe STM images in armchair
carbon nanotubes due to interference of states at K and K’
point except in special cases [10]. In this paper, we calcu-

late the conductance in a zigzag nanotube and discuss the
robustness of the Kekulé pattern for arbitrary chirality.

2 Formulation
2.1 Preliminaries Figure 1 (a) shows the structure of

two–dimensional (2D) graphite or graphene, two primi-
tive translation vectorsa andb, and three vectorsτ l (l=
1, 2, 3) connecting nearest-neighbor atoms. A unit cell con-
tains two carbon atoms denoted as A (open circle) and B
(closed circle). The origin of the coordinates is chosen at
a B site,i.e., a B site is given byRB = naa+nbb and an
A site isRA = naa+nbb+τ with na andnb being inte-
gers andτ ≡ τ 1 = (a+2b)/3. In the coordinate system
(x′, y′) fixed onto the graphene sheet, we havea=a(1, 0),
b= a(1/2,

√
3/2), andτ = a(0, 1/

√
3), wherea=0.246

nm is the lattice constant. In the following we use a tight–
binding model with a nearest–neighbor hopping integral
−γ0.

In a 2D graphite, two bands having approximately a
linear dispersion cross the Fermi level at corner K and K’
points of the first Brillouin zone. The wave vectors of the
K and K’ points are given byK = (2π/a)(1/3, 1/

√
3)

andK
′ = (2π/a)(2/3, 0). For states in the vicinity of the

Fermi levelε=0, the wavefunction is written as [11]

ψA(RA)= eiK·RAFK
A (RA)+eiηeiK

′
·RAFK′

A (RA), (1)

ψB(RB)=−ωeiηeiK·RBFK
B (RB)+eiK

′
·RBFK′

B (RB),(2)

with ω = e2πi/3 in terms of the slowly–varying envelope
functionsFK

A , FK
B , FK′

A , andFK′

B with chiral angleη.
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Figure 1 (a) Lattice structure of a two–dimensional graphite
sheet. The coordinates are chosen in such a way thatx is along
the circumference of a nanotube andy is along the axis. (b) A
schematic view of a carbon nanotube with two STM tips mod-
eled by 1D wires. (c) A model of the STM tip and the carbon
nanotube with aπ orbital on a carbon atom atR. ∆ is the normal
distance of the STM tip to the nanotube.

Then, in the vicinity of the K point, for example, they sat-
isfy thek·p equation:

γ(σ · k̂)FK(r)=εFK(r), (3)

F
K(r)=

(

FK
A (r)

FK
B (r)

)

, (4)

whereγ=
√

3aγ0/2 is the band parameter withγ0 being a
nearest-neighbor hopping integral,k̂ = (k̂x, k̂y) =−i∇ is
a wave vector operator,ε is the energy, andσx andσy are
the Pauli spin matrices.

In nanotubes, the coordinate system(x, y) will be cho-
sen in such a way that thex axis is in the chiral direction,
i.e., the direction along the circumference or the chiral vec-
tor L, and they axis in the direction of the axis. In metal-
lic nanotubes, thek·p equation is solved under a periodic
boundary condition in thex direction. The wave function
for the linear bands atε=0 is independent of the position
and given by

F
K±(r) =

1√
2LA

(

∓i

1

)

, (5)

F
K′

±(r) =
1√
2LA

(

±i

1

)

, (6)

whereL = |L|, A is the length of the nanotube, and the
upper and lower signs correspond to right and left-going
waves, respectively.

2.2 Interference between K and K’ Points We con-
sider the conductance between two STM tips in an infinitely
long metallic nanotube as illustrated in Fig. 1 (b). First, we
consider traveling wave withε≈0 injected from the B site
RB = 0. We may approximately take the lowest order of

the coupling between the STM tip and carbon atoms, be-
cause the coupling is usually very weak. The injected elec-
tron equally propagates to both right and left directions,
because of the symmetry of the configuration. Further, the
wavefunction of the injected electron is decomposed into
those at the K and K’ point with the same amplitude. Then,
eq. (2) shows that on the right hand side of the injection
pointRB =0, the envelope functions become

F
K(r) = −ω−1e−iηδFK+(r), (7)

F
K′

(r) = δFK′
+(r), (8)

with δ being the amplitude. Upon substitution of the above
into eq. (2), we have

ψA(RA) = i
δ√
2LA

(ω−1e−iηeiK·RA +eiηeiK
′
·RA), (9)

= i

√

2

LA
δ eiπna cos

[π

3
(na−2nb) + η

]

, (10)

ψB(RB) =
δ√
2LA

(eiK·RB +eiK
′
·RB ), (11)

=

√

2

LA
δ eiπna cos

[π

3
(na−2nb)

]

. (12)

The conductance between the STM probe at the origin and
that atRB is approximately proportional to the probability
density|ψB(RB)|2. It becomes the maximum∝ 2δ2 for
na−2nb =3m with an integerm and becomes∝ (1/2)δ2

for na−2nb = 3m±1. The probability density at A sites
depends on the chirality. For zigzag nanotubesη = 0, it
becomes the maximum∝ 2δ2 for na−2nb = 3m and∝
(1/2)δ2 for na−2nb =3m±1.

The sitesR̃=naa+nbb satisfyingna−2nb =3m with
integerm form a honeycomb lattice. Its basis vectors can
be chosen as̃a=−a−2b andb̃=2a+b as shown in Fig. 1
(a), for example, and therefore the lattice constant is

√
3a

and the area of the unit cell is3Ω0 with Ω0 = (
√

3/2)a2

being the area of the original honeycomb lattice spanned
by the basis vectorsa andb. The maximum conductance
is observed when two STM probes couple to atoms on this
enlarged lattice for both A and B sublattices. This so-called
Kekulé pattern is a result of the interference of traveling
waves at the K and K’ points as clearly shown in eq. (12).
The pattern also appears in the wavefunction around a sin-
gle vacancy [12,13].

2.3 Tip Model We consider a more realistic model of
a nanotube with curvature and an STM tip with coupling
to several carbon atoms. The hopping integral between the
tip s atom and aπ orbital atR of the tube is given bysp
Slater–Koster form [8]:

tR = t0wR exp
(

− dR
λ

)

cos θR, (13)

wR = exp(−α2d2
R

)
[

∑

R′

exp(−α2d2
R′)
]−1

, (14)

wheredR is the distance between the tip atom and the car-
bon atom,θR is the angle with the orientation of theπ
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Table 1 The coordinates of the left STM tip shown in Fig. 2 (a)
and the maximum values of the conductance,Gmax, used for plot-
ting Figs. 2.

3∆x/a
√

3∆y/a Gmax(10−10e2/πh̄)

(b) 0 0 15

(c) 0 -0.5 9.5

(d) 0 -1 1.3

(e) 0.4 -0.6 4.8

(f) 0.75 -0.25 5.7

(g) 1.1 0.1 4.8

(h) -0.4 -1.19 2.1

(i) 0.4 -1.19 2.1

orbital as shown in Fig. 1 (c). This model hopping inte-
gral with parametersλ = 0.085 nm,α−1 ≈ 0.13 nm, and
∆=0.5 nm has been introduced in previous works [8,10].
The STM tip is modeled by a chain ofs-like atoms with
nearest neighbor hopping integral−t and the Fermi energy
being fixed at the center of the one-dimensional band.

In order to deal rigorously with the infinite nanotube,
we solve numerically a scattering problem in a finite nan-
otube between two STM probes connected at both ends
to semi-infinite nanotubes. We calculate the transmission
probability between these two STM tips. In terms of the
transmission probabilityT , the conductanceG is given by
G= (e2/πh̄)T using the Landauer formula. In actual cal-
culations we consider the so-called (15,0) zigzag nanotube
with L = 15a, and choose fixed parameterst0/γ0 = −10,
t/γ0 =1. The Fermi energy is chosen atε=0.05(2πγ/L)
in such a way that the Fermi wave-length is much longer
than the distance of STM tips, which enable us to clearly
see the Kekulé pattern. Even if Fermi wave length is shorter
than the tip distance and thus the Fermi energy is higher,
the calculated conductance images exhibit the same behav-
ior except for an interference-like modulation due to the
finite wave length.

3 Numerical Results In the following, the left STM
tip is fixed at several points marked by open circles in Fig.
2 (a) and the right tip is continuously swept over the wide
region. The actual coordinates of the left tip are given in
Table 1.

Figure 2 shows the conductance for varying the po-
sition of the right STM tip when the left tip is fixed at
points ‘b’ to ‘i’ shown in Fig. 2 (a). The position of the
left tip is denoted by an open circle, but its actual position
is shifted by(0, −26

√
3)a in the coordinate system(x, y)

shown in the Fig. 1 (a) and therefore is quite far from the
right tip position. Because the distance between two tips is
much larger than the circumference, the contribution only
of traveling modes is dominant and therefore the conduc-
tance varies periodically in all the cases.

When the left tip is on top of site B1 denoted by ‘b’ in
Fig. 2 (b), the conductance exhibits a clear Kekulé pattern
and follows the simplified estimation presented in§2. In

fact, the conductance is largest at B sitesR̃B and A sites
R̃B + τ related to the left-tip atom by the basis vectors
ã and b̃. Further, it is small at the other A and B sites.
With the increase in the displacement ‘c’ to the hexagon
center ‘d’ along the axis corresponding to (c) and (d), re-
spectively, the same image appears with the Kekulé pat-
tern. Actually, the same image always emerges while the
left-tip is on the line along tube axis, including on top of
A site, where a total phase factor is the only difference of
wavefunctions injected from B sitẽRB and A siteR̃B +τ .
With the increase in the deviation from the hexagon center,
the image varies continuously from (d) to (f) toward the
same one as Fig. 2 (d) but shifted bya + b, when the left
tip is on another hexagon center at ‘d′’.

We have demonstrated in armchair nanotubes that the
Kekulé pattern disappears for special cases and original pe-
riodicity recovered in the conductance images, due to the
lack of interference between K and K’ states [10]. In the
special case, the electron is injected into a single travel-
ing state at one of Fermi points, if a wave is injected from
three carbon atoms in the specific ratio shown in our previ-
ous work for arbitrary chirality, because the injected wave-
function is orthogonal to that of traveling waves at the other
Fermi point.

For zigzag nanotube, the ratio is given as
√

3 : 2 : 1,
when the left tip couples to three carbon atoms denoted as
B2 : A4 : A2 in Fig. 2 (a) for the injection into K state and
B3 : A4 : A3 for K’ state. Figures 2 (h) and (i) show the
conductance, when the left tip position is precisely chosen
to satisfy the ratio for the injection into K and K’ state,
respectively. The Kekulé pattern almost disappears but is
weakly seen, because the coupling to the fourth site atB1

can not be ignored and thus weak interference remains,
within our model of the hopping integral eq. (14). Actu-
ally the coupling strength to the fourthB1 site is 70% of
that to the third sites (h)A2 and (i)A3.

4 Conclusions We have calculated numerically the
conductance between two STM probes in a metallic zigzag
nanotube. The STM probes have been modeled withsp
Slater-Koster hopping terms. It has been shown that a Kekul´e
pattern usually appears due to interference between travel-
ing waves at K and K’ points.
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