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Optical response of finite-length metallic carbon nanotubes is calculated including effects
of induced edge charges in a self-consistent manner. The results show that the main resonance
corresponding to excitation of the fundamental plasmon mode with wave vector π/l with l being the
tube length is quite robust and unaffected. This arises because the strong electric field associated
with edge charges is screened and decays rapidly inside the nanotube. For higher-frequency
resonances, the field starts to be mixed and tends to shift resonances to higher frequencies.
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§1. Introduction

Carbon nanotubes are a one-dimensional conductor
consisting of rolled graphite sheets.1) Usually a single-
wall carbon nanotube has a diameter of the order of a
few nm and a length of the order of several µm. Recently,
cutting and length selection of single-wall carbon nano-
tubes became possible.2−10) In short nanotubes with
good conductivity, edge effects start to play important
roles in their electronic properties. The purpose of
this paper is to theoretically study low-frequency optical
response in metallic carbon nanotubes with finite length.

In optical response, induced charges associated with
optical transitions often play important roles. For exam-
ple, effects of an electric field induced by the polarization
of nanotubes are quite significant and tend to suppress
interband transitions for light with electric-field polar-
ization perpendicular to the axis.11,12) However, strong
exciton effects due to the one-dimensional feature13,14)

cause reappearance of exciton peaks even in the presence
of the strong depolarization effect.15,16)

For electric field parallel to the axis, this depolar-
ization effect does not play a role and the absorption
is described by the usual dynamical conductivity. The
dynamical conductivity in metallic nanotubes in the
low-frequency region was studied17,18) in relation to the
absence of backscattering19−21) and the presence of a
perfect channel.22) In optical response of finite-length
carbon nanotubes, often called antenna effects, accu-
mulated charges at both ends of nanotubes can become
important even in field parallel to the axis.

There have been several theoretical calculations
on light scattering by finite-length nanotubes in low-
frequency region. Direct analysis based on the integral
equations of electromagnetics was reported.23−25) Nu-
merical studies were reported on electromagnetic waves
in a planar nanotube array.26,27) An equivalent circuit
model with quantum capacitance and kinetic inductance
was considered.28)

Recently, nanoscale antenna operation of a carbon
nanotube array was experimentally demonstrated.29)

Optical absorption in low-frequency (∼THz) region was

reported for nanotube bundles, where a sharp absorp-

tion peak was observed in aligned nanotubes but not
in sprayed samples.30) A broad absorption peak was
also reported, but attributed to a narrow gap in quasi-

metallic or narrow-gap nanotubes.31−33) Finite-length
effects have been considered in connection with various
phenomena such as Raman spectroscopy,34,35) π plasmon

absorption,36) etc.

In this paper, we shall calculate optical response of

finite-length metallic nanotubes in much lower frequency
region than an inter-band transition. In §2, the method

to calculate the optical response is described and an
approximation based on excitation of a single plasmon
mode in an infinitely long nanotube is introduced. Nu-

merical results are presented in §3. A discussion and
summary are given in §4.

§2. Formulation

2.1 Optical Response

We consider a carbon nanotube with a finite length
l, lying along the y direction in the range−l/2<y<+l/2.

Let Eext(y)e−iωt be an external electric field of incident
light and E(y, ω)e−iωt be the effective electric field in-
cluding effects of polarization charges. The response

of the system can generally be described by a nonlocal
conductivity σ(y, y′).

Then, the induced current j(y)e−iωt is given by

j(y) =

∫

σ(y, y′)E(y′) dy′. (2.1)

The corresponding induced charge ρ(y)e−iωt is deter-

mined by the equation of continuity:

∂ρ

∂t
+

∂j

∂y
= 0, (2.2)

as

ρ(y) =
1

iω

∂

∂y
j(y) =

1

iω

∂

∂y

∫

dy′ σ(y, y′)E(y′). (2.3)
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The corresponding scalar potential φ(y)e−iωt becomes

φ(y) =

∫

K(y−y′)ρ(y′)dy′, (2.4)

where K(y) is the kernel of the Coulomb interaction for
cylindrical charge distribution,13,37−42) given by

K(y) =

∫

dq

2π
K(q) eiqy, (2.5)

with

K(q) =
2

κ
I0(|q|R)K0(|q|R), (2.6)

where R is the diameter of the nanotube, κ is the
static dielectric constant of the environment, and In(t)
and Kn(t) are the modified Bessel function of the first
and second kind, respectively. The total electric field
becomes

E(y) = Eext(y)+
1

iω

∫

dy′

∫

dy′′ K ′(y−y′)σ(y′, y′′)E(y′′),

(2.7)
with

K ′(y−y′) =
∂2

∂y∂y′
K(y−y′) =

∫

dq

2π
K ′(q)eiq(y−y′), (2.8)

where

K ′(q) = K(q)q2. (2.9)

The power absorption is given by

P =
1

2
Re

∫

dy j(y)E(y)∗

=
1

2
Re

∫

dy

∫

dy′ E(y)∗σ(y, y′)E(y′). (2.10)

We consider the case that the length of the nanotube
is larger than the mean free path. In this case, we can
neglect effects of edges on the conductivity of the carbon
nanotube and replace the conductivity with

σ(y, y′) = θ0(y)θ0(y
′)σ(y−y′), (2.11)

where σ(y − y′) is the conductivity in infinitely long
nanotubes and θ0(y) is unity well inside the nanotube
and should decay rapidly outside. The simplest choice is

θ0(y) = θ
[( l

2

)2

−y2
]

, (2.12)

where θ(t) is the step function defined by

θ(t) =

{

1 (t > 0);
0 (t < 0).

(2.13)

Actually, a nanotube has circumference L=2πR and the
field should be smoothed out over the distance of the
order of L. Therefore, we shall replace θ0(y) with

θ0(y) =
1

2

[

1−erf
( |y|− 1

2 l

ξ

)]

, (2.14)

with effective edge width ξ=L, where the error function

is defined by

erf(t) =
2√
π

∫ t

0

e−t2dt. (2.15)

When the mean free path is much larger than the tube
length, discrete energy levels are formed because of
quantization of the electron motion and deviations from
this approximation may appear.

For simplicity, we consider the case that the Fermi
level lies in the linear band

ε = ±γ|k| = ±h̄vF|k|, (2.16)

where k is the electron wave-vector, vF =γ/h̄ is the Fermi
velocity, and γ =

√
3aγ0/2 with the lattice constant a and

the nearest-neighbor hopping integral γ0 in graphene.
Further, we shall employ a relaxation-time approxima-
tion to calculate the Boltzmann conductivity, which
becomes an exact solution of the transport equation in
the single-channel case. As shown in Appendix A, we
have the conductivity

σ(q, ω) = gvgs
e2γ

πh̄2

(

−iω+
1

τ

)[(

−iω+
1

τ

)2

+(vFq)2
]

−1

,

(2.17)
where gv and gs are the degeneracy for the valley and
spin, respectively. The impurity and/or phonon scat-
tering are characterized by relaxation time τ , related to
mean free path Λ given by

Λ=vFτ. (2.18)

2.2 Periodic Array

For actual numerical calculations, we consider the
array with period d as illustrated in Fig. 1 and seek the
solution periodic with d. The electric field is expanded
into the Fourier series

E(y) =
∑

G

E(G) exp(iGy), (2.19)

with reciprocal lattice G = 2πj/d (j = 0,±1, · · ·). Then
the equation for the electric field becomes

∑

G′

[

δG,G′ − 1

iω

l

d
K ′(G)σ(G, G′)

]

E(G′) = Eext(G),

(2.20)
where

σ(G, G′) = l

∫

dq

2π
σ(q, ω)θ0(G−q)θ0(G

′−q)∗, (2.21)

and

θ0(q) =
1

l

∫

dy θ0(y) e−iqy. (2.22)

In terms of the Fourier coefficients, the power absorption
of each nanotube is written as

P =
l

2
Re

∑

G

∑

G′

E(G)∗σ(G, G′)E(G′). (2.23)

Because K ′(q) increases in proportion to q for large
q, the convergence of the solution of Eq. (2.20) requires
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very large values of G. This slow convergence corre-
sponds to the singular distribution of the electric field
associated with point-like polarization charges building
up in the vicinity of the end points of the nanotube.
Actually, the use of the nonlocal conductivity is quite
effective in suppressing this singular behavior, but is not
essential for determining resonance behavior particularly
in the low frequency region.

2.3 Single-Mode Approximation

Let us consider the case in a uniform external field,
i.e., Eext(y) = Eext, which is valid for light with wave-
length much larger than the tube length and polarized
in the y direction. Polarization charge is induced at the
ends of the finite length nanotube, as mentioned above.
This charge is regarded almost as a point charge and
the associated electric field decreases in proportion to
1/r2, where r is the distance from the end point. In
sufficiently long nanotubes, therefore, the field due to
this induced charge is negligible in the most region of
the nanotube where the absorption mainly takes place.
If we neglect the presence of the ends, a single plasmon
mode is induced along the nanotube determined by the
wave number corresponding to the frequency of the
external field. For such a long-wavelength mode, the
response is essentially determined by local conductivity
σ(ω) ≡ σ(0, ω), i.e., σ(y−y′) = σ(ω)δ(y−y′). Further,
the main effect caused by the presence of the edges on
this mode is to impose the boundary condition that the
induced current should vanish at the edges, leading to
the vanishing electric field.

Let Qω be the wave number of such a mode domi-
nantly excited. Then, the electric field associated with
this “bulk” mode is approximately given by

E(y) ≈ E0[cos(Qωy)−cos(Qωl/2)], (2.24)

with appropriate coefficient E0. The second term in the
bracket arises from the boundary condition, E(±l/2)=0.
Approximately, we have
∫

dy′

∫

dy′′ K ′(y−y′)σ(y′, y′′)E0[cos(Qωy′′)−cos(Qωl/2)]

≈ K ′(Qω)σ(ω)E0 cos(Qωy). (2.25)

Thus, Eq. (2.7) gives two equations:

1 − σ(ω)

iω
K ′(Qω) = 0, (2.26)

− E0 cos(Qωl/2) = Eext. (2.27)

The second equation gives

E(y) ≈ Eext

(

1− cos(Qωy)

cos(Qωl/2)

)

. (2.28)

The first equation gives the mode frequency:

1 − ω(Qω)2

ω[ω+(i/τ)]
= 0, (2.29)

with

ω(Qω)2 =
gvgse

2γ

πh̄2 K ′(Qω). (2.30)

In the limit of an ideal nanotube τ → ∞, we have

Qω =±Q with Q>0, satisfying

ω(Q)2 =
gvgse

2γ

πh̄2

2

κ
K0(QR)I0(QR)Q2 = v2

QQ2, (2.31)

where vQ is the approximate velocity of the mode

vQ = 4vF

√

gvgs

4

e2

2πκγ
K0(QR)I0(QR). (2.32)

Except in extremely short nanotubes with length
not so much different from circumference L, the velocity
is nearly constant because of logarithmically weak depen-
dence on Q. We have e2/2πκγ <∼ 0.2 and K0(QR)I0(QR)
> 1, and therefore vQ > vF. In clean wires satisfying
ωτ ≫1, we have Qω =Q+iQ′, with

Q ≈ ω

vQ

, Q′ ≈ 1

2vQτ
=

1

2

vF

vQ

1

Λ
. (2.33)

In dirty wires ωτ ≪1, on the other hand, we have

Qω ≈ 1√
2vQ

√

ω

τ
(1+i). (2.34)

Figure 2 shows some examples of Qω for tubes with
l/R=2πl/L=1500 (corresponding to a tube with length
l ≈ 1 µm and diameter 2R ≈ 1.36 nm of the so-called
(10,10) nanotube). We have used γ0 =3.0 eV and κ0 =2.5
corresponding to the bulk graphite.43) In this example,
we have roughly vQ ≈ 4vF. The velocity is larger
than the electron velocity in the graphene or in metallic
carbon nanotubes, but is still much smaller than the
light velocity c because vF ∼ c/300. This slow plasmon
velocity justifies the use of Poisson’s equation instead
of full Maxwell’s equation used for normal metal wires.
The above results become essentially the same as that
obtained in ref. 25 based on the so-called Leontovich-
Levin equation when we take the limit c→∞. Plasmon
modes have been theoretically studied in infinite one-
dimensional organic conductors44) and in semiconductor
quantum wires.45)

In clean tubes satisfying condition cosh(Q′l/2) ≫
sinh(Q′l/2) and therefore cosh(Q′y/2)≫ | sinh(Q′y/2)|,
we have approximately

E(y) ≈ Eext

[

1 − cos
Qy

2
cosh

Q′y

2

×
(

cos
Ql

2
cosh

Q′l

2
−i sin

Ql

2
sinh

Q′l

2

)

−1
]

, (2.35)

except in narrow regions of y for which cos(Qy/2)≈ 0.
This exhibits a resonance behavior at Q=Qn with

Qn ≡ (2n+1)
π

l
(n=0, 1, · · ·). (2.36)

In fact, in the vicinity of Qn, we have

E(y) ≈ Eext(−1)n
(

cos
Q′l

2

)

−1

cos
Qy

2
cosh

Q′y

2

×
[ (Q−Qn)l

2
+i tanh

Q′l

2

]

−1

, (2.37)

showing that the imaginary part exhibits a resonant
increase at Qn following a Lorentzian form and the real
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part a Lorentzian multiplied by Q−Qn. Therefore, the
absorption also exhibits a resonance proportional to

P ∝ NlE2
ext

σ0

1 + (ωτ)2

(

cos
Q′l

2

)

−2

×
[ (Q−Qn)2l2

4
+tanh2 Q′l

2

]

−1

, (2.38)

with σ0 ≡ σ(0, 0) = gvgs(e
2/πh̄)Λ and total number N

of isolated nanotubes.

This resonance behavior decreases with the increase
of disorder or the decrease of mean free path Λ. The clear
resonance disappears when cosh(Q′l/2) ≈ sinh(Q′l/2),
i.e., Q′ ∼ π/l. In the present example with vQ ∼ 4vF,
this condition becomes Λ/l ∼ 0.04. In the dirty limit,
the field remains small for small ω or Q (≈ Q′) until
condition Q ∼ Q′ ∼ π/l is satisfied and then becomes
essentially the same as the external field except in the
vicinity of the edges. As a result, the absorption takes
a broad maximum around the corresponding frequency
and decays with ω following the real part of the dynam-
ical conductivity σ(ω).

§3. Numerical Results

Figure 3 shows some examples of calculated absorp-
tion intensity in the nanotube the same as shown in Fig.
2. The mean free path is chosen to be Λ/l=0.5 (clean),
0.1 (intermediate), and 0.02 (dirty) in these examples.
The solid lines show numerical results and the dotted
lines those obtained in the single-mode approximation
discussed in the previous section. The positions corre-
sponding to Q=Qn are denoted by thin vertical lines.

The main resonance with n = 0 occurs almost
exactly at Q = Q0. For the higher-frequency resonance
n = 1, the peak position is slightly shifted to the higher
frequency side. This shift becomes larger with the
increase of n. In the single-mode approximation, on
the other hand, the resonance occurs exactly at Qn.
This shift is due to the appearance of strongly localized
electric field associated with induced charges at both
ends of the nanotube. Apart from this peak shift, the
single-mode approximation works surprisingly well.

Figure 4 shows the electric field at the center,
y = 0, of the clean tube (Λ/l = 0.5) as a function of
the frequency. The real and imaginary parts exhibit
the resonance behavior same as that discussed in the
previous section within the single-mode approximation.
In fact, the single-mode approximation has originally
been expected to be sufficient for the behavior of the
field in the central part of the nanotube.

Figure 5 shows calculated electric-field distribution
in a clean tube with Λ/l = 0.5. The dotted lines show
the results in the single-mode approximation. The most
noteworthy feature is large electric field localized at both
ends of the nanotube. This is due to the significant
accumulation of induced charges at both ends of the
tube. This field decays rapidly away from the tube
edge and approaches external field Eext outside the tube.
Well inside the tube, the field becomes approximately
sinusoidal with wave vector Q of the plasmon mode

determined by the frequency. In the low-frequency re-
gion corresponding to Q smaller than Q0, the electric
field is screened out in a carbon nanotube by charges
accumulated at both ends. At resonances, both real and
imaginary parts of the field are considerably enhanced.

Difference between the exact numerical results and
those of the single-mode approximation becomes appar-
ent in the vicinity of resonance n = 2, i.e., Ql/π = 5.
This arises mainly due to the shift in the peak frequency
in the numerical result, not present in the single-mode
approximation. For larger n, the field distribution is
more strongly affected by accumulated edge charges and
extra restoring force tends to enhance the resonance
frequency from that in the single-mode approximation.

Figure 6 shows calculated electric-field distribution
in a tube with Λ/l = 0.1, for which Q′l ∼ 1. In this
case broad resonance is recognized only in the imaginary
part of the electric field and deviation from the single-
mode results is less prominent. In a dirty tube with
Λ/l=0.02 shown in Fig. 7, the field distribution is almost
independent of the frequency except in the low frequency
region where Q ∼ Q′ <∼ π/l, as has been discussed in
the previous section for the results in the single-mode
approximation.

Figure 8 shows the details of field distribution (imag-
inary part of E(y)) around the right end of the nanotube
for (a) Ql/π=1 and (b) 5. Polarized charges appear at
the edge roughly in proportion to the conductivity and
therefore their amount decreases with the decrease of the
mean free path. A large electric field appears associated
with these charges and decays slowly in proportion to
(y− 1

2 l)−2 outside of the nanotube. This outside field
does not contribute to the power absorption, however.

On the other hand, the electric field due to edge
charges rapidly decays inside the nanotube due to strong
screening effect and becomes negligible in the most region
of the nanotube where the absorption mainly takes place.
In fact, only small difference appears in the absorption
power given by the solid and dotted lines in Fig. 3.
This shows that the strong screening of the field due
to polarized edge charges is the main reason that the
single-mode approximation based on a plasmon mode
in an infinitely long nanotube has turned out to work
surprisingly well in spite of the presence of edges.

§4. Discussion and Conclusion

Carbon nanotubes used in experiments30) are usu-
ally several micrometer long and therefore longer than
the mean free path limited by impurity and/or phonon
scattering at room temperature. Recent progress in ex-
periments has achieved short nanotubes with sub-micron
size.5−10) In such short nanotubes, discrete energy lev-
els are formed and the level spacing can exceed the
broadening due to disorder. Then, we should seriously
consider effects of discrete energy levels to discuss optical
absorption of finite-length nanotubes. This problem is
out of the scope of this paper and left for a future study.

When a nanotube is tilted from the direction of
the external field, the field component parallel to the
axis is effective in the absorption and the resonance
frequency remains unaffected. When many nanotubes
are distributed at random within a plain, the absorption
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intensity is reduced by factor 1/2 due to the average over
directions. Recently, a monotonic dependence on the
direction is reported in a mat of aligned nanotubes.46)

For the field perpendicular to the axis, there is no
significant absorption in the relevant frequency range
considered here.47−49) In fact, the dynamical screening or
the depolarization effect due to induced charges should
be considered11,12) and resonance absorption appears at
much higher energies when exciton effects are properly
included in interband optical transitions.15,16)

In actual absorption experiments, a bundle of nano-
tubes may be used. When a bundle contains N metallic
nanotubes with same length, the Coulomb kernel given
by Eq. (2.5) is effectively multiplied by N . As a result,
the frequency and the velocity of excited plasmon mode
are multiplied by

√
N . Semiconducting nanotubes can

be contained in a bundle, but usually have very small
conductivity and irrelevant, although it is known that
carbon nanotubes tend to be naturally doped due to
surrounding particles such as oxygen.50)

Usually, experiments are performed for a film where
the density of nanotubes is sufficiently small for the
purpose of avoiding electrical contacts among them. In
this case, electric field induced by neighboring nanotubes
can be considered in a dipole approximation. The dipole
field decays as 1/r3 with the increase in distance r. In
film-like systems, this dipole field of distant nanotubes
does not give rise to significant contribution in contrast
to three-dimensional systems. Effects of surrounding
nanotubes were previously considered by numerically
solving Hallén’s equation for infinite planar arrays of
nanotubes.26,27) The results showed that interaction be-
tween neighboring tubes causes broadening and shift of
resonances only when the distance becomes of the order
of the tube diameter. If an end of a nanotube touches
another nanotube, the absorption may be significantly
modified because of large charges accumulated at the
end. Such a situation should be avoided in experiments.

In general, a mini-gap opens around the Fermi
energy even in so-called metallic nanotubes for various
reasons. For example, the nonzero curvature causes a
band gap depending on the chirality,51) which can be
understood in terms of an effective Aharonov-Bohm flux
within the k·p scheme.52−54) A mechanical deformation
causes band-gap modification,55,56) which can also be
understood in terms of flux.53,57) The amount of the
gap depends on the chirality, radius, environment, etc.,
and is typically smaller than room temperature. There
have been some reports suggesting the observation of
broad absorption due to inter-minigap transitions.32,33)

Because this mini-gap transition is in the same frequency
region, detailed study on the length dependence is re-
quired for the purpose of identifying the absorption due
to the finite-length origin considered here.

In summary, we have calculated electric-field distri-
bution and absorption intensity of a finite-length nano-
tube in oscillating electric field. The results show that
the main resonance corresponding to excitation of the
fundamental plasmon mode with wave vector Q0 = π/l
is quite robust except in very dirty tubes. For higher-
frequency resonances, the electric field associated with

induced edge charges starts to be mixed and tends to
shift resonances to higher frequencies. Overall resonance
behaviors can be reasonably well described by the single-
mode approximation in which effects of induced edge
charges are completely neglected.
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Appendix A: Nonlocal Conductivity

We start with a Boltzmann transport equation

∂fjk(y, t)

∂t
+ vjk

∂fjk(y, t)

∂y
− eE(y, t)

1

h̄

∂fjk(y, t)

∂k

= −
∑

j′k′

Wj′k′,jk[fjk(y, t)−fj′k′(y, t)], (A1)

where j denotes subbands, k the wave vector in the axis
(y) direction, E(y, t) is the applied electric field, vjk =
∂εjk/h̄∂k is the velocity, and Wj′k′,jk is the scattering
probability between states jk and j′k′. We write the
distribution function fjk as the sum of the equilibrium
distribution function f(εjk) and the deviation due to the
applied field gjk, i.e., fjk(y, t)=f(εjk)+gjk(y, t). In the
limit of a weak applied field, the above is approximated
by

∂gjk(y, t)

∂t
+ vjk

∂gjk(y, t)

∂y
+ evjkE(y, t)

(

− ∂f(εjk)

∂εjk

)

= −
∑

j′k′

Wj′k′,jk[gjk(y, t)−gj′k′(y, t)]. (A2)

Let

E(y, t) = E exp(−iωt+iqy). (A3)

Then, we can set

gjk(y, t) = gjk exp(−iωt+iqy), (A4)

and rewrite the transport equation as

[−iω+iqvjk]gjk + evjkE
(

− ∂f(εjk)

∂εjk

)

= −
∑

j′k′

Wj′k′,jk[gjk−gj′k′ ]. (A5)

The solution can be written as

gjk = g̃jk

(

− ∂f(εjk)

∂εjk

)

, (A6)

with

[−iω+iqvjk]g̃jk+evjkE = −
∑

j′k′

Wj′k′,jk[g̃jk−g̃j′k′ ]. (A7)

This constitutes a set of linear equations determining g̃jk

for each energy and therefore can be solved exactly. In
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the following, however, we shall use a simplest relaxation-
time approximation, which become exact for a single
channel case.

The right hand side is approximated by

−
∑

j′k′

Wj′k′,jk[gjk(y, t)−gj′k′ (y, t)] = − 1

τ(εjk)
gjk(y, t).

(A8)
Then, we immediately have

gjk = −
[

−iω+iqvjk+
1

τ(εjk)

]

−1

evjkE
(

−∂f(εjk)

∂εjk

)

. (A9)

The induced current

j(q, ω) = gvgs

∑

jk

(−e)vjkgjk, (A10)

can be expressed in terms of the conductivity σ(q, ω) as

j(q, ω) = σ(q, ω)E, (A11)

with

σ(q, ω) =

∫

(

− ∂f(ε)

∂ε

)

σ(q, ω, ε)dε, (A12)

and

σ(q, ω, ε) = gvgs

∑

jk

[

− iω+iqvjk+
1

τ(ε)

]

−1

e2v2
jkδ(ε−εjk).

(A13)
Adding the contributions of positive and negative values
of k, we can rewrite the above as

σ(q, ω, ε) = gvgs

∑

jk>0

e2|vjk|2
[(

−iω+
1

τ(ε)

)2

+q2|vjk|2
]

−1

×
[

−iω+
1

τ(ε)

]

δ(ε−εjk). (A14)

We shall consider the energy region within the linear
band. Substituting the explicit expression vk =vF =γ/h̄
and εk =γk, we have

σ(q, ω, ε) = gvgs
e2γ

πh̄2

[

−iω+
1

τ

][(

−iω+
1

τ

)2

+
γ2q2

h̄2

]

−1

,

(A15)
with τ =τ(ε) for simplicity.

The poles of the conductivity are given by

h̄ω = ±γq − i
h̄

τ
, (A16)

which corresponds to the subband dispersion in the limit
of τ →∞, as is expected. In the limit of small 1/τ and ω,
the denominator is a function of Dq2−iω as is expected,
where the diffusion constant is given by

D =
1

2

Λ2

τ
=

1

2
v2
Fτ. (A17)

In the high-frequency limit ωτ ≫ 1, on the other
hand, the cut-off wave vector qc, where the conductivity
deviates from the local conductivity σ(ω) ≡ σ(0, ω),

becomes vFqc≈ω or

qcL

2π
≈ h̄ω

(2πγ

L

)

−1

, (A18)

which should be much smaller than unity under the usual
conditions.
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Figure Captions

Fig. 1 A schematic illustration of a finite-length nano-
tube with length l. In actual numerical calculations,
we shall consider a periodic array with period d
(d≫ l).

Fig. 2 (Color online) Examples of calculated plasmon
dispersion in a tube with radius R/l = 1/1500 for
Λ/l = 0.02, 0.1, and 0.5, where Λ is the mean
free path. Solid and dotted lines show the real and
imaginary parts of Qω, respectively. The real part
is almost linear with the slope of vQ/vF ∼ 4 in the
clean tube Λ/l=0.5.

Fig. 3 (Color online) The absorption in a nanotube
with radius R/l=1/1500 as a function of frequency.
Λ/l = 0.5, 0.1, and 0.02. The results in the single-
mode approximation are shown by dotted lines.
Corresponding wave number Qω in an infinitely long
tube with Λ → ∞ is shown in the upper axis.
Thin vertical dashed lines indicates wave number
Qn =π(2n+1)/l.

Fig. 4 (Color online) The real and imaginary parts of
the electric field at the center of the nanotube as
a function of frequency. The dotted lines represent
those of the single-mode approximation.

Fig. 5 (Color online) Calculated electric field distribu-
tion for varying Q in a clean wire with mean free
path Λ/l = 0.5. The dotted lines represent the
results of the single-mode approximation. Lines for
increasing Ql/π are shifted in the vertical direction,
for each of which the horizontal axis at E = 0 is
shown by a dashed line.

Fig. 6 (Color online) Calculated electric field distribu-
tion in a wire with Λ/l = 0.1.

Fig. 7 (Color online) Calculated electric field distribu-
tion in a dirty wire with Λ/l = 0.02.

Fig. 8 (Color online) A close-up view of imaginary part
of electric field distribution around the right end of
nanotubes for (a) Ql/π=1 and (b) 5.
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