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Using a realistic model of a quantum dot embedded in an Aharonov-Bohm ring with several
current-carrying channels, we demonstrate phase persistence in the Fano and Aharonov-Bohm ef-
fects as has been observed in experiments. The phase persistence arises because most of states con-
tributing to the Coulomb oscillation of the conductance are weakly coupled to ring states through a
small number of states giving a major contribution to the conductance under off-resonant conditions.
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I. INTRODUCTION

In an Aharonov-Bohm (AB) ring containing a quan-
tum dot, a series of consecutive conductance peaks with a
Fano type interference with similar asymmetry and phase
of an AB oscillation have been observed.1,2 A Fano-type
lineshape was reported also in a weakly coupled single
quantum dot.3,4 The purpose of this work is to theoret-
ically study Fano resonances in a realistic AB ring with
a quantum dot and to understand some of interesting
experimental findings.

Fano proposed a theory on effects of configuration in-
teraction on intensities and phase shifts, in which inter-
ference of a localized state with a continuum was shown
to give rise to asymmetric peaks in excitation spectra.5
The Fano effect has been studied mainly in optical ab-
sorption spectra of impurities in solids, in which the
Fano lineshape is known to be observed easily particu-
larly when a direct excitation from a ground state to a
localized state is forbidden.6,7

In earlier experiments, AB oscillations were observed
in an AB ring with a quantum dot and the phase of the
oscillation was shown to change by π across a resonance
peak.8–10 A surprising and unexpected finding is that the
phase becomes the same between adjacent peaks, show-
ing that it has to change by another π between those
peaks. Since then, various theoretical studies have been
reported on the phase of the AB oscillation and the Fano
effect within one-dimensional (1D) models in which the
AB ring consists of a chain.11–18

It was suggested, for example, that because the Friedel
sum rule leading to a π change across a peak is still valid
in the presence of a Fano-type interference, the extra π
change between neighboring peaks is likely to be due to
hidden electron charging events that do not cause con-

∗http://staff.aist.go.jp/t.nakanishi/

ductance peaks.12 The possible disappearance of some
peaks due to an interference inside the AB ring13 and
the vanishing of the transmission coefficient occurring in
a 1D model due to the Fano-type interference16 were sug-
gested as possible candidates for the mechanism giving
rise to such an extra phase change.

Since the more recent observation of a clear Fano
effect,1 various 1D model calculations were made fur-
ther. For example, an alternating sign change of a Fano
parameter characterizing the asymmetry was obtained.17
Effects of dephasing were studied.18

In this work, with the use of a realistic model we shall
provide a convincing explanation of the phase persistence
in the AB and Fano effects observed experimentally. The
model AB ring contains several conducting channels and
a quantum dot with dimensions comparable to those in
the experiments. The organization of the paper is as
follows: After introducing the realistic model in Sec. II,
numerical results are shown in Sec. III in the case where
double-slit conditions are valid approximately. Coexis-
tence of strongly and weakly coupled states in the dot
with finite width is proposed to understand the numeri-
cal results. Numerical results in more general cases are
presented in Sec. IV. Discussion on the relation to exper-
iments is given in Sec. V and a summary and conclusion
are given in Sec. VI.

II. MODEL AND METHOD

We use a model of the AB ring with radius a, straight
up and down arms with length L, a quantum dot with
length LD in the down arm separated by wall barriers
with length LW , and a control gate with length LW as
shown in Fig. 1. The strength of a magnetic field applied
perpendicular to the AB ring is characterized by φ/φ0,
where φ is magnetic flux passing through the stadium
with area aL+πa2 and φ0 is the magnetic flux quantum
given by φ0 =ch/e.
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FIG. 1: Equi-potential lines of the model AB ring with a dot,
plotted with energy interval of Fermi energy EF . The thick
lines correspond to the Fermi energy. The gate potential Vg

and the control gate potential Vc are applied in the dashed
rectangular regions with width LW and LD, respectively. In
this example Vg/EF = 0, Vc/EF = 0.95, and W/EF = 1.03.
The rectangular region near the top-right corner is separated
into four regions I, II, III, and IV.

To construct the model potential, we first consider a
hexagon defined by six vertices at r = ±a/2, ±b/2, and
±(a− b)/2 with a = (

√
3/2, 1/2)a and b = (0, 1)a and

define an antidot potential which vanishes outside the
hexagon and is given by

vantidot(r)

= u0

∣∣∣ cos
(πa·r

a2

)
cos

(πb·r
a2

)
cos

(π(a−b)·r
a2

)∣∣∣
4/3

,

(1)
inside the hexagon. This potential was used in previous
studies on transport properties of antidot lattices.19

We consider next the rectangular region near the top-
right corner as shown in Fig. 1 and define the origin r = 0
at the bottom-left corner. The rectangle is divided into
four different regions denoted by I, II, III, and IV by
dashed lines. The region I is defined by y<x/

√
3 and y<

−√3x+a, the region II is by y<x/
√

3 and y>−√3x+a,
and the region IV by

√
x2 + y2 > 2a. The potential is

defined by v(r) = vantidot(r) in I, v(r) = vantidot(r−a) in
II, and v(r) = u0 in region IV. In region III the potential
along the line y = x/

√
3 of the regions I and II is rotated

around the origin. The potential in the up arm is the
same as that along x = 0 of the region III. The potential
in the rectangular regions near other corners and in the
down arm are defined in a symmetric way. Two ideal
leads with a uniform cross section same as that in the
up and down arms are continuously connected to the left
and right entrances of the AB ring.

The wall potential separating the dot from the arm is

defined as

V (r) = W cos
( πx

LW

)
, (2)

for −LW /2<x<LW /2 and −a < y < 0, where an origin
of x is chosen at the center of each wall. The potential
of the control gate is given by the same expression for
−LW /2 < x < LW /2 and 0 < y < a except that the
height W is replaced by Vc. They are superposed on the
potential of the AB ring. A gate potential Vg is uniformly
applied in the dot in the region of −a < y < 0 with length
LD which is shown by dashed rectangular in Fig. 1.

For a realistic quantum dot embedded in the AB ring,
the adiabatic conditions are satisfied, i.e., |dD(x)/dx| ¿
1 and |D(x)d2D(x)/dx2| ¿ 1 with D(x) being the width
of the wave-guide at the Fermi energy EF . Therefore,
we choose LW /λF = 5 with Fermi wave length λF . Cal-
culations of transmission and reflection probabilities for
the single wall with height W<∼EF reveal that essentially
electrons in the lowest 1D subband with the highest ve-
locity in the incident direction can get over the wall and
there is very little mixing between different 1D subbands
or channels. In order to simulate actual situations, fur-
ther, we introduce a weak random potential in the dot.
The amount of the disorder corresponds to a mean free
path of 10×λF or level broadening of 0.015×EF in the
two-dimensional system.

We use some fixed parameters in numerical calcula-
tions, W/EF = 1.03, the ring radius a/λF = 6, the
arm length L/λF = 20.8, and the width of arms and
leads 1.8× λF at the Fermi energy, which results in
u0/EF = 5.44. In comparison with the geometry of the
actual experiments for which λF = 40 nm,1 the system
size is roughly half except for LD of a comparable length.
There are three sets of the traveling modes in the arms
and leads, which can describe the actual feature of the
experiment in which there are several channels. Further,
we shall consider the magnetic flux around φ/φ0 = 80
corresponding to 1.3 T, which is typical magnetic field in
the experiments.

A self-consistent calculation in quantum wires fabri-
cated at GaAs/AlGaAs heterostructures suggests that
the potential is nearly parabolic for a wire with small
width, but consists of a flat central region and a parabolic
increase near the edge for a wider wire.20,21 In the above
the exponent 4/3 in vantidot(r) has been chosen in such a
way that the total exponent of cosine function becomes
4, for which the potential gradient at the Fermi energy
corresponds to that of such a realistic confinement po-
tential. The model is essentially same as that described
in a previous study apart from the presence of the dot
and the control gate.19

The conductance is calculated by the use of the Lan-
dauer formula

G =
e2

πh̄

∑

jj′
|tjj′ |2, (3)
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where tjj′ is the transmission coefficient for a wave incom-
ing from the j′th channel in the left lead and out-going to
the jth channel in the right.22 The summation is taken
over all traveling modes in the leads. To calculate tjj′ ,
we use recursive Green’s function technique on the lattice
model with a lattice constant a′.23 For explicit numerical
calculations we choose λF /a′ = 7.

aaαa

-0.2

-0.2

-0.1

-0.1

0.0

0.0

0.1

0.1

0.2

0.2

0.0

0.0

0.5

0.5

1.0

1.0

Gate Potential (units of EF)

Gate Potential (units of EF)

Conductance (units of e2/πh)

C
on

du
ct

an
ce

 (
un

its
 o

f e
2 /

πh
)

(c)

(c)

FIG. 2: Fano resonances in the calculated conductance at
both wide and narrow peaks for flux (a) φ/φ0 = 79.9 and
(b) φ/φ0 = 80.5. (c) The conductance, when the applied
magnetic flux is shifted finely at regular intervals from φ/φ0 =
79.9 to φ/φ0 = 80.5 (the solid line for φ/φ0 = 79.9, the dotted
line φ/φ0 = 80.5, the thin dashed lines in between). The
arrows indicate the position of the wide peaks when the up
arm is pinched off. In (a) and (b) the region for positive and
negative values of the asymmetry parameter q′ are also shown
by (+) and (−), respectively.

III. DOUBLE-SLIT REGIME

In this section we consider the case where the up arm
is nearly pinched off by the control gate. In this case the
situation is close to that of so-called double slit experi-
ments, because the transmission probability of an elec-
tron passing through the up arm is small and not so much
different from that through the down arm and therefore
multiple scattering in the AB ring is less important.

Figure 2 shows an example of the calculated conduc-
tance as a function of the gate potential for the control
gate Vc/EF = 1. Figure 2 (a) for φ/φ0 = 79.9 and Fig. 2
(b) for φ/φ0 = 80.5 correspond to a maximum and mini-
mum of the AB oscillation of the conductance away from
the peak region, i.e., under off-resonant conditions. Fig-
ure 2 (c) shows the conductances for intermediate flux
values with a regular interval by thin dashed lines.

Many peaks appear in the conductance, but they can
be classified into two groups, small numbers of wide
peaks with large broadening and large numbers of nar-
row peaks. In this example, the wide peaks are at
Vg/EF = −0.18, −0.06, 0.07, and 0.18 indicated by
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arrows in the figures. All resonance peaks in the con-
ductance are asymmetric with a dip in the right or left
side. This asymmetry is due to interference of the waves
passing through the up arm and transmitted resonantly
through the dot in the down arm, i.e., the so-called Fano
interference.

In order to analyze such interference effects including
the AB oscillation, we first consider transmission coeffi-
cients tdjj′ through a quantum dot embedded in a straight
wave-guide. In the vicinity of a dot level with energy Eν ,
the transmission coefficient through the dot is given by

tdjj′ =
−2πiVjν(E)Vνj′(E)D(E)

E − Eν − Fν + iΓν
, (4)

where Vjν(E) and Vνj′(E) are the matrix elements of
transitions from the dot state to the out-going states and
from the incident to the dot state, respectively, D(E) is
the density of states in each wave-guide, and

Fν = P
∫ |Vν(E′)|2

E′ − Eν
D(E′)dE′,

Γν = π|Vν(E)|2D(E),
(5)

with |Vν(E′)|2 being the total intensity of the transition
between the dot and the left and right wave-guides. This
is rewritten as

tdjj′ =
αjj′

ε + i
, (6)

with

αjj′ = −2πiVjν(E)Vνj′(E)D(E)Γ−1
ν ,

ε = (E−Eν−Fν)Γ−1
ν .

(7)

The transmission probabilities exhibit a resonance with
the conventional Breit-Wigner lineshape.

When the double-slit condition is valid, the transmis-
sion through the AB ring incoming from the j′th channel
in the left lead and out-going to the jth channel in the
right lead is given by

tjj′ = t0jj′ + tdjj′ , (8)

where t0jj′ is a transmission coefficient for the up arm,
essentially independent of energy in the energy scale de-
termined by Γν . Effects of scattering at entrances of the
AB ring can be absorbed in the coefficients αjj′ for tdjj′ .
The total transmission probability is written as

|tjj′ |2 = |t0jj′ |2
|ε + qjj′ |2

ε2 + 1
, (9)

with a complex Fano parameter

qjj′ =
αjj′

t0jj′
+ i. (10)

As a result, the total conductance is given by

G =
e2

πh̄

∑

j,j′
|tjj′ |2 =

e2

πh̄
T0
|ε + q|2
ε2 + 1

, (11)
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FIG. 3: Calculated transmission probabilities (solid lines) for
a narrow peak at Vg = 0.02EF of Fig. 2 (a) together with
fitted results using Eq. (9) given by dotted lines. The origin
of the vertical axis is shifted consecutively. φ/φ0 = 79.7. The
common Fano parameters are E0 = 0.020368EF (denoted by
arrow) and Γ/EF = 7.0× 10−5.

with a complex Fano parameter q=q′+iq′′ and a param-
eter T0, which are given by

T0 =
∑

jj′
|t0jj′ |2,

q′ = T−1
0

∑

jj′
|t0jj′ |2q′jj′ ,

(q′′)2 = T−1
0

∑

jj′
|t0jj′ |2[(q′jj′)

2+(q′′jj′)
2]− (q′)2.

(12)

The real part q′ of q determines the asymmetry of the
conductance lineshape, i.e., a dip appears in the left hand
side of a peak for positive q′ and in the right hand side
for negative q′.

Transmission probabilities |tjj′ |2 in the vicinity of the
narrow peak at Vg/EF = 0.02 in Fig. 2 (a) are shown in
Fig. 3. As shown by dotted lines, the transmission prob-
abilities are well fitted with the Fano line-shape given by
Eq. (9). Such fitting works quite well for all narrow peaks
as well as wide peaks. This means that the double-slit
condition is realized quite well.

The asymmetry of the Fano lineshape varies as a func-
tion of the magnetic flux as can be seen in Fig. 2. Figure 4
shows the explicit magnetic-field dependence of obtained



5

aaαa

78

78

79

79

80

80

81

81

82

82

-1.4

-1.4

-0.7

-0.7

0.0

0.0

0.7

0.7

1.4

1.4

Magnetic Flux (units of φ0)

Magnetic Flux (units of φ0)

Asymmetry: q’

A
sy

m
m

et
ry

: q
’

FIG. 4: Calculated AB oscillation of the real part q′ of the
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q′ of the narrow peak at Vg/EF = 0.02. The Fano param-
eter shows a clear oscillation, taking positive and negative
value, with period φ0. This AB oscillation of q′ is qual-
itatively in good agreement with the behavior observed
experimentally (see Fig. 4(a) of Ref. 1, for example). Fur-
ther, Fig. 6 (b) of Ref. 2 shows the experimental result
of a clear sinusoidal oscillation with an amplitude similar
to the present result.

Figure 2 shows also that q′ and correspondingly the
phase of the AB oscillation of the wide peaks changes sign
alternately when the gate potential crosses them. For the
narrow peaks, on the other hand, the sign of q′ does not
show such an alternate change from peak to peak but
follows the sign of the nearest wide peaks. In fact, four
narrow peaks in the range −0.11 < Vg/EF < −0.01 have
a dip in the right side of peaks, in agreement with the
behavior of the wide peak at −0.06. Further, five narrow
peaks in −0.01 < Vg/EF < 0.13 have a dip in the left
side of the peak again following the nearest wide peak at
0.07. In Figs. 2 (a) and (b) the sign of q′ of narrow peaks
is denoted by (+) and (−).

In a crude approximation, states in the dot can be
obtained by discretizing the wave vector along the wave-
guide direction corresponding to a confinement potential.
In this approximation transmissions through dot states
with the same 1D subband index are possible and in par-
ticular those associated with the lowest subband having
the largest kinetic energy in the wave-guide direction con-
tribute to transmissions because of the lowest effective
tunneling barrier. The wide resonances shown in Fig. 2

actually correspond to such states, which can directly be
verified by the wave function in the dot.

This selection rule is violated in the realistic confine-
ment potential and also by the presence of unavoidable
disorder. Let Ĥ ′ be the Hamiltonian describing effects
of such deviation, ψ0

n be a dot state uncoupled to wave-
guide states in the absence of Ĥ ′, and ψ0

N be the nearest
dot state coupled to wave-guide states even in the ab-
sence of Ĥ ′. Then, apart from energy shift, the state ψn

associated with ψ0
n now contains a contribution of ψ0

N ,
i.e.,

ψn ≈ ψ0
n + ψ0

N

(N |Ĥ ′|n)
En−EN

, (13)

where the lowest order energy shift has been taken into
account already in energies En and EN . Then, in the
vicinity of En, the matrix element for the transmission
through the dot becomes

VjnVnj′ ≈ VjNVNj′
|(N |Ĥ ′|n)|2
(En−EN )2

. (14)

This shows that the phase of VjnVnj′ is given by that of
VjNVNj′ of the nearest wide peak, explaining the essen-
tial feature of the numerical result that the asymmetry
of the Fano interference of narrow peaks follows that of
a neighboring wide peak.

When only the transport through a dot embedded in
a wave-guide is possible, i.e., when the control gate is
pinched off, a Fano type interference is possible between
different processes within a dot. A nonresonant trans-
mission through the dot state EN becomes significant,
which is ignored in the previous consideration for Fig. 2,
because it is much smaller than waves passing through
the up arm. In the vicinity of the resonance at a narrow
peak at En, we have

tdjj′ ≈ −2πiD(E)
[ VjnVnj′

E−En+iΓn
+

VjNVNj′

En−EN

]

= −2πiD(E)
VjNVNj′

En−EN

( |(N |Ĥ ′|n)|2
(En−EN )(E−En+iΓn)

+1
)
.

(15)
This shows that the Fano interference of the resonance
at En with the nonresonant transmission through the
dot state EN changes sign when the energy crosses EN ,
i.e., q′ < 0 and q′ > 0 in the left and right hand side,
respectively.

Figure 5 shows the calculated conductance when the
up arm is pinched off with Vc/EF = 2. The conductance
averaged over a finite width of the gate potential is also
included, which shows only the structure due to broad
peaks because narrow peaks are all averaged out. For
the narrow peaks, we see the Fano line-shape with a dip.
In the vicinity of a wide peak, the asymmetry of narrow
peaks is such that q′<0 in the left hand side and q′>0 in
the right hand side, in agreement with the above simple
approximation (Eq. (15)).
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FIG. 5: Resonant peaks in the conductance in the presence of
a magnetic field φ/φ0 = 79.9, when the control gate is pinched
off with Vc/EF = 2. The conductance averaged over the gate
potential with width 0.01EF is shown by a dotted line. The
arrows indicate the position of the wide peaks.

Figure 6 shows the phase of t22 which makes a domi-
nant contribution to the conductance. The phase changes
by ∼ ±π when the gate potential crosses each wide peak
following essentially the dotted line, but not at narrow
peaks. In a one-dimension system with a single dot, the
Friedel sum rule requires the phase change of π when-
ever the energy crosses a dot state, unless same parity
states are in sequence.16 Therefore, the phase change
across each wide peak is reasonable, because wide peaks
correspond to dot states associated with the lowest 1D
subband contributing to the tunneling.

IV. DEPENDENCE ON CONTROL GATE

Figure 7 shows a whole picture of the calculated con-
ductance as a function of the gate potential and the con-
trol gate for the magnetic field φ/φ0 = 79.9. The con-
ductance when the down arm is pinched off is shown by a
thick solid line in the G vs Vc plane. It is essentially the
same as the off-resonance conductance in the presence of
the quantum dot. With the decrease of the control gate,
the channels are opened one by one, leading to conduc-
tance steps with a small oscillation due to a Fabry-Perot
type interference.

Many asymmetric peaks due to the interference with
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line is a guide to eyes, which exhibits a discrete jump at the
peaks of the dotted line in Fig. 5.

states in the dot are superposed on the off-resonance con-
ductance. The contribution of this current through dot
states oscillates with the control gate considerably and
depends also on the gate potential in the dot, i.e., on
dot states. This is presumably results of complex in-
terferences in the AB ring. An extreme example was
demonstrated in one-dimensional model without a con-
trol gate, in which only dot states with the same parity
can contribute to the conductance.13

Blowups of the region in the vicinity of a wide peak
at Vg/EF ∼ −0.06 and at Vg/EF ∼ 0.07 are shown in
Fig. 8. The two wide peaks shown in the figure are adja-
cent to each other and their asymmetry is opposite when
Vc/EF = 1. We notice first that the contribution of
dot states is largest in the case where the control gate
is close to the pinch-off and becomes much smaller when
the channel in the up arm is well open. This can be un-
derstood classically as follows: The total current through
the AB ring is limited by the ideal lead, i.e., by a quantum
point contact between the AB ring and a two-dimensional
system. Therefore, when the up arm is opened up, the
most of the current tends to go through the up arm, re-
ducing the current through the down arm.

As a function of the control gate the asymmetry of
the peaks changes in a quasi-periodic manner due to in-
terferences inside the AB ring. At certain control gates,
for example at Vc/EF = 0.68 as shown in a dotted line,
the asymmetry of adjacent wide peaks become the same.
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FIG. 8: The dependence on the control gate around wide peaks at (a) Vg/EF = −0.06 and (b) Vg/EF = 0.07 pointed by
arrows. The control gate is shifted at regular intervals of 0.04×EF from the bottom curve for Vc/EF = 0 to the top one for
Vc/EF = 1. The origin of the vertical axis is shifted consecutively.
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FIG. 9: Calculated conductance for open control gate
Vc/EF = 0.1 and magnetic flux φ/φ0 = 79.9. The arrows
indicate the position of the wide peaks when the up arm is
pinched off.

Such an exception seems to appear when the contribution
of these dot states to the current becomes considerably
small. The rule that asymmetry of narrow peaks follows
that of a nearest wide peak is largely valid for arbitrary
values of the control gate. However, a close examination
of Fig. 8 reveals that exceptions appear sometimes in
particular when the amplitude of the wide peak is small.

The asymmetry of wide peaks becomes more compli-
cated when several channels contribute to the current for
small values of the control gate. An example is shown
in Fig. 9 for Vc/EF = 0.1, where two channels can pass
through the up arm. All peaks have a dip in the right
side in this example. Even in this extreme case, the rule
that asymmetry of narrow peaks follows that of a nearest
wide peak remains still valid.

V. DISCUSSION

In actual experiments, as the charging energy of a dot
is dominant, it causes a Coulomb blockade effect and de-
termines a typical scale of the gate potential. As has been
shown in above mentioned examples, most of dot states
contributing to the Coulomb oscillation are those of nar-
row peaks because of their dominance in the number and
only a few of those of wide peaks appear. This means that
the asymmetry of the Fano resonance stays the same for

several consecutive narrow conductance peaks as long as
they are connected with the same wide peak (Eq. (13))
and also the phase of the AB oscillation does not change
among such peaks.

The asymmetry of a narrow peak changes, when the
dot state contributing to the narrow peak is mixed to
a different dominant wide-peak state. In the region of
such crossover gate potential, the asymmetry may exhibit
a complicated behavior because a dominant wide-peak
state may vary from a peak to a peak. Further, the
phase of the AB oscillation changes only when the gate
potential crosses the wide peak. These behaviors can
account for the most of the features of the experimental
results (Fig. 2(a) of Ref. 1, for example).

There remains a slight disagreement with experi-
ments.1,2 Experimentally the phase of the AB oscillation
under off-resonant conditions seems to vary slowly as a
function of the gate potential (see Fig. 4(c) of Ref. 1, for
example), while the present results give almost a constant
phase independent of the gate potential as shown in Fig.
2. This is likely to originate from the simplified model of
the symmetric gate potential in the present calculation,
in which the gate changes energy levels but not the wave
function in the dot. In actual experiments using a side-
gate structure, the gate potential modifies the form of
the dot and is likely to change the phase of the transmis-
sion coefficient through the dot due to the gate-potential
dependence of VjNVNj′ in

tdjj′ ≈ −2πiD(E)
VjNVNj′

E−EN
, (16)

leading to a phase change of the AB oscillation. The
present model is useful for clarifying global features of
Fano interferences in an AB ring with a dot, however.

In the absence of a random potential, the result is qual-
itatively same as the results given above with a few excep-
tions on the asymmetry of the Fano resonance of narrow
peaks. Without randomness, the dot is symmetric and
therefore the symmetry of the wave function can play
important roles in causing mixing between dot levels. In
fact, the exception can appear more easily, if the symme-
try of wavefunction prevents a narrow level from coupling
to a nearest wide level but allows to a different wide level.

VI. SUMMARY AND CONCLUSION

We have numerically calculated the conductance us-
ing a realistic model of an AB ring with a quantum dot
in a down arm and a control gate in the up arm which
controls the channel number. Many peaks appear in the
conductance, but they can be classified into two groups,
small numbers of wide peaks with large broadening and
large numbers of narrow peaks. The sign of the asym-
metry parameter of the Fano-type interference of narrow
peaks is almost always same as that of a nearest wide
peak.
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When the control gate is such that the up arm is
nearly pinched off, the situation is close to that of double-
slit experiments, and therefore the asymmetry parameter
changes at the middle of neighboring wide peaks and the
phase of the AB oscillation changes by ∼ π only when
the gate potential crosses the wide peak. With the de-
crease of the control gate, interference effects in the AB
ring become important and the contribution of the cur-
rent through the dot becomes small and exhibits a Fabry-
Perot type oscillation as a function of the control gate.
The asymmetry of narrow peaks follows that of a nearest
wide peak even in this case.

Most of dot states contributing to the Coulomb os-
cillation are those of the narrow peaks because of their
dominance in the number. Consequently, the asymmetry
of the Fano line-shape stays the same for the several con-
secutive narrow conductance peaks as long as they are
connected with the same wide peak and also the phase

of the AB oscillation does not change among such peaks,
which explains essential features of experiments.

Acknowledgments

We thank K. Kobayashi, S. Katsumoto, and Y. Asai
for helpful discussion. This work has been supported
in part by a 21st Century COE Program at TokyoTech
“Nanometer-Scale Quantum Physics” and by Grant-in-
Aid for COE (12CE2004 “Control of Electrons by Quan-
tum Dot Structures and Its Application to Advanced
Electronics”) from the Ministry of Education, Science
and Culture, Japan. Numerical calculations were per-
formed in part using the facilities of the Supercomputer
Center, Institute for Solid State Physics, University of
Tokyo and of TACC, AIST.

1 K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys.
Rev. Lett. 88, 256806 (2002).

2 K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys.
Rev. B (in press).

3 J. Göres, D. Goldhaber-Gordon, S. Heemeyer, and M. A.
Kastner, Phys. Rev. B 62, 2188 (2000).

4 I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A.
Kastner, Yu. B. Khavin, H. Shtrikman, D. Mahalu, and U.
Meirav, Phys. Rev. B 64, 155311 (2001).

5 U. Fano, Phys. Rev. 124, 1866 (1961).
6 A. Shibatani and Y. Toyozawa, J. Phys. Soc. Jpn. 25, 335

(1968).
7 K. Terakura, J. Phys. F: Metal. Phys. 7, 1773 (1977).
8 A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman,

Phys. Rev. Lett. 74, 4047 (1995).
9 A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53,

9583 (1996).
10 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Uman-

sky, and H. Shtrikman, Nature 385, 417 (1997).
11 Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 52,

129 (1984).
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