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Effects of impurities with a strong and short-range potential are studied in carbon nanotubes
within a k·p scheme. The calculated conductance approaches those obtained for nanotubes with
a lattice vacancy when the strength of the potential is sufficiently large. The conductance at ε=0
is analytically shown to be quantized into zero, one, and two times of the conductance quantum
e2/πh̄ depending on the difference in the number of vacancies at A and B sublattices in nanotubes
with a sufficiently large diameter.
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§1. Introduction

A carbon nanotube (CN) is composed of concentric
tubes of rolled two-dimensional (2D) graphite sheets, on
which hexagons are arranged in a helical fashion about
the axis.1) The diameter of each tube ranges from 20 to
300 Å and the maximum length exceeds 1µm. Single-wall
nanotubes having a diameter lying between 7 and 16 Å
can be synthesized also.2,3) The purpose of this paper is
to study effects of a strong and short-range perturbation
including lattice vacancies in a k·p scheme.

Various calculations have been performed to predict
energy bands.4−12) It has been found that their char-
acteristic properties are reproduced in a k·p method.13)

The k·p scheme is quite powerful in the study of effect-
s of external fields such as magnetic and electric fields.
In fact, it has been successful in the study of magnetic
properties including the Aharonov-Bohm effect on the
band gap,14) optical absorption spectra,15,16) and lattice
instabilities in the presence and absence of a magnetic
field.17,18)

Transport properties of CN’s are interesting because
of their unique topological structure. There have been
some reports on experimental study of transport in C-
N bundles.19) Quite recently, measurements of magne-
totransport of a single nanotube became possible.20,21)

The tunneling at a finite-length CN22) and a connec-
tion of different CN’s23−26) were calculated. The con-
ductivity was calculated in a constant-relaxation-time
approximation.27) A calculation of the conductance of
armchair nanotubes with a single vacancy was reported
also.28)

The conductivity of CN’s was previously calculated
using a Boltzmann transport equation29) and in Lan-
dauer’ approach30) for a model of short-range scatter-
ers. The results were shown to have a close connection
with transport in a 2D graphite sheet.31) In a previous

paper,32) effects of impurity scattering in CN’s were s-
tudied in detail and the absence of backward scattering
was predicted and proved rigorously except for scatter-
ers having a potential range smaller than the lattice con-
stant. This intriguing fact was related to Berry’s phase
acquired by a rotation in the wave vector space in the
system described by a k·p Hamiltonian which is same
as Weyl’s equation for a neutrino.33) The conductance
was calculated in a tight-binding model and the result
confirmed the absence of backward scattering when the
potential is sufficiently small, i.e., the maximum value is
smaller than the typical width of the conduction and va-
lence bands.34,35) A quantized conductance was observed
in a multi-wall nanotube.36)

Quite recently, effects of scattering by a vacancy
were studied in metallic armchair nanotubes in the p-
resence and absence of a magnetic field.37−40) The con-
ductance was shown to be quantized into zero, one, and
two times of the conductance quantum e2/πh̄ depending
on the type of the vacancy. In this paper we shall ex-
tend a k·p scheme so as to discuss effects of strong and
localized potentials including those of lattice vacancies
and present analytic derivation of the intriguing conduc-
tance quantization in the presence of vacancies.

§2. Effective-Mass Approximation

2.1 Hamiltonian

The structure of a 2D graphite is shown in Fig. 1
together with the first Brillouin zone and the coordinates
system to be used in the following. A unit cell contains
two carbon atoms denoted as A and B. In a 2D graphite,
two bands having approximately a linear dispersion cross
the Fermi level (chosen at ε = 0) at K and K’ points
of the first Brillouin Zone. The wave vectors of the K
and K’ points are given by K = (2π/a)(1/3, 1/

√
3) and

K ′=(2π/a)(2/3, 0).
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Fig. 1 (a) Lattice structure of two-dimensional graphite sheet. η is the chiral angle. The coordinates are chosen in
such a way that x is along the circumference of a nanotube and y is along the axis. (b) The first Brillouin zone and
K and K’ points. (c) The coordinates for a nanotube.

In the vicinity of the Fermi level, electronic states
are described by the Schrödinger equation given by

HF (r) = εF (r), (2.1)

with

H = H0 + V, (2.2)

where

H0 =




KA KB K ′A K ′B
0 γ(k̂x−ik̂y) 0 0

γ(k̂x+ik̂y) 0 0 0
0 0 0 γ(k̂x+ik̂y)
0 0 γ(k̂x−ik̂y) 0


,

(2.3)
and

F (r) =
(

F K(r)
F K′

(r)

)
, (2.4)

with

F K(r) =
(

FKA(r)
FKB(r)

)
, F K′

(r) =
(

FK′A(r)
FK′B(r)

)
.

(2.5)
Here, FKA and FKB describe the amplitude at an A and
B site, respectively, for the component at the K point,
and FK′A and FK′B describe that for the K’ point.

For the discussion of scattering from short-range
scatterers localized at several lattice points, it is more
convenient to choose the representation in which the
(4, 4) matrix Hamiltonian is rewritten as

H0 =




KA K ′A KB K ′B
0 0 γ(k̂x−ik̂y) 0
0 0 0 γ(k̂x+ik̂y)

γ(k̂x+ik̂y) 0 0 0
0 γ(k̂x−ik̂y) 0 0


.

(2.6)
An eigenstate of the Hamiltonian is written as

Fsnk(r) =
1√
AL

fsnk exp[iκ(n)x+iky], (2.7)

where A is the length of the nanotube, s=+1 denotes a
conduction band, s = −1 a valence band, k is the wave
vector in the direction of the axis, and κ(n) is that in

the circumference direction, i.e.,

κ(n) =
2πn

L
, (2.8)

with an integer n and the circumference L. The four-
component eigenvector fsnk is normalized as |fsnk| = 1
and satisfies

H0(nk)fsnk = εsnkfsnk, (2.9)

with

H0(nk) =




0 0 γ[κ(n)−ik] 0
0 0 0 γ[κ(n)+ik]

γ[κ(n)+ik] 0 0 0
0 γ[κ(n)−ik] 0 0


 ,

(2.10)
and

εsnk = sγ
√

κ(n)2+k2. (2.11)

For an impurity localized at a carbon A site rj , we
have32)

V (r) = Vjδ(r−rj), (2.12)

with

Vj =
(

ujΦA
j 0

0 0

)
, (2.13)

where

ΦA
j =

(
1 eiφA

j

e−iφA
j 1

)
, (2.14)

with

φA
j = (K ′−K)·rj + η. (2.15)

Here, η is the chiral angle shown in Fig. 1. Define further
a vector aj as

aj =
(

ajK

ajK′

)
=

1√
2

(
eiφA

j /2

e−iφA
j /2

)
, (2.16)

which satisfies

(aj, aj) = a+
j aj = 1, ajK′ = a∗

jK . (2.17)

Then, we have

ΦA
j = 2aja

+
j . (2.18)

For an impurity localized at a carbon B site rj , we
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have

Vj =
(

0 0
0 ujΦB

j

)
, (2.19)

where

ΦB
j =

(
1 eiφB

j

e−iφB
j 1

)
, (2.20)

with
φB

j = (K ′−K)·rj − η +
π

3
. (2.21)

In terms of a vector bj defined as

bj =
(

bjK

bjK′

)
=

1√
2

(
eiφB

j /2

e−iφB
j /2

)
, (2.22)

we have
ΦB

j = 2bjb
+
j . (2.23)

2.2 Scattering matrix

In terms of a T matrix defined by

T =V +V
1

ε−H0+i0
V +V

1
ε−H0+i0

V
1

ε−H0+i0
V +· · · ,

(2.24)
the scattering matrix can be written formally as

S = S(0) + S(1), (2.25)

with
S

(0)
αβ = δαβ , (2.26)

and

S
(1)
αβ = −i

A

h̄
√|vαvβ |

Tαβ , (2.27)

where vα and vβ are the velocity of channels α and β.
The matrix element is written as

(α|Vj |β) = f+
α Vjfβ

1
AL

exp[−i(κα−κβ)xj−i(kα−kβ)yj ],

(2.28)
where (xj , yj) is the position of the impurity, fα is the
eigenvector for the state α with energy εα, wave vector
in the axis direction kα, and that in the circumference
direction κα =κ(nα)≡(2π/L)nα with integer nα. The T
matrix is expanded as

T = T (1) + T (2) + T (3) + · · · , (2.29)

with

(α|T (1)|β) =
∑

j

f+
α

1
AL

Vjfβ exp[−iκαβxj−ikαβyj],

(2.30)

(α|T (2)|β) =
∑

γ

∑
j

f+
α

1
AL

Vjfγ exp[−iκαγxj−ikαγyj ]

× 1
ε−εγ+i0

∑
j′

f+
γ

1
AL

Vj′fβ exp[−iκγβxj′−ikγβyj′ ],

(2.31)

(α|T (3)|β) =
∑
γγ′

∑
j

f+
α

1
AL

Vjfγ exp[−iκαγxj−ikαγyj ]

× 1
ε−εγ+i0

∑
j′

f+
γ

1
AL

Vj′fγ′ exp[−iκγγ′xj′−ikγγ′yj′ ]

× 1
ε−εγ′+i0

∑
j′′

f+
γ′

1
AL

Vj′′fβ exp[−iκγ′βxj′′−ikγ′βyj′′ ],

(2.32)

where καβ ≡κα−κβ, kαβ ≡kα−kβ, etc. In the lowest order
Born approximation, the T matrix is given by eq. (2.30),
which shows that the effective potential is essentially
given by the sum of the potential of each impurity.

We note the relation:∑
γ

fγ
1

ε−εγ+i0
f+

γ =
∑
nk

[
ε−H0(nk)+i0

]−1
. (2.33)

Then, the second order term becomes∑
jj′

f+
α

1
AL

VjGjj′ (ε+i0)
1

AL
Vj′fβ

× exp(−iκαxj−ikαyj) exp(iκβxj′ +ikβyj′),

(2.34)

where

Gjj′ (ε+i0) ≡ G(rj−rj′ , ε+i0)

=
∑
nk

[
ε−H0(nk)+i0

]−1 exp[iκ(n)xjj′ +ikyjj′ ],

(2.35)
with

xjj′ = xj − xj′ , yjj′ = yj − yj′ . (2.36)

Similarly, the third order term is given by∑
jj′j′′

f+
α

1
AL

VjGjj′′ (ε+i0)
1

AL
Vj′′Gj′′j′ (ε+i0)

1
AL

Vj′fβ

× exp(−iκαxj−ikαyj) exp(iκβxj′ +ikβyj′).
(2.37)

By repeating similar procedures up to an infinite order,
we obtain the T matrix

(α|T |β) =
∑
ij

f+
α Tijfβ exp(−iκαxi−ikαyi)

× exp(iκβxj +ikβyj),
(2.38)

where

Tij =
[(

1− 1
AL

V G(ε+i0)
)−1 1

AL
V

]
ij

, (2.39)

with Vjj′ =Vjδjj′ .
The equation for Tij is given by

Tij =
1

AL
Viδij +

1
AL

Vi

∑
k

G(ri−rk, ε+i0)Tkj. (2.40)

Effects of multiple scattering from a single impurity can
exactly be taken into account by replacing eq. (2.40) by

Tij =
1

AL
Viδij +

1
AL

ViG(0, ε+i0)Tij

+
1

AL
Vi

∑
k 6=i

G(ri−rk, ε+i0)Tkj.
(2.41)

We then have

Tij =
1

AL
Ṽiδij +

1
AL

Ṽi

∑
k 6=i

G(ri−rk, ε+i0)Tkj, (2.42)

with

Ṽi =
[
1− 1

AL
ViG(0, ε+i0)

]−1

Vi. (2.43)

In the following, we shall confine ourselves to the
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case that

−2πγ

L
< ε <

2πγ

L
. (2.44)

For this energy range, the eigen vectors are given by

fK±=
1√
2




1
0
±i
0


 , fK′±=

1√
2




0
1
0
∓i


 , (2.45)

and the velocity is given by |v|=γ/h̄. We can write the
scattering matrix as

S =




rKK rKK′ t′KK t′KK′

rK′K rK′K′ t′K′K t′K′K′

tKK tKK′ r′KK r′KK′

tK′K tK′K′ r′K′K r′K′K′


 , (2.46)

where t’s and r’s are transmission and reflection coeffi-
cients, respectively. When all impurities are localized in
a region smaller than the circumference and |ε|¿2πγ/L,
in particular, eq. (2.38) can be replaced by

(α|T |β) = f+
α TSfβ exp[−i(κα−κβ)x0−i(kα−kβ)y0],

(2.47)
with

TS =
∑
ij

Tij , (2.48)

where r0 =(x0, y0) is the center-of-mass of all the impu-
rities.

2.3 Green’s functions

The Green’s function is explicitly given by

G(x, y,ε+i0) =
A

2π

∫
dk

∑
n

fc[κ(n), k] eiκ(n)x+iky

(ε+i0)2−γ2[κ(n)2+k2]

×




ε 0 γ[κ(n)−ik] 0
0 ε 0 γ[κ(n)+ik]

γ[κ(n)+ik] 0 ε 0
0 γ[κ(n)−ik] 0 ε


 ,

(2.49)
where we have introduced a cutoff function fc[κ(n), k]
defined by

fc[κ(n), k] =
k2
c

k2+κ(n)2+k2
c

, (2.50)

in order to extract the contribution from states in the
vicinity of the Fermi level. The cutoff wave vector kc is
determined by the condition that the cutoff wave length
2π/kc should be comparable to the lattice constant a,
i.e., 2π/kc ≈ a. We introduce a cutoff integer nc by
kc = 2πnc/L, i.e., κ(nc)≈ kc or nc ≈ L/a. The Green’s
function is written as

G =
−iA
2γ




g0 0 g1 0
0 g0 0 ḡ1

ḡ1 0 g0 0
0 g1 0 g0


 , (2.51)

where

g0(x, y) =
iγ
π

∫
dk

∑
n

fc[κ(n), k]
εeiκ(n)x+iky

(ε+i0)2−γ2[κ(n)2+k2]
,

g1(x, y) =
iγ
π

∫
dk

∑
n

fc[κ(n), k]
γ[κ(n)−ik]eiκ(n)x+iky

(ε+i0)2−γ2[κ(n)2+k2]
,

(2.52)

and ḡ1(x, y)=g1(x,−y). We immediately see that

g0(−x, y) = g0(x,−y) = g0(−x,−y) = g0(x, y),
g1(−x,−y) = −g1(x, y),

(2.53)

which leads to g1(0, 0)=0.
The off-diagonal Green’s function appears only be-

tween matrix elements of impurities and therefore in the
form

a+
i

(
g1(rij) 0

0 ḡ1(rij)

)
bj = (ai, bj) g̃AB

ij , (2.54)

with rij =ri−rj, where

g̃AB
ij =

1
2
[
g1(rij)e−i(φA

i −φB
j )/2+ḡ1(rij)ei(φA

i −φB
j )/2

]
× (ai, bj)−1,

(2.55)
and (ai, bj)=a+

i bj . This means that we can always use
g̃AB

ij for the off-diagonal Green’s function describing the
propagation from a B site at rj to an A site at ri. It
should be noted that (ai, bj)=a+b is real.

In the energy range (2.44), we have

g0(x, y) = ei(ε/γ)|y|

− 2iε
∞∑

n=1

cos[κ(n)x]
( exp[−√

κ(n)2−(ε/γ)2|y|]√
γ2κ(n)2−ε2

− exp[−√
κ(n)2+k2

c |y|]√
γ2κ(n)2+γ2k2

c

)
,

(2.56)

and

g1(x, y) = −i sgn(y)
[
ei(ε/γ)|y|−e−kc|y|]

+ 2
∞∑

n=1

([ κ(n) sin[κ(n)x]√
κ(n)2−(ε/γ)2

−i sgn(y) cos[κ(n)x]
]

× exp
[−√

κ(n)2−(ε/γ)2|y|]
−

[κ(n) sin[κ(n)x]√
κ(n)2+ k2

c

−i sgn(y) cos[κ(n)x]
]

× exp
[−√

κ(n)2+k2
c |y|

])
,

(2.57)
with

sgn(y) =




+1 (y > 0) ;
0 (y = 0) ;
−1 (y < 0) .

(2.58)

At ε=0, in particular, we have

g0(x, y) = 1, (2.59)

and

g1(x, y) = −i sgn(y)
[
1−e−kc|y|]

+2
∞∑

n=1

([
sin[κ(n)x]−i sgn(y) cos[κ(n)x]

]
exp

[−κ(n)|y|]

−
[κ(n) sin[κ(n)x]√

κ(n)2+ k2
c

−i sgn(y) cos[κ(n)x]
]

× exp
[−√

κ(n)2+k2
c |y|

])
.

(2.60)
The above shows that

ḡ1(x, y) = g1(x, y)∗, (2.61)
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and consequently

g̃AB
ij = Re

[
g1(rij)e−i(φA

i −φB
j )/2

]
(ai, bj)−1, (2.62)

i.e., g̃AB
ij is real as well as g0. When |y|À2π/kc, we can

neglect terms containing cutoff kc and have

g1(x, y) =
cos[π(x+iy)/L]
sin[π(x+iy)/L]

. (2.63)

This expression is not singular at y=0 except when x∼0

and therefore valid in the whole (x, y) plane except in the

vicinity of the origin, i.e., |r|<∼ 2π/kc. In particular, we

have g1(±L/2, y) = 0 for y = 0 and g1(x, y) →−i sgn(y)

for |y|ÀL/π at x=0.

Figure 2 shows GKA,KB(x, y) = (−iA/2γ)g1(x, y)

obtained numerically for several values of the cutoff nc.

The Green’s function is singular in the vicinity of r=0 as

has been discussed above and the singularity is cutoff at

small rc ∼ δL/nc, where δ ∼ 0.2. This value is smaller

than the cutoff distance a ∼ L/nc, showing that the

approximate expression with infinite cutoff, eq. (2.63)

for ε=0 for example, can be used in actual calculations.

For impurities localized within a distance of a few times

of the lattice constant, the off-diagonal Green’s function

becomes extremely large. This singular behavior will be

shown in §3 to be the origin of the peculiar dependence

of the conductance on the difference in the number of

vacancies at A and B sublattices.

Near ε = ±2πγ/L the Green’s functions diverge in

proportion to [(2πγ/L)2−ε2]−1/2. In fact, we have

g0(x, y) ∼ −sgn(ε)
√

2i cos(2πx/L)√
1−|ε|(L/2πγ)

, (2.64)

and

g1(x, y) ∼
√

2 sin(2πx/L)√
1−|ε|(L/2πγ)

. (2.65)

For a small distance, i.e., |x/L| ¿ 1, the divergence at

ε = ±2πγ/L is much stronger for the diagonal Green’s

function than for the off-diagonal Green’ function, i.e.,

|g−1
0 g1|¿ 1 near ε =±2πγ/L in contrast to |g−1

0 g1|À 1

in the other energy range. The energy corresponding to

this crossover approaches ε=2πγ/L with the increase of

the circumference. This shows that a singular energy de-

pendence appears in the conductance for closely spaced

impurities located at both A and B sublattices in the

vicinity of ε = ±2πγ/L, as will be demonstrated in §3
and §4.
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Fig. 2 The off-diagonal Green’s function for (a)
y =0 and for (b) x=0 for several values of nc. The
vertical arrows show the value of the cutoff distance
L/nc.

At r=0, the diagonal Green’s function is written as

g0(0, 0) = 1 − ig′′0 (ε), (2.66)

with

g′′0 (ε) = 2ε
∞∑

n=1

( 1√
γ2κ(n)2−ε2

− 1√
γ2κ(n)2+γ2k2

c

)
.

(2.67)
The imaginary part g′′0 (ε) is a monotonic function of ε in
the energy range (2.44) and behaves as

g′′0 (ε) ≈ 2χ
εL

2πγ
, (2.68)
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with

χ =
∞∑

n=1

( 1
n
− 1√

n2+n2
c

)
≈ ln nc, (2.69)

for |ε(L/2πγ)|¿1 and

g′′0 (ε) ≈ sgn(ε)

√
2

1−|ε|(L/2πγ)
, (2.70)

for ε∼±2πγ/L.

2.4 T matrix

The Green’s function becomes diagonal for r = 0
and therefore the renormalized impurity potential for
an A site, for example, by taking into account multiple
scattering, becomes

ujΦA
j →

(
1− 1

AL
ujΦA

j

−iA
2γ

g0

)−1

ujΦA
j =

γL

ig0
ζjΦA

j ,

(2.71)
where g0≡g0(0, ε+i0) for simplicity, use has been made
of

(
ΦA

j

)n = 2nΦA
j , which follows immediately from eq.

(2.18), and ζj = [1+ (2iũjg0)−1]−1 with ũj = uj/2γL.
This shows that due to the multiple scattering from a
single impurity the potential strength uj is renormalized
into ζjγL/ig0.

When impurities are separated into those at A and
B sublattices, we have

T AA
ij =

1
AL

γL

ig0
ζiΦA

i δij

+
1

AL

γL

ig0
ζiΦA

i

∑
k 6=i, k∈A

−iA
2γ

g0(rik)T AA
kj

+
1

AL

γL

ig0
ζiΦA

i

∑
k∈B

−iA
2γ

g̃AB
ik T BA

kj ,

(2.72)

T BA
ij =

1
AL

γL

ig0
ζiΦB

i

∑
k 6=i, k∈B

−iA
2γ

g0(rik)T BA
kj

+
1

AL

γL

ig0
ζiΦB

i

∑
k∈A

−iA
2γ

g̃BA
ik T AA

kj ,

(2.73)

T BB
ij =

1
AL

γL

ig0
ζiΦB

i δij

+
1

AL

γL

ig0
ζiΦB

i

∑
k 6=i, k∈B

−iA
2γ

g0(rik)T BB
kj

+
1

AL

γL

ig0
ζiΦB

i

∑
k∈A

−iA
2γ

g̃BA
ik T AB

kj ,

(2.74)

and

T AB
ij =

1
AL

γL

ig0
ζiΦA

i

∑
k 6=i, k∈A

−iA
2γ

g0(rik)T AB
kj

+
1

AL

γL

ig0
ζiΦA

i

∑
k∈B

−iA
2γ

g̃AB
ik T BB

kj ,

(2.75)

where T AA
ij , etc. are a (2, 2) matrix.

In the following we shall confine ourselves to the case
that the strength of all the impurities is the same and
given by u, i.e., uj = u. In this case, an examination of
perturbation series with respect to the impurity potential

reveals that the T matrices can be written as

T AA
ij =

1
AL

γL

ig0
ζ 2aia

+
j tAA

ij ,

T BA
ij =

1
AL

γL

ig0
ζ 2bia

+
j tBA

ij ,

T BB
ij =

1
AL

γL

ig0
ζ 2bib

+
j tBB

ij ,

T AB
ij =

1
AL

γL

ig0
ζ 2aib

+
j tAB

ij ,

(2.76)

where

ζ =
1

1+(2iũg0)−1
,

ζ

g0
=

i
g′′0 (ε)+(2ũ)−1+i

. (2.77)

Note that ζ → 1 in the limit ũ= u/2γL→∞. Then, we
have

tAA
ij =δij − ζg−1

0

∑
k 6=i, k∈A

g0(rik)a+
i aktAA

kj

− ζg−1
0

∑
k∈B

g̃AB
ik a+

i bktBA
kj ,

tBA
ij = − ζg−1

0

∑
k 6=i, k∈B

g0(rik)b+
i bktBA

kj

− ζg−1
0

∑
k∈A

g̃BA
ik b+

i aktAA
kj ,

(2.78)

and

tBB
ij =δij − ζg−1

0

∑
k 6=i, k∈B

g0(rik)b+
i bktBB

kj

− ζg−1
0

∑
k∈A

g̃BA
ik b+

i aktAB
kj ,

tAB
ij = − ζg−1

0

∑
k 6=i, k∈A

g0(rik)a+
i aktAB

kj

− ζg−1
0

∑
k∈B

g̃AB
ik a+

i bktBB
kj .

(2.79)

In the case of a finite number of impurities, these linear
equations can be solved numerically and the T matrix
can be calculated explicitly.

In the following analytical treatment, we shall con-
fine ourselves further to the case that impurities are lo-
cated in an area with size much smaller than the circum-
ference length. In this case, we can make the replacement
g0(rik)→g0 and the above set of equations is further re-
duced to

tAA
ij = δij − ζ

∑
k 6=i, k∈A

a+
i aktAA

kj − ζg−1
0

∑
k∈B

g̃AB
ik a+

i bktBA
kj ,

tBA
ij = −ζ

∑
k 6=i, k∈B

b+
i bktBA

kj − ζg−1
0

∑
k∈A

g̃BA
ik b+

i aktAA
kj ,

tBB
ij = δij − ζ

∑
k 6=i, k∈B

b+
i bktBB

kj − ζg−1
0

∑
k∈A

g̃BA
ik b+

i aktAB
kj ,

tAB
ij = −ζ

∑
k 6=i, k∈A

a+
i aktAB

kj − ζg−1
0

∑
k∈B

g̃AB
ik a+

i bktBB
kj .

(2.80)
Here, we can use eq. (2.62) for g̃AB and g̃BA because the
phase factor exp(iε|yik|/γ) can be replaced by unity when
|y| ¿L and the energy is in the range (2.44). Further,
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we can use eq. (2.47) and we just need the sum of Tij .
Define the following matrices:

tAA = (tAA
ij ), tBA = (tBA

ij ),

tBB = (tBB
ij ), tAB = (tAB

ij ),

A = (Aij), B = (Bij),

ΓAB = (ΓAB
ij ), ΓBA = (ΓBA

ij ),

(2.81)

with

Aij = a+
i aj, Bij = b+

i bj ,

ΓAB
ij = g̃AB

ij a+
i bj , ΓBA

ij = g̃BA
ij b+

i aj.
(2.82)

Let NA be the number of impurities at A sites and NB

that at B sites. Then, tAA and A are an (NA, NA)
matrix, tBB and B are an (NB , NB) matrix, tBA and
ΓBA are an (NB, NA) matrix, and tAB and ΓAB are an
(NA, NB) matrix. We have

(1−ζ+ζA)tAA = 1 − ζg−1
0 ΓABtBA,

(1−ζ+ζB)tBB = 1 − ζg−1
0 ΓBAtAB,

(1−ζ+ζB)tBA = −ζg−1
0 ΓBAtAA,

(1−ζ+ζA)tAB = −ζg−1
0 ΓABtBB.

(2.83)

It should be pointed out that

A = (a1 a2 · · · aNA)+(a1 a2 · · · aNA), (2.84)
B = (b1 b2 · · · bNB )+(b1 b2 . . . bNB ). (2.85)

Further, both A and B are real symmetric matrices.
The sum of Tij can be written in general as

TS =
(

T AA T AB

T BA T BB

)
, (2.86)

where T AA, T AB, T BA, and T BB are (2, 2) matrices,
given by

T AA =
(

T AA
KK T AA

KK′

T AA
K′K T AA

K′K′

)
, T AB =

(
T AB

KK T AB
KK′

T AB
K′K T AB

K′K′

)
,

T BA =
(

T BA
KK T BA

KK′

T BA
K′K T BA

K′K′

)
, T BB =

(
T BB

KK T BB
KK′

T BB
K′K T BB

K′K′

)
.

(2.87)
Then, the reflection coefficients are given by

rKK = −i
A

2γ
(T AA

KK−T BB
KK +iT AB

KK+iT BA
KK),

rK′K′ = −i
A

2γ
(T AA

K′K′−T BB
K′K′−iT AB

K′K′−iT BA
K′K′),

rK′K = −i
A

2γ
(T AA

K′K +T BB
K′K +iT AB

K′K−iT BA
K′K),

rKK′ = −i
A

2γ
(T AA

KK′ +T BB
KK′−iT AB

KK′+iT BA
KK′),

(2.88)
and the transmission coefficients are given by

tKK = 1 − i
A

2γ
(T AA

KK +T BB
KK+iT AB

KK−iT BA
KK),

tK′K′ = 1 − i
A

2γ
(T AA

K′K′ +T BB
K′K′−iT AB

K′K′ +iT BA
K′K′),

tK′K = −i
A

2γ
(T AA

K′K−T BB
K′K +iT AB

K′K +iT BA
K′K),

tKK′ = −i
A

2γ
(T AA

KK′−T BB
KK′−iT AB

KK′−iT BA
KK′).

(2.89)

The similar expressions are obtained for r′KK , etc. and
t′KK , etc.

§3. Examples

3.1 Impurities at same sublattices

Consider a single impurity with strength u at an A
site rj illustrated in Fig. 3(a). In this case, we have
tAA = 1 and tAB = tBA = tBB = 0, which leads to
T AB =T BA =T BB =0 and

T AA =
1

AL

γL

ig0
ζ 2aja

+
j . (3.1)

Explicitly, we have

rKK = rK′K′ =
ζ

2g0
,

rK′K =
ζe−iφj

2g0
, rKK′ =

ζeiφj

2g0
,

tKK = tK′K′ = 1 − ζ

2g0
,

tK′K =
ζe−iφj

2g0
, tKK′ =

ζeiφj

2g0
.

(3.2)

Equation (2.77) shows that ζ/g0 =1 when g′′0 (ε)=−1/2ũ.
In this case we have tKK = tK′K′ = 1/2 and |tKK′ | =
|tK′K | = 1/2, which leads to the conductance given by
G = e2/πh̄, i.e., a half of the ideal value 2e2/πh̄. This
means that for any impurity there exists an energy at
which G = e2/πh̄. In the limit ũ → ∞, in particular,
this occurs at ε = 0, showing that the conductance
is quantized into G = e2/πh̄ in the case of a vacancy
consisting of a single A or B site.

x

y

A
B

(a) A (b) AB (c) A3B (d) A3

A A
BA

Fig. 3 Schematic illustration of vacancies in an
armchair nanotube. The closed and open circles
denote A and B lattice points, respectively. (a) A,
(b) AB, (c) A3B, and (d) A3.

Next, we shall consider impurities located at two
different A sites denoted as 1 and 2. The equation for
tAA is given by

(1−ζ + ζA)tAA = 1. (3.3)

with

A = (a1 a2)+(a1 a2). (3.4)

Introduce an orthogonal matrix U =(u1u2) such that

U+AU =
(

p1 0
0 p2

)
, (3.5)

i.e.,

Auj = pjuj, (j =1, 2). (3.6)

We choose the ordering of eigenvalues such that p1≥p2≥
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0. Now, eq. (3.3) is solved as

tAA = Ut′U+, (3.7)

with

t′ =
(

(1−ζ+ζp1)−1 0
0 (1−ζ+ζp2)−1

)
. (3.8)

Introduce two vectors a′
1 and a′

2 through

a′
1 = (a1 a2)u1, a′

2 = (a1 a2)u2, (3.9)

Then, obviously we have

(a′
1, a

′
1) = p1, (a′

2, a
′
2) = p2, (a′

1, a
′
2) = 0. (3.10)

Further, the T matrix becomes

T AA
S =

1
AL

γL

ig0
ζ

∑
i,j

tAA
ij 2aia

+
j

=
1

AL

γL

ig0
ζ
( 2a′

1a
′
1
+

1−ζ+ζp1
+

2a′
2a

′
2
+

1−ζ+ζp2

)
.

(3.11)

First, we consider the case a1 6=a2. In this case we
have p1≥p2 >0. Define

ã1 = p
−1/2
1 a′

1, ã2 = p
−1/2
2 a′

2. (3.12)

Then, because u1 and u2 are real, ã1 and ã2 can be
written as

ãj =
1√
2

(
eiφ̃j

e−iφ̃j

)
. (3.13)

Further, the orthogonality between ãj leads to

φ̃1 − φ̃2 = ±π + 2nπ, (3.14)

with n being an integer. Finally, the T matrix becomes

T AA
S =

1
AL

γL

ig0
ζ
( 2p1ã1ã

+
1

1−ζ+ζp1
+

2p2ã2ã
+
2

1−ζ+ζp2

)
. (3.15)

In the limit of a strong potential, i.e., ũ→∞ or ζ → 1,
we have

T AA
S =

1
AL

γL

ig0

(
2ã1ã

+
1 + 2ã2ã

+
2

)
=

1
AL

γL

ig0

(
1 0
0 1

)
,

(3.16)
where use has been made of eq. (3.14). At ε=0, i.e., for
g0 =1, the reflection coefficients become

rKK = rK′K′ = −1, rK′K = rKK′ = 0, (3.17)

and the transmission coefficients become

tKK = tK′K′ = tK′K = tKK′ = 0. (3.18)

Therefore, the conductance vanishes identically in the
limit ũ→∞.

Let rA
j =(naja, nbjb)+rA

0 be the impurity site, where
a and b are the primitive lattice translation vectors
shown in Fig. 1 and naj and nbj are integers. When
these positions satisfy the condition that na +nb = 3n
with integer n, where na = na1−na2 and nb = nb1−nb2,
we have a1 = a2. In such a special case the rank of the
matrix A is reduced and we have p1 > 0, p2 = 0, and
a′

2 =0. Consequently, we have

T AA
S =

1
AL

γL

ig0
ζ

2p1ã1ã
+
1

1−ζ+ζp1
, (3.19)

which in the limit ũ→∞ or ζ→1 gives

T AA
S =

1
AL

γL

ig0
2ã1ã

+
1 . (3.20)

This result is completely same as that for a single impu-
rity and leads to the conclusion that the conductance is
quantized into a half of the ideal value, i.e., G=e2/πh̄.

Next, we consider the case of N (N ≥ 3) impu-
rities located at A sublattices. The equations for T
matrices are same as eq. (3.3) except that A is now
given by eq. (2.84). Introduce an orthogonal matrix
U =(u1u2 · · ·uN ) such that

Auj = pjuj . (3.21)

We choose the ordering of eigenvalues such that p1≥p2≥
. . .≥ pN ≥ 0. Then, the equation for tAA can be solved
as

tAA = Ut′U+, (3.22)

with

t′ij =
δij

1−ζ+ζpi
. (3.23)

Introduce two-component vectors

a′
j = (a1 a2 · · · aN)uj . (3.24)

Then we have

T AA
S =

1
AL

γL

ig0
ζ

∑
i,j

tAA
ij 2aia

+
j =

1
AL

γL

ig0
ζ

∑
j

2a′
ja

′
j
+

1−ζ+ζpj
.

(3.25)
Unless all ai’s are same, eq. (2.84) shows rank A=2.

Therefore, we have pj = 0 and a′
j = 0 for j = 3, . . . , N .

Introducing two vectors using eq. (3.12), we can show
immediately that the T matrix is exactly same as that
in the case of two impurities given by eqs. (3.15) and
(3.16).

When aj ’s are all equal, the rank of A is reduced
further, i.e., rankA = 1, and consequently p2 = 0 and
a′

2 = 0. Thus, the T matrix is exactly same as that in
the case of a single impurity.

3.2 Pair of impurities: AB

We shall consider the case of a pair of an impurity
at an A site ri and an impurity at a B site rj closely
spaced with each other. We have

tAA = 1 − ζg−1
0 g̃AB

ij a+
i bjt

BA,

tBA = −ζg−1
0 g̃BA

ji b+
j ait

AA,

tBB = 1 − ζg−1
0 g̃BA

ji b+
j ait

AB,

tAB = −ζg−1
0 g̃AB

ji a+
j bit

BB.

(3.26)

Therefore, we have

tAA = tBB =
1

1+(ζg−1
0 g̃AB

ij a+
i bj)2

,

tBA = −tAB =
ζg−1

0 g̃AB
ij a+

i bj

1+(ζg−1
0 g̃BA

ji b+
j ai)2

,

(3.27)

where use has been made of g̃BA
ji =−g̃AB

ij .
First, we consider the case that the energy is away

from the band edge of the bands n =±1, i.e., ±2πγ/L.
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In this case, we can safely assume that |g0| ∼ 1 and
|g−1

0 g1|∝L/aÀ1.
In the case of a sufficiently weak potential |ũ| ¿ 1,

for which ζ ≈ 2iũg0, we have tAA = tBB ∼ 1 and tBA =
−tAB ∼0, i.e., T BA≈T AB≈0 and

T AA =
1

AL
uΦA

i , T BB =
1

AL
uΦB

j . (3.28)

This is equivalent to the lowest Born result and shows
that the A and B impurities can be described by an
effective potential at a same lattice point rj ≈ri.

The lowest Born approximation becomes invalid
when |ζg−1

0 g̃AB
ij a+

i bj |∼1. The off-diagonal Green’s func-
tion is extremely large for impurities located at the dis-
tance of the order of the lattice constant and therefore
the critical ζ is well approximated by ζ = 2iũg0. Define
ũc by

1
2ũc

= g̃AB
ij a+

i bj = −g̃BA
ji b+

j ai. (3.29)

Then, the above condition is written as |ũ| ∼ |ũc|. We
have g1(x, y)≈ (L/π)(x+iy)−1 = (L/πdAB) exp(−iθAB),
where dAB is the distance between the impurities and
θAB is the direction angle from an impurity at a B site
to that at an A site. Then, we have from eq. (2.62)

g̃AB
ij ≈ L

πdAB

cos[θAB +(φA
i −φB

j )/2]
cos[(φA

i −φB
j )/2]

, (3.30)

which gives

ũc =
πdAB

2L

1
cos[θAB +(φA

i −φB
j )/2]

. (3.31)

Let V be a local site energy at an impurity and γ0 be the
transfer integral in the nearest-neighbor tight-binding
model. Then, we have

u =
√

3
2

a2V, γ =
√

3
2

γ0a, ũ =
1
2

a

L

V

γ0
. (3.32)

Therefore, in terms of the local site energy, the critical
value is given by

|V |
γ0

=
πdAB

a

1
| cos[θAB+(φA

i −φB
j )/2]| , (3.33)

which is of the order of unity for impurities with dAB ∼a.
For small ũ, we have ζ≈2iũg0(1−2iũg0) and there-

fore

tAA = tBB ≈ 1
1−(ũ/ũc)2+4iũg0(ũ/ũc)2

,

tBA = −tAB ≈ i(ũ/ũc)
1−(ũ/ũc)2+4iũg0(ũ/ũc)2

.

(3.34)

This shows that tAA, etc. exhibit a resonance behavior
at ũ = ±ũc. The width of the resonance is given by
∆ũ =2ũ2

c ∝ (a/L)2 at ε = 0 and is quite narrow. At the
resonance we have |tAA| ∼ |tBB| ∼ |tBA| ∼ |tAB| ∼ 1.
The resonance is in agreement with that obtained in
numerical tight-binding calculations.38,34,35)

In order to see the resonance behavior at ũ = ±ũc

more explicitly, we shall consider the AB impurities in
an armchair nanotube shown in Fig. 3(b). In this case
we have θAB =π and φA

i −φB
j =0 (η=−π/2), which give

identically

rKK = rK′K′ = tK′K = tKK′ = 0, (3.35)

according to eq. (2.88) and (2.89). This is a consequence
of the mirror symmetry with respect to a plane contain-
ing the axis.26,34) The other coefficients are

rKK′ ≈ −2iũ[1−(ũ/ũc)]eiφA
i

1−(ũ/ũc)2+4iũg0(ũ/ũc)2
,

rK′K ≈ −2iũ[1+(ũ/ũc)]e−iφA
i

1−(ũ/ũc)2+4iũg0(ũ/ũc)2
,

tK′K′ ≈ 1
2iũ[1−(ũ/ũc)]

1−(ũ/ũc)2+4iũg0(ũ/ũc)2
,

tKK ≈ 1
2iũ[1+(ũ/ũc)]

1−(ũ/ũc)2+4iũg0(ũ/ũc)2
,

(3.36)

They show that for ũ ∼ |ũc| = −ũc, for example, the
resonance appears only in rKK′ and tK′K′ due to cancel-
lation among different contributions and |rKK′ |∼1 and
further |tK′K′ | ∼ 0 at the resonance. The conductance
at the resonance is given by G = e2/πh̄. These results
explain the numerical results presented in §4 quite well.

Next, consider the case |ũ| À |ũc|. In this case,
tAA = tBB ¿|tBA|= |tAB| and

tBA = −tAB ≈ 2ũcg0

ζ
. (3.37)

Therefore, we have

rKK = rK′K′ = 2ũc sin[(φA
i −φB

j )/2],

rK′K = r∗KK′ = −2iũc exp[−i(φA
i +φB

j )/2].
(3.38)

Therefore, the conductance becomes

G =
2e2

πh̄

[
1 − 4ũ2

c

(
1+sin2[(φA

i −φB
j )/2]

)]
. (3.39)

This shows that the deviation from the ideal conduc-
tance 2e2/πh̄ is proportional to (a/L)2 and vanishes in
sufficiently thick nanotubes.

Consider the case that ε ∼ 2πγ/L for a strong s-
catterer |ũ| À 1. In this case eq. (2.77) shows ζg−1

0 ≈
ig′′0 (ε)−1 → 0 because g′′0 (ε)→∞. Therefore, tAA = tBB

and tBA = −tAB given by eq. (3.27) show a resonance
behavior at g′′0 (ε)= |g̃AB

ij a+
i bj |. The features of the reso-

nance are same as those at ũ=±ũc discussed above and
consequently the conductance is reduced to G = e2/πh̄
at the resonance. Because |g̃AB

ij a+
i bj | is extremely large

in the case L/aÀ 1, the resonance occurs at an energy
very close to 2πγ/L as will be demonstrated by numeri-
cal results shown in §4.

Consider a pair of AB impurities located along a
circumference direction with arbitrary distance dAB in
an armchair nanotube. In this case, we cannot use
eqs. (3.26) or (3.27) because they are valid only in
the case dAB/L ¿ 1 and we have to start with eqs.
(2.78) and (2.79). When ε = 0 and |ũ| À 1, with
the use of g1(x, y) given by eq. (2.63), the conductance
is shown to be given by the simple analytical formula
G = (e2/πh̄)[1+cos(2πdAB/L)] in agreement with nu-
merical results obtained previously in a tight-binding
model.40) Analytic formula can be obtained for AB pairs
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with a more general configuration but will not be pre-
sented here.

3.3 Impurities: ANABNB

Let us consider the case of NA impurities at A
sublattice sites and NB impurities at B sublattice sites.
For simplicity, we assume that they are closely spaced
from each other (within a distance of the order of a) and
further consider the case of sufficiently thick nanotubes,
i.e., a/L→0, in the energy range |ε|¿2πγ/L. Equation
(2.83) can be rewritten as

(1−ζ+ζA)tAA = 1 + ζ2g−2
0 ΓAB(1−ζ+ζB)−1ΓBAtAA,

(1−ζ+ζB)tBB = 1 + ζ2g−2
0 ΓBA(1−ζ+ζA)−1ΓABtBB ,

(1−ζ+ζB)tBA = −ζg−1
0 ΓBAtAA,

(1−ζ+ζA)tAB = −ζg−1
0 ΓABtBB.

(3.40)
First, we consider the case NA = NB. In this case,

we have usually det ΓAB 6=0 and det ΓBA 6=0. Therefore,
we have

tAA ≈ −ζ−2g2
0(Γ

BA)−1(1−ζ+ζB)(ΓAB)−1,

tBA ≈ +ζ−1g0(ΓAB)−1,

tBB ≈ −ζ−2g2
0(Γ

AB)−1(1−ζ+ζA)(ΓAB)−1,

tAB ≈ +ζ−1g0(ΓBA)−1.

(3.41)

These become extremely small when a/L ¿ 1 and lead
to the ideal conductance G≈2e2/πh̄.

Next, we consider the case NA > NB. In this case,
the (NB , NB) matrix ΓBA(1−ζ +ζA)−1ΓAB is usually
not singular. Therefore, we have

tBB ≈ −ζ−2g2
0[Γ

BA(1−ζ+ζA)−1ΓAB]−1,

tAB ≈ ζ−1g0(1−ζ−ζA)−1ΓAB[ΓBA(1−ζ+ζA)−1ΓAB]−1.
(3.42)

These become extremely small in the limit of small a/L
and can be neglected. On the other hand, the (NA, NA)
matrix ΓAB(1−ζ−ζB)−1ΓBA is always singular and its
rank is usually NB (< NA) which is the rank of ΓAB and
ΓBA.

We introduce a set of orthogonal vectors with NA

components, uj (j =1, 2, . . . , NA), such that

ΓBAuj = 0, (1≤j≤NA−NB)

ΓBAuj 6= 0, (NA−NB <j≤NA)
(3.43)

and make an orthogonal transformation

tAA = Ut′U+, A = UA′U+, (3.44)

where

U = (u1 u2 · · · uNA). (3.45)

Define two component vectors a′
j through

a′
j = (a1 a2 · · · aNA)uj . (3.46)

Then, we have

A′ = (a′
1 a′

2 · · · a′
NA

)+(a′
1 a′

2 · · · a′
NA

). (3.47)

We have

(1−ζ+ζA′)t′ = 1 + ζ2g−2
0 Qt′, (3.48)

with

Q = U+ΓAB(1−ζ−ζB)−1ΓBAU. (3.49)

We separate the matrices as follows

t′ =
(

t′0 t′1
t′2 t′3

)
, A′ =

(
A′

0 A′
1

A′
2 A′

3

)
, Q =

(
Q0 Q1

Q2 Q3

)
,

(3.50)
where t′0, A′

0, and Q0 are (NA−NB, NA−NB) matrices,
etc. We have

Q0 = 0, Q1 = 0, Q2 = 0, (3.51)

and Q3 is a matrix which is usually not singular. Then,
we have(

1−ζ+ζA′
0 ζA′

1

ζA′
2 1−ζ+ζA′

3

) (
t′0 t′1
t′2 t′3

)

=
(

1 0
0 1

)
+ ζ2g−2

0

(
0 0
0 Q3

) (
t′0 t′1
t′2 t′3

)
.

(3.52)

In the limit a/L → 0, matrix elements and therefore
eigenvalues of Q3 become infinitely large, i.e., Q3 →∞,
we then have

(1−ζ+ζA′
0)t

′
0 = 1, t′1 = 0, t′2 = 0, t′3 = 0 (3.53)

In the case NA−NB >2, we have usually rankA′
0 =2

and A′
0 has only two nonzero eigenvalues. Let u′

j be
eigenvectors of A′

0, i.e.,

A′
0u

′
j = pju

′
j. (3.54)

Then, we can arrange them such that p1 ≥ p2 > 0 and
pj =0 for 3≤j≤NA−NB. Define

a′′
j = (a′

1 · · · a′
NA−NB

)u′
j . (3.55)

Then, we have a′′
1 6= 0, a′′

2 6= 0, and a′′
j = 0 for 3 ≤ j ≤

NA−NB. We can define ã1 and ã2 as follows

ã1 =
1√
p1

a′′
1 , ã2 =

1√
p2

a′′
2 . (3.56)

Then we have ã1K′ = ã∗
1K , ã2K′ = ã∗

2K , and |ã1|= |ã2|=1.
By making another orthogonal transformation

t′0 = U ′t′′U ′+, (3.57)

with U ′=(u′
1 u′

2 . . . u′
NA−NB

), we have

t′′ij =
1

1−ζ+ζpj
δij . (3.58)

Therefore, we have

t′ij =




NA−NB∑
k=1

u′
iku′

jk

1−ζ+ζpk
(i, j ≤ NA − NB),

0 (i, j > NA − NB),
(3.59)

and

tAA
ij =

NA−NB∑
l=1

NA−NB∑
m=1

NA−NB∑
k=1

uilu
′
lku′

mkumj

1−ζ+ζpk
. (3.60)

Therefore, the T matrix is

T AA
S =

NA∑
i,j=1

NA−NB∑
l=1

NA−NB∑
m=1

NA−NB∑
k=1

2aiuilu
′
lku′

mkumja
+
j

1−ζ+ζpk

=
2p1ã1ã

+
1

1−ζ+ζp1
+

2p2ã2ã
+
2

1−ζ+ζp2
.

(3.61)
This is formally the same expression as that of two
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impurities at A sublattice points. Using eqs. (3.43) and
(3.60), we have tBA =0 and consequently T BA =0. When
the potential is sufficiently strong and ζ ≈ 1, the results
become completely same as in the case of two strong
impurities at A sublattice points.

When NA−NB =2, t′0 becomes a (2, 2) matrix and
therefore the T matrix becomes same as that of two
impurities at A sublattice sites and is given by the above
equation. When NA−NB = 1, t′0 is reduced to (1, 1)
matrix and the T matrix becomes same as that of a
single impurity at an A site. Therefore, we can conclude
that in the limit a/L→0 the conductance vanishes, i.e.,
G=0, for NA−NB ≥2, G=e2/πh̄ for NA−NB =1, and
G = 2e2/πh̄ for NA−NB = 0. This explains results of
recent elaborate numerical study.39)

§4. Numerical Results

As a first example, we consider a pair of nearest-
neighbor A and B impurities, AB, located along the
circumference direction in armchair nanotubes shown in
Fig. 3(b). In this case, tKK , tK′K′ , rK′K , and rKK′

are nonzero and other elements vanish identically as
mentioned already. Figures 4 and 5 show numerical
results of reflection and transmission coefficients as a
function of ũ for nc = 20 and 50, respectively, at ε = 0.
The lattice constant is chosen as a = L/nc. For small
ũ both |rK′K | and |rKK′ | increase with ũ in proportion
to ũ in agreement with the lowest Born result given by
a dotted line. At ũ = |ũc| = πa/2

√
3L both tK′K′ and

rK′K exhibit a resonance behavior discussed in §3. For
a sufficiently large value of ũ, both |rK′K | and |rKK′ |
approach a small value proportional to (a/L)2. These
results are in agreement with those of the analytical
treatment discussed in the previous section.
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Fig. 4 Calculated reflection and transmission co-
efficients as a function of the potential strength
ũ = u/2γL in the presence of a pair of nearest-
neighbor AB impurities located along a circumfer-
ence direction in armchair nanotubes. nc = 20 and

a/L=n−1
c .
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Fig. 5 Calculated reflection and transmission co-
efficients as a function of the potential strength
ũ = u/2γL in the presence of a pair of nearest-
neighbor AB impurities located along a circumfer-
ence direction in armchair nanotubes. nc = 50 and
a/L=n−1

c .

Figure 6 shows results for three A impurities sur-
rounding a single impurity located at a B site, A3B, il-
lustrated in Fig. 3(c) for ε = 0. A resonance appears at
a certain critical value of ũ, which is much more compli-
cated than that of the AB pair. For ũ smaller than the
critical value all the reflection coefficients are essentially
same as those of the lowest Born approximation. Above
the critical value, |rK′K | (= |rKK′ |) rapidly decreases
with the increase of ũ, while |rKK | (= |rK′K′ |) increas-
es and approaches unity. Actually, |rKK | is almost the
same as the dashed line corresponding to |rKK | for three
impurities located at A sites surrounding the single B
site, i.e. A3 shown in Fig. 3(d).
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Fig. 7 Calculated reflection and transmission coeffi-
cients as a function of the potential strength ũ =
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u/2γL in the presence of A3B impurities in armchair
nanotubes. nc =50 and a/L=n−1

c . The dashed lines
represent the results for A3 impurities illustrated in
Fig. 3(d).
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Fig. 8 Calculated conductance in the presence of a
pair of A and B impurities along the circumference
direction in an armchair nanotubes as a function of
their distance dAB. nc =50.

The origin of this behavior can easily be understood
by looking at the structure of the lattice. In fact, when
the local site energy at three A sites is sufficiently large,
the B site surrounded by the three A sites is separated
from the system and therefore the result should be inde-
pendent of the energy at the B site. It is quite interest-
ing that this is reproduced well even in the effective-mass
scheme which takes into account the lattice structure on-
ly in the form of the matrix Schrödinger equation.
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Fig. 9 Calculated conductance in the presence of
a pair of A and B impurities along the axis direction
in a zigzag nanotube as a function of their distance

dAB. nc =50.
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Fig. 10 Calculated conductance as a function of
the Fermi energy in the presence of a strong impuri-
ty at an A site in an armchair nanotube illustrated
in Fig. 3(a).

Figure 8 shows the conductance in the presence of
a pair of A and B impurities along the circumference
direction in an armchair nanotube as a function of their
distance dAB. The conductance is given by the ideal
value G = 2e2/πh̄ for small dAB, decreases with the
increase of dAB, and takes a minimum at dAB =L/2. In
the limit of a strong scatterer or a vacancy the minimum
value vanishes, which is closely related to the fact that
the vanishing of the off-diagonal Green’s function g1(x, y)
at x=±L/2 and y=0.
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Fig. 11 Calculated conductance for an AB vacancy
located in the circumference direction illustrated in
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Fig. 3(b).
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Fig. 12 Calculated conductance for an A3B vacan-
cy illustrated in Fig. 3(c).

At dAB = 0 the off-diagonal Green’s function van-
ishes and eq. (3.27) gives immediately tAA = tBB =1 and
tAB = tBA = 0, which leads to the complete reflection
or the vanishing conductance. When dAB is comparable
to or larger than the cutoff distance a ∼ L/nc, on the
other hand, the off-diagonal Green’s function becomes
extremely large and the scattering is suppressed consid-
erably, leading to the ideal conductance G = 2e2/πh̄.
Therefore, the conductance exhibits a singular behavior
in the vicinity of dAB =0. Actual lattices do not exhibit
such a singular behavior because dAB cannot be smaller
than the cutoff distance ∼ L/nc.

Figure 9 shows the conductance in the presence of a
pair of A and B impurities along the axis direction in a
metallic zigzag nanotube as a function of their distance
dAB. The conductance is given by a value close to
G = 2e2/πh̄ for small dAB, decreases with the increase
of dAB, and approaches a quantized value G = e2/πh̄
for a sufficiently large dAB, i.e., dAB/L ∼ 1. This can
be understood by the fact that g1(0, y) ≈ −i sgn(y) for
|y|ÀL/π.

Figure 10 shows the conductance as a function of
the Fermi energy in the presence of a strong impurity
at an A site in an armchair nanotube illustrated in Fig.
3(a). The conductance becomes the half of the ideal
value G = e2/πh̄ at ε = 0, increases gradually with the
increase of ε, and reaches the ideal value G = 2e2/πh̄
at ε(2πγ/L)−1 = 1. The results are in agreement with
those obtained in a tight-binding model37) including the
dependence on nc∼L/a.

Figure 11 shows the corresponding result for a pair
of strong impurities located in the circumference direc-
tion illustrated in Fig. 3(b). The conductance is slightly
smaller than the ideal value G=2e2/πh̄ and approaches
it with the increase of nc∼L/a except in the vicinity of
ε = 2πγ/L. Near ε = 2πγ/L the conductance exhibits a
dip with G = e2/πh̄, which moves to the higher energy

side with the increase of nc∼L/a. At ε=2πγ/L the con-
ductance recovers the ideal value G=2e2/πh̄. Figure 12
shows the result for the A3B vacancy illustrated in Fig.
3(c). The conductance vanishes at ε=0 and reaches the
ideal value G=2e2/πh̄ at ε(2πγ/L)−1=1. These behav-
iors are again in agreement with those in a tight-binding
model.37)

§5. Discussion
We have shown analytically that in the limit of a/L

→ 0 and a strong scatterer the conductance at ε = 0
vanishes, i.e., G = 0, for |NA−NB| ≥ 2, G = e2/πh̄ for
|NA−NB|=1, and G=2e2/πh̄ for NA−NB =0, where NA

and NB are the number of impurities at A and B lattice
sites, respectively. This may intuitively be understood
in terms of a reduction of the scattering potential by
multiple scattering from a pair of A and B scatterers.
In fact, multiple scattering between an A impurity at ri

and a B impurity at rj reduces their effective potential
by the factor ∼ (ζg−1

0 g̃AB
ij a+

i bj)−2. By eliminating AB
pairs successively, some A or B impurities remain. The
conductance is determined essentially by the number of
these unpaired impurities.

Unfortunately, such a direct procedure is not rigor-
ous mathematically. The reason is that there are many
different ways in the elimination of AB pairs. Further,
multiple scattering between unpaired and eliminated im-
purities cannot be neglected completely because of large
off-diagonal Green’s functions. The correct mathemati-
cal procedure given in §3.3 shows that a proper combina-
tion of A and B impurities lead to vanishing scattering
potential and the residual potential is determined by an-
other combination of remaining A or B impurities. This
does not modify the fact that the conductance is deter-
mined by the number of remaining impurities, however.

Consider a pair of impurities at an A site rA =
(xA, yA) and a B site rB =(xB, yB) closely spaced with
each other and having a delta potential with strength u.
For ε=0, the Schrödinger equation is given by


uA(r) eiφAuA(r) γ(k̂x−ik̂y) 0
e−iφAuA(r) uA(r) 0 γ(k̂x+ik̂y)
γ(k̂x+ik̂y) 0 uB(r) eiφBuB(r)

0 γ(k̂x−ik̂y) e−iφBuB(r) uB(r)







FKA

FK′A

FKB

FK′B


=0,

(5.1)
with uA(r) = uδ(r−rA) and uB(r) = uδ(r−rB). First,
we should note that( ∂

i∂x
+i

∂

i∂y

)1
z

=
( ∂

i∂x
−i

∂

i∂y

) 1
z∗

= −2πiδ(r), (5.2)

where z=x+iy and z∗=x−iy. For a wave corresponding
to the K point incident from the left hand side the above
equation can be solved approximately by putting

FKA =
1√
2AL

(
1+fA

zAB

z−zB

)
,

FKB =
i√

2AL

(
1+fB

z∗AB

z∗−z∗A

)
,

FK′A =
1√
2AL

f ′
A

z∗AB

z∗−z∗B
,

FK′B =
i√

2AL
f ′

B

zAB

z−zA
,

(5.3)

where zA = xA+iyA, zB = xB +iyB, and zAB = zA−zB.
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As long as fA, f ′
A, fB, and f ′

B are of the order of
unity and |zAB|∼a, the correction terms proportional to
(z−zA)−1, etc. are small except in the close vicinity of rA

or rB and the above wave functions satisfy the periodic
boundary conditions approximately in nanotubes with a
large circumference L/aÀ1. We have


u ueiφA 2πγz∗AB 0
u ueiφA 0 2πγzABeiφA

2πγzAB 0 u ueiφB

0 2πγz∗ABeiφB u ueiφB







fA

f ′
A

fB

f ′
B


=u



−1
−1
1
1


 .

(5.4)
This gives in the case ũ=u/2γLÀ1, in particular,

fA = eiφB
z∗AB

zAB
f ′

A = − z∗ABeiφB

zABeiφA +z∗ABeiφB
,

fB = eiφA
zAB

z∗AB

f ′
B = +

zABeiφA

zABeiφA +z∗ABeiφB
,

(5.5)

which are independent of ũ and are of the order of
unity. It shows that the wave is transmitted without
any reflection and effects of two strong impurities give
only a small correction to the wave function except in
the extreme vicinity of their positions.

For a given energy ε satisfying the condition (2.44),
there are evanescent modes associated with bands with
n 6= 0. Define the corresponding decay or growth rate
±kn by

kn =
√

κ(n)2−(ε/γ)2. (5.6)

Then, evanescent modes are given by

F K
n+(r) =

1√
LA

( √
1+kn/κ(n)√
1−kn/κ(n)

)
exp[−kny+iκ(n)x],

F K
n−(r) =

1√
LA

( √
1−kn/κ(n)√
1+kn/κ(n)

)
exp[+kny+iκ(n)x],

(5.7)
where + denotes modes decaying in the positive y di-
rection and − in the negative y direction. This shows
that when the energy approaches the bottom 2πγ/L of
the first excited bands with n =±1, the decay rate k±1

vanishes and the amplitude for A and B components be-
comes equal to each other. Therefore, the continuity of
the wave function at y = y0 is satisfied by including a
single traveling mode

F K
0+(r) =

1√
LA

(
1
i

)
exp(iky), (5.8)

with k = ε/γ, and the evanescent modes F K
1+ and F K

1−
or F K

−1+ and F K
−1−, only. Further, by choosing the

phase of the evanescent modes appropriately, the A or
B component of the total wave function can be made
vanish at an arbitrary value x0 of the x coordinate.
It means that such a wave is not affected by a short-
range impurity located at (x0, y0) and is transmitted
with probability one. The same is applicable to the
wave function associated with the K’ point. This is
presumably the reason that the transmission coefficient
always becomes unity at ε = 2πγ/L in the examples of
the numerical results shown in §4.

Consider the case that n impurities Vj (j=1, . . . , n)
are located at A sites within the distance much smaller
than L. In this case, only the diagonal Green’s function

g0 appears in the perturbation series for the T matrix.
Because g0 does not vary with the distance so much, it
can be replaced by that for x=y=0. Then, the T matrix
is calculated as

(α|T |β) =f+
α

[
1−

∑
j′

1
AL

Vj′G
]−1 ∑

j

1
AL

Vjfβ

× exp[−i(κα−κβ)x0−i(kα−kβ)y0],

(5.9)

where (x0, y0) is the center-of-mass of impurities. This
result shows that the effective potential is given by the
sum of the potential of each impurity. The same is true of
the case of impurities at B sites. It is possible therefore to
derive the results obtained in §3 for vacancies consisting
of same sublattice points using eq. (5.9).

It would be expected, intuitively, that for a pair
of nearest-neighbor A and B impurities, their positions
may be regarded as same because the distance is much
smaller than the typical electron wavelength which is
actually infinite at ε = 0. Because of the singularity of
the off-diagonal Green’s function, such an approximate
procedure becomes completely invalid when impurities
at A and B sites coexist, except in the case that the
potential is weak and the lowest Born approximation is
appropriate.
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