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Thermopower of a Quantum Dot in a Coherent Regime
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Thermoelectric power due to coherent electron transmission through a quantum dot is theo-

retically studied. In addition to the known features related to resonant peaks, we show that a

novel significant structure appears between the peaks. This structure arises from the so-called

transmission zero, which is characteristic of coherent transmission through several quantum

levels. Because of sensitivity to the phase-breaking effect in quantum dots, this novel structure

indicates the degree of coherency in the electron transmission.
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1. Introduction

Understanding electron transport through quantum
dots (QDs) has been of great importance in the recent de-
velopment of quantum-state engineering in semiconduc-
tor heterostructures. Although most experiments have
focused on conductance, thermoelectric power (TEP)
also gives useful information about the transport pro-
cesses through QDs. The sequential tunneling theory pre-
dicts a sawtooth-shaped TEP oscillation as a function of
gate voltage at high temperatures in a Coulomb block-
ade regime,1 while cotunneling processes are expected to
suppress TEP between Coulomb blockade peaks at low
temperatures.2 These predictions have been confirmed in
recent experiments of QDs fabricated in two-dimensional
electron gases3–5 and single-wall carbon nanotubes.6, 7 In
the previous theoretical studies of TEP, only incoher-
ent tunneling processes have been considered. Therefore,
it remains an unsolved problem how coherent electron
transmission affects the TEP oscillations.

Coherent electron transport through QDs has first
been revealed by conductance measurement of a QD em-
bedded in an Aharonov-Bohm (AB) interferometer.8–10

In the experiments, it has been shown that a transmis-
sion phase of electrons changes by π at each resonant
peak in accordance with a Breit-Wigner model. This in-
dicates that most electrons retain their coherency during
the transmission through QDs.

Here, let us focus on one important feature in the
experiments of the transmission phase.8–10 A surprising
and unexpected finding in these experiments is that the
phase of two adjacent peaks are the same. This indicates
that the transmission phase has to change by π also at
another point between the peaks, even though conduc-
tance shows no detectable feature there. In order to ex-
plain this intriguing phenomenon called a ‘phase lapse’,
a substantial body of theoretical work has been pre-
sented.11–16 One of the key ideas for the phase lapse was
proposed by Lee.13 By general discussion based on the

Friedel sum rule, he showed that vanishing of the trans-
mission amplitude, called a transmission zero, may occur
at a specific energy in quasi-1D systems with the time-
reversal symmetry. He claimed that the abrupt jump of
the transmission phase originates from this transmission
zero. The existence of the transmission zero has been con-
firmed in simple noninteracting models.14, 15, 17 Recently,
it has been shown that the transmission zeros survive
even in the presence of Coulomb interaction within the
Hartree approximation.18

In this paper, we study TEP due to coherent elec-
tron transmission through a QD using a noninteracting
model. We show that, in addition to the known TEP os-
cillation, a novel structure appears at the transmission
zero, while no clear feature is observed in conductance
there. The condition for appearance of this structure is
discussed in the multilevel QD systems. We also show
that this novel structure is suppressed by weak phase
breaking of electrons in QDs. These features provide us
with useful information about the coherency of electrons
being transported through the QD.

The outline of this paper is as follows. In §2, we for-
mulate the TEP of a QD on the basis of the Landauer
formula. An artificial lead is also introduced to describe
the phase breaking of electrons in the QD. In §3, we cal-
culate TEP as a function of the chemical potential, and
discuss the characteristic structures near the transmis-
sion zeros. Finally, the results are summarized in §4.

2. Thermoelectric Power of a Quantum Dot

2.1 Formulation of thermoelectric power

In a coherent regime, the conductance and TEP of
mesoscopic systems are given by the Landauer for-
mula,3, 19–25

G(µ, T ) =
e2

π~

∫

dεT (ε)

[

−∂f

∂ε

]

, (2.1)

S(µ, T ) = − 1

eT

∫

dεT (ε)(ε−µ)[−∂f/∂ε]
∫

dεT (ε)[−∂f/∂ε]
, (2.2)
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Fig. 1. A system composed of two ideal leads and a quantum dot.
The reservoir connected to the dot is introduced to describe the
phase-breaking effect.

with a transmission probability T (ε) and a chemi-
cal potential µ in leads. Here, the derivative of a
Fermi distribution function f is given by −(∂f/∂ε) =
(4kBT )−1 cosh−2((ε−µ)/2kBT ). TEP is rewritten as S =
−〈ξ〉/(eT ), where 〈ξ〉 is an average of an internal energy
ξ = ε−µ. Hence, TEP can be interpreted as a measure
of an asymmetry in the transmission probability T (ε)
near the Fermi energy in the range of the thermal broad-
ening kBT . Here, we should note that the enhancement
of TEPs is expected if transmission zeros (T (ε) = 0)
are located near the Fermi level, because the denomina-
tor of eq. (2.2) becomes very small at low temperatures.
Throughout this paper, the exact expression (2.2) is used
for the calculation of TEPs.

Here, we comment on the Mott formula.26 The Mott
formula has been used widely for analysis of the TEP
measurements.3–7 It is derived by the Sommerfeld ex-
pansion of eqs. (2.1) and (2.2) up to the first order of T
as

SM(µ, T )=−π2k2
BT

3e

1

G(µ, T )

∂G(µ, T )

∂µ
. (2.3)

In the Mott formula, it is assumed that the TEP is de-
termined only by the asymmetry of conductance at the
Fermi energy. It is a good approximation as long as the
product T (ε)[−∂f/∂ε] is sufficiently large near the Fermi
energy. The Mott formula is, however, not applicable to
the case where the asymmetry of the product far from
the Fermi level makes a significant contribution. In the
present study, the Mott formula gives correct results at
low temperatures, while it shows clear deviation from
the exact result (2.2) at much higher temperatures than
a resonant width of quantum levels in a QD. In the Ap-
pendix, we will discuss the validity of the Mott formula
in detail and give a new ‘extended’ Mott formula, which
always reproduces the correct TEP of noninteracting sys-
tems with arbitrary transmission probability T (ε).

2.2 Model Hamiltonian

We study TEP in a coherent regime using the model
Hamiltonian

H =
∑

εk,αC†
k,αCk,α+

∑

j

εjd
†
jdj+

∑

k,α,j

[Vα,jC
†
k,αdj+H.c.],

(2.4)

where operators Ck,α refer to electronic states in left
(α = L) and right (α = R) leads, and operators dj

(j = 1, · · · , N) to quantum states in the QD. In the pres-
ence of the time-reversal symmetry, we can take real cou-
pling strengths {Vα,j}. The model for N = 2 is schemat-
ically shown in Fig. 1 (the role of the reservoir will be
explained in the next subsection). For this noninteract-
ing model, the transmission coefficient can be expressed
in terms of Green’s function in a matrix form.17 From
the transmission coefficient, conductance eq. (2.1) and
TEP eq. (2.2) are calculated by numerical integration.

2.3 Phase-breaking effect

In reality, there is always some inelastic or phase-
breaking scattering. Effects of phase breaking can be
studied by adding one fictitious voltage probe α=F con-
nected to a reservoir.21, 22, 28 Here, we only consider the
two-level case (N = 2) with the coupling VF,1 = V ′ and
VF,2 = V ′ exp(iθ) (see Fig. 1). For simplicity, the phase
factor θ is taken as π.29 The chemical potential of the
reservoir is determined by the condition that the current
through the fictitious voltage probe vanishes. This con-
dition is necessary to make this voltage probe play a role
of simple phase breaking and to avoid other effects com-
ing from current flow between the QD and the reservoir.
Then, conductance is given by28

G=
e2

π~

[

TRL+
TRF TLF

TRF +TLF

]

, (2.5)

with

Tαα′ =

∫

dεTαα′(ε)

[

−∂f

∂ε

]

, (2.6)

where Tαα′(ε) is the transmission probability from lead
α′ to α. For the symmetric case TLF (ε) = TRF (ε), TEP
is easily calculated with the effective transmission proba-
bility TRL+TLF /2 in eq. (2.2). Although phase breaking
is considered in the minimal model, which should be im-
proved for quantitative comparison with experiments, we
can examine the crossover from a fully coherent regime
to an incoherent one.

3. Results

3.1 Two-level case

We start with the two-level case (N = 2) for the sym-
metric coupling Vα,j = Vj (j = 1, 2) in the absence of
the phase-breaking effect. The transmission coefficient is
calculated as

t(ε)=
Γ1+Γ2

D
(ε−ε0), (3.1)

where

D=(ε−ε1)(ε−ε2)+i(Γ1+Γ2)(ε−ε0), (3.2)

with Γi =2π|Vi|2ρ and the density of states ρ in the leads.
The transmission probability T (ε) = |t(ε)|2 vanishes at
a specific energy ε0 =(Γ1ε2+Γ2ε1)/(Γ1+Γ2) between the
resonant peaks at ε = ε1 and ε2. This point is called a
transmission zero.

Figure 2 shows conductance calculated for Γ1 =2Γ2 =Γ
at several temperatures. Two resonant peaks with the
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Fig. 2. Conductance with resonant peaks at ε1 =−50Γ and ε2 =
50Γ for several temperatures, kBT/Γ=0.2 (solid line), 1 (dotted
line), 2 (dashed line), and 5 (dot-dashed line). The vertical arrow
indicates the transmission zero.

Breit-Wigner line shape are shown at ε1 = −50Γ and
ε2 = 50Γ. Although the transmission zero is located at
µ= ε0 =50Γ/3 (indicated by the arrow in the figure), it
is not clearly seen in conductance.

TEP calculated for the same parameter set is shown
in Fig. 3. Around the conductance peaks, ε = −50Γ and
ε = 50Γ, TEP shows a linear dependence on the Fermi
energy with a slope dS/dµ = 1/(eT ). Far from the con-
ductance peaks, TEP deviates from this linear depen-
dence, and decreases as the temperature decreases. These
features can be understood on the basis of the sequential-
tunneling and cotunneling theories1, 2 as explained in
§3.3. The most unique finding is the additional sharp
structure around the transmission zero (µ = ε0 = 50Γ/3,
indicated by the arrow in the figure). We can relate this
structure to the vanishing transmission amplitude as fol-
lows. By expanding the transmission amplitude around
the transmission zero by ε − ε0, and using the Mott for-
mula justified at low temperatures, the TEP is obtained
to be approximately

SM(µ, T )≈−π2k2
BT

3e

2(µ−ε0)

(µ−ε0)2+π2k2
BT 2/3

. (3.3)

This form fits the result shown in Fig. 3 at low temper-
atures. From eq. (3.3), it can be shown that TEP takes
maximum and minimum values at µ = ε0 ∓πkBT/

√
3 as

SMax≈±πkB/
√

3e, (3.4)

in the low-temperature limit. For high temperature Γ≪
kBT ≪∆ ≡ ε2−ε1, one observes a sawtooth-like shape
as predicted by the sequential tunneling theory.1 The
interference effects responsible for the transmission zero
are smeared out due to the thermal broadening, and TEP
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Fig. 3. Thermoelectric power for the same parameter set as that
used for the conductance shown in Fig. 2. The vertical arrow
indicates the transmission zero.

vanishes at the middle point between ε1 and ε2 regardless
of the position of the transmission zero.

Next, we replace the coupling for level 2 with an asym-
metric one (VR,2 = −VL,2 = V2) leaving level 1 symmet-
ric (VL,1 = VR,1 = V1). Then, the transmission coefficient
becomes the difference of two Breit-Wigner line shapes
as

t(ε)=
Γ1

ε − ε1 + iΓ1

− Γ2

ε − ε2 + iΓ2

, (3.5)

and therefore the transmission amplitude never vanishes
in the region between ε1 and ε2. Reflecting the disappear-
ance of the transmission zero, the TEP has no structure
between the resonant peaks. Thus, the appearance of the
novel structure in TEP between the resonant peaks is re-
lated to the sign of the couplings.

In general, the transmission probability vanishes
between the j-th and (j + 1)-th conductance peaks
for the case that the relative coupling sign, σj ≡
sign(VL,jVR,jVL,j+1VR,j+1), equals +1, while no trans-
mission zero appears for σj =−1.14, 15, 17 Hence, the ap-
pearance of the novel structure between the j-th and
(j + 1)-th conductance peaks depends only on the rela-
tive coupling sign σj . We demonstrate this by studying
the multilevel case in the next subsection.

3.2 Multilevel case

Figure 4 shows an example of the multilevel case at
low temperature kBT = 0.2Γ. The conductance peaks at
εj/Γ = 500(j−3) for j = 1, . . . , 5 correspond to the levels
in the QD with the couplings Vα,1 =

√
2V , Vα,2 =

√
5V ,

and Vα,3 = Vα,5 = V for α = L, R, while VL,4 = V and
VR,4 = −V , where Γ = 2π|V |2ρ. TEP for the same pa-
rameter set shows, in addition to small spikes correspond-
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Fig. 4. Conductance and thermoelectric power of a dot with five
quantum levels coupled to leads with the coupling strengths de-
fined in the text (for kBT = 0.2Γ).

ing to the conductance peaks, sharp structures with an
amplitude ∼ (π/

√
3)(kB/e) at the transmission zeros,

ε ∼ −860Γ and −80Γ. These structures are observed be-
tween the conductance peaks of j = 1 and j = 2, and
also between those of j = 2 and j = 3, because the
relative coupling signs take σj = 1 for j = 1, 2. On the
other hand, no sharp structure is found between other
adjacent peaks, because σj =−1 for j = 3, 4. Thus, the
appearance of the structures between resonant peaks can
be related to the relative coupling signs, which gives the
phase information of a wave function in the QD.

In general, observation of the transmission zeros in
conductance measurement is rather difficult. For exam-
ple, in the ordinary lead-dot-lead configuration, it is diffi-
cult to identify the transmission zeros in the region where
the conductance is exponentially suppressed far from the
conductance peaks. In principle, in a hybrid structure
with an AB ring, the zero transmission can be detected
by the abrupt jump of the transmission phase.13 The ac-
tual analysis for this type of hybrid systems, however, is
highly complicated, since the whole system consisting of
a reference arm and QD should be considered as one res-
onator; For example, the interference within the AB ring
significantly affects conductance.12, 16, 27 Compared with
conductance measurement, observation of the transmis-
sion zeros by using TEP may have an advantage because
both measurement and analysis are simple.

3.3 Phase-breaking effect

Let us now discuss the phase-breaking effect on TEP.
The strength of phase breaking can be controlled by the
coupling Γ′ = 2π|V ′|2ρ′ with the density of states ρ′ in
the fictitious probe. Figure 5 shows the TEP of a QD
with two quantum levels (N = 2) for several values of
Γ′, where we chose Γ1 =Γ2 =Γ, ε1 =−50Γ, and ε2 =50Γ
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Fig. 5. Phase-breaking effect on thermoelectric power at low
temperature kBT = 0.2Γ for several phase-breaking strengths:
Γ′/Γ = 0 (dotted line), 0.01 (dashed line), 0.1 (dot-dashed line)
and 1 (dot-dot-dashed line). The thin solid line shows the ther-
moelectric power predicted by the cotunneling theory (eq. (3.6)).

as a typical example. With the increase in the degree of
phase breaking, the structure at the transmission zero
(µ= ε0 =0) is suppressed, because the destructive inter-
ference between two possible paths through the two levels
in the QD, which is responsible for the transmission zero,
is sensitively diminished by the loss of coherency. On the
other hand, the small spikes corresponding to the con-
ductance peaks are not changed so much by the phase
breaking, because the conductance peak, which is deter-
mined by one dominant path through one quantum level,
is insensitive to the perturbation caused by the coupling
with the reservoir as long as Γ′ ≪ Γ.

For large phase breaking, it is expected that the
higher-order processes with respect to the coupling Vα,j

can be neglected, and that only the lowest-order ones
representing the sequential-tunneling and/or cotunneling
process make the main contribution. Then, the calcula-
tion in a coherent regime can be related to the known
theory based on these two tunneling processes as fol-
lows.1, 2 Far from the resonant peaks, TEP is determined
dominantly by the inelastic cotunneling process, which
predicts the chemical-potential dependence of TEP as2

Sco =
k2

BT

e

4π2

5

(

1

µ−ε1

+
1

µ−ε2

)

. (3.6)

This expression, which is drawn using the thin solid line
in Fig. 5, explains well the behavior of TEP for large
phase breaking except at the vicinity of the conductance
peaks. The cotunneling theory breaks down near the con-
ductance peaks, where the sequential tunneling process
becomes dominant.2 Around the conductance peaks, the
slope dS/dµ = 1/(eT ) is predicted from the sequential
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Fig. 6. Phase-breaking effect on thermoelectric power for a small
level spacing ∆=10Γ (ε1 =−5Γ and ε2 =5Γ) at low temperature
kBT =0.2Γ.

tunneling theory1 in the quantum limit U ≪ ∆, where U
and ∆ are a Coulomb interaction in the QD and a level
spacing, respectively.30 This predicted slope near the res-
onant peaks is consistent with all the results of TEP for
weak or moderate phase breaking. For large phase break-
ing (Γ′ >∼Γ), the slope becomes smaller than 1/(eT ) due
to broadening of the conductance peaks.

The cotunneling theory discussed above does not work
for a small level spacing ∆, where the higher-order pro-
cesses are more important. We show such an example of
the TEP for a small level spacing ∆=10Γ (ε1 =−5Γ and
ε2 =5Γ) in Fig. 6. The feature of cotunneling, which re-
moves the structure around the transmission zero as ex-
pected from eq. (3.6), is not found even for large phase
breaking, and more complicated behavior is observed.
The phase breaking decreases the TEP in a wide range
of the Fermi energy, while the structure at the transmis-
sion zero is suppressed by phase breaking more gradually
than that for ∆ = 100Γ in Fig. 5. This global change of
TEP due to phase breaking may suggest the possibility
of actual observation of electron coherency in QDs.

In order to clarify the behaviors of TEP around the
transmission zero, we consider the perturbation theory
with respect to the coupling Vα,j . The whole transmission
probability including the phase-breaking effect is evalu-
ated around the transmission zero (ε = 0) up to the
fourth order with respect to Vα,j as

T (ε) ≈ 8ΓΓ′

∆2
+

64Γ(Γ + Γ′)

∆4
ε2, (3.7)

for Γ, Γ′ ≪ ∆. The first term proportional to ∆−2 de-
scribes the incoherent cotunneling process, which leads
to a finite value of the transmission amplitude at ε = 0.
The transmission zero in coherent transport appears as a

result of the destructive interference between two paths,
each of which corresponds to the coherent transmission
through each level in the QD. This interference process
starts with the fourth order perturbation with respect
to Vα,j . As a result, the coherent part responsible to the
transmission zero appears in the second term in eq. (3.7),
and is proportional to ∆−4. From the expansion (3.7), the
slope of TEP at the transmission zero can be calculated
at low temperatures as

dSM

dµ

∣

∣

∣

∣

µ=ε0

≈ −kB

e

(

16π2kBT

3∆2

(

Γ

Γ′
+1

))

, (3.8)

which approximates well the slopes at µ = 0 in Figs. 5
and 6. In the limit Γ′ → ∞, the slope agrees with that
of the cotunneling theory.2 Within this approximation,
the peak height is proportional to (kB/e)(kBT/∆)(1 +
Γ/Γ′)1/2 at low temperatures. Hence, a small value of ∆
is preferable to observe the structure at the transmission
zero.

As demonstrated so far, the structure of TEP around
the transmission zero is sensitive to the phase-breaking
effect. Therefore, TEP may provide a useful tool for
measuring the coherency of electrons being transported
through QDs. So far, the coherency of transmission elec-
trons has been measured using the conductance of a QD
embedded in an AB ring with a magnetic field. The anal-
ysis of this system is, however, complicated as discussed
in §3.2. The TEP measurement, which does not need
either a hybrid structure like an AB ring or an external
magnetic field, may give an alternative simple method for
the study of coherency in electron transport, in particu-
lar, for the off-resonant region far from the conductance
peaks.

4. Summary

Thermoelectric power in a fully coherent regime has
been studied theoretically. It was shown that a novel
sharp structure appears at the so-called transmission
zero, at which a transmission amplitude vanishes. The
appearance of these structures is directly related to the
sign of the coupling with leads, reflecting the phase in-
formation of wave functions in quantum dots. It was also
shown that these structures are sensitively suppressed
by weak phase breaking, and that the calculated ther-
moelectric power can be interpreted on the basis of the
cotunneling theory for sufficiently large phase breaking.
It was proposed that, due to sensitivity to phase break-
ing, thermoelectric power can be used to measure the
degree of electron coherency in a quantum dot, even if
the Aharonov-Bohm oscillation cannot be used due to
a fairly small amplitude. The effect of Coulomb interac-
tion on the thermoelectric power remains an important
problem for future study.
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Appendix: Extended Mott Formula

The Mott formula is not applicable to the case where
the asymmetry far from the Fermi energy makes an im-
portant contribution. Actually, TEP calculated with the
Mott formula (2.3) clearly deviates from the exact for-
mula (2.2) at high temperature Γ ≪ kBT ≪ ∆ in the
present study. In order to understand the deviation, we
replace the transmission amplitude with one with a sim-
ple form T (ε) =

∑

n δ(ε−εn), where εn is an energy level
in the QD. TEP is calculated from eq. (2.2) as S(µ, T ) =
kB(µ− εN )/eT , with εN denoting a particular εn closest
to a given µ. On the other hand, the Mott formula gives
an incorrect result (π2/3) tanh((µ−εN )/2kBT ). Another
example is a point contact that is almost pinched off.31

In this case, the transmission probability is given by
the step function as T (ε) = Θ(ε). TEP is calculated
from eq. (2.2) as S = (kB/e) [−βµ+ln(1−f(0))/f(0)],
while the Mott formula (2.3) gives a different result
SM = (π2/3)(kB/e)(1 − f(0)), where f(0)= 1/(e−βµ+1).
Thus, we should use the Mott formula carefully by noting
its limitation.

For general noninteracting models, we can derive an
exact formula from eqs. (2.1) and (2.2) as

S(µ, T )=−1

e

1

G(µ, T )

∫ µ

dµ′ ∂G(µ′, T )

∂T
. (A·1)

This ‘extended Mott formula’ relates TEP to the deriva-
tive of conductance with respect to the temperature T
instead of the chemical potential µ. The same relation
can be rewritten in a derivative form as

∂

∂µ
(S(µ, T )G(µ, T )) = −1

e

∂G(µ, T )

∂T
. (A·2)

Since this formula is always correct for noninteracting
systems, it will be useful for the analysis of experimen-
tal results. On the other hand, it may become invalid in
interacting electron systems. For example, the transmis-
sion probability of a carbon nanotube may depend also
on the chemical potential µ when the Schottky barrier is
formed at the interface between the carbon nanotube and
leads. Then, a deviation from eq. (A·1) will be observed.
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15) A. L. Yeyati and M. Büttiker: Phys. Rev. B 62 (2000) 7307.
16) A. Aharony, O. Entin-Wohlman, B. I. Halperin, and Y. Imry:

Phys. Rev. B 66 (2002) 115311.
17) A. Silva, Y. Oreg, and Y. Gefen: Phys. Rev. B 66 (2002)

195316.
18) D. I. Golosov and Y. Gefen: Phys. Rev. B 74 (2006) 205316.
19) R. Landauer: IBM J. Res. Dev. 1 (1957) 223.
20) R. Landauer: Phil. Mag. 21 (1970) 863.
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