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The conductance is calculated for approximately 1.6×105 armchair carbon nanotubes (CN’s)
with a different lattice vacancy in a tight-binding model using a multi-channel Landauer’s formula.
When the vacancy is much smaller than the circumference of CN, the conductance is quantized
into zero, one, and two times the conductance quantum e2/πh̄ depending only on the site-number
difference between removed A and B sublattice sites.

KEYWORDS: graphite, carbon nanotube, vacancy, conductance, Landauer’s formula, recursive
Green’s function technique

After the discovery of carbon nanotubes (CN’s) in
1991 by Iijima1), much attention has been focused on
carbon networks of the nanometer scale. One important
aspect of these systems is that their π electronic struc-
ture is critically controlled by the topological structure
of sp2 carbon networks. For example, carbon nanotubes
become either metallic or insulating depending on the
tubular circumferential vector.2−11) Because of their u-
nique geometric and electronic structure, they are con-
sidered to be a new type of quantum wire. The purpose
of this work is to demonstrate a general rule of conduc-
tance quantization in the presence of a vacancy.

Recently, effects of scattering on the impurity poten-
tial were studied theoretically and it was proved that a
Born series for back-scattering vanishes identically for s-
catterers having a potential with a range larger than the
lattice constant.12) This intriguing fact was related to
Berry’s phase acquired by a rotation in the wave-vector
space in the system described by a k·p Hamiltonian.13)

The conductance was calculated in a tight-binding model
by varying the strength of the potential.14)

Some experiments suggest the existence of defec-
tive nanotubes of carpet-roll or papier-mâché forms.15,16)

These systems have many disconnections in the π elec-
tron network governing the transport of CN’s, and there-
fore are expected to exhibit properties different from
those in perfect CN’s. In a graphite sheet with a finite
width, for example, localized edge states are formed near
the Fermi level in the undoped case, chosen at ε=0, when
the boundary is in a certain specific direction.17−22)

Effects of scattering by a vacancy in armchair nano-
tubes in the presence and absence of a magnetic field
have been studied.23−25) It has been shown that the con-
ductance at ε = 0 in the absence of a magnetic field
is quantized into zero, one, or two times the conduc-
tance quantum e2/πh̄ for three typical vacancies.24,25)

In this paper we shall perform numerical calculations for
approximately 1.6×105 vacancies and demonstrate that
such quantization is quite general.

To study the conductance of armchair CN’s with
a lattice vacancy, we use a tight-binding model of a
single π band with a nearest-neighbor hopping integral
γ0 and a lattice constant a. The hybridization of σ and π

states may be ignored in CN’s with a large diameter. An
armchair nanotube is known to be always metallic and
has two bands in the vicinity of the Fermi energy crossing
at ky = 2π/3a (K point) and ky = −2π/3a (K’ point),
where ky is the wave vector in the axis direction. The
energy dispersion near the Fermi energy is approximately
given by ε=±γ|k|, where k is the wave vector measured
from the K and K’ point and γ=

√
3aγ0/2. For a given

energy, ε = γk ≥ 0, for example, there are two channels
denoted as K and K’ with positive velocity γ/h̄ and two
with negative velocity −γ/h̄.

A unit cell of two-dimensional graphite contains two
carbon atoms denoted as A and B constituting a honey-
comb network, as shown in Fig. 1. We first consider
circular vacancies with a radius w centered on (a) the
center of a six-membered ring (ring-center vacancy) il-
lustrated in Fig. 1(a), and (b) an atomic site (site-center
vacancy) illustrated in Fig. 1(b), where removed A and
B sublattice sites are denoted by open and closed circles.
The ring-center and site-center vacancies have six-fold
and three-fold symmetry, respectively. Next, we exam-
ine the conductance of CN’s with a more general vacancy
having an arbitrary shape to eliminate effects specific to
symmetry. We shall confine ourselves to vacancies in
which removed sites are all connected to each other.
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Fig. 1 Examples of (a) ring- and (b) site-center
vacancies. Removed A and B sublattice sites are
denoted by open and closed circles, respectively, w
is the radius of the circle encircling the vacancy,
and ∆NAB is the site-number difference between
removed A and B sublattice sites.

A

B

1 1 1 1NAB∆

Fig. 2 Examples of vacancies consisting of five
carbon atoms. Only “molecules” are shown and the
actual number of different vacancies is 12, 12, 6, and
6, from left to right.

Examples of such vacancies consisting of five car-
bon atoms are shown in Fig. 2. In this case there are
only four different shapes, each of which will be called
a “molecule.” Each molecule usually generates six va-
cancies having a different configuration by the rotation
±2π/3 and a mirror reflection and a further six by the ex-
change of A and B sublattice points. Some of these gen-
erated vacancies are equivalent particularly for molecules
with a certain symmetry and therefore the actual number
is usually less than twelve times the number of different
molecules. In the case of five-atom vacancies, as shown
in Fig. 2 for example, the total number of vacancies is 36.
The number of molecules and that of vacancies increas-
es explosively with the number N of removed carbon
atoms. We have approximately 14000 molecules and ap-
proximately 1.6×105 vacancies in total for 5≤ N ≤ 13.
In armchair nanotubes we are concerned with the many
vacancies generated from a molecule which give identical
conductance because of the presence of the mirror sym-
metry around a plane containing the axis and around a
plane perpendicular to the axis.

An important parameter of the vacancy is ∆NAB

defined as ∆NAB = |NA−NB|, where NA and NB are the
number of removed A and B sublattice sites, respectively.
For a ring-center vacancy, we have ∆NAB =0 because of
the six-fold symmetry. For a site-center vacancy, we have
∆NAB ≥ 1. In the case of a general vacancy, ∆NAB ≥ 1
and ∆NAB ≥0 for odd and even N , respectively. For 5≤

N ≤13, approximately 25000 vacancies have ∆NAB =0,
106000 have ∆NAB =1, and 31000 have ∆NAB ≥2.

The vacancies can be simulated by two models. In
the first model (1), we consider the explicit disconnection
of bonds around the vacancy. In the second model
(2), on-site energy V is introduced at vacancy sites on
the perfect network of CN’s. It has been shown that
model (2) becomes equivalent to model (1) in the limit
V → ∞.25) We use model (1) for ring-center and site-
center vacancies and model (2) for general vacancies.

The conductance is calculated by a multi-channel
Landauer’s formula26) given by G=(e2/πh̄)

∑
µ,ν |tµν |2,

where µ and ν are out-going and in-coming channels,
respectively. The transmission tµν and reflection coef-
ficients rµν are calculated by a recursive Green’s func-
tion technique.27,28) In the following, we shall exclusively
consider the case ε = 0. In this case, the combination-
s of {µ, ν} are given by {K,K}, {K′,K′}, {K′,K}, and
{K,K′}. The former two correspond to intra-valley scat-
tering within the K point or the K’ point and the latter
two correspond to inter-valley scattering between K and
K’ points.

In CN’s with a ring-center vacancy, the calculated
conductance depends on both the vacancy radius and
the circumference of CN’s. If the vacancy is much s-
maller than the circumference of CN’s, the conductance
is slightly smaller than the perfect conductance 2e2/πh̄.
The deviation from 2e2/πh̄ decreases with the increase
of the circumference L in proportion to (a/L)2 for a fixed
w and increases with the increase of w. For sufficiently
thick nanotubes, it is quite natural to expect that the
conductance is a universal function of weff/L, where weff

is an effective radius of a vacancy and is close to w. More
explicitly, for a small weff/L we can assume:

G =
2e2

πh̄

[
1−α

(2weff

L

)2
]

, (1)

where α is a constant. In order to determine α and
weff uniquely, we assume that the actual and effective
number of removed sites becomes equal to each other
when being fitted to a straight line. The latter is given
by 4πw2

eff/
√
3a2, where

√
3a2/4 is half the area of a six-

membered ring. Such a procedure gives α=9.8.
We calculate the conductance for 10≤L/

√
3a≤150

and 0<
√
3w/a≤10, where a/

√
3 is the distance between

nearest-neighbor carbon atoms, and determine the value
of weff by fitting the results to eq. (1) in the region of
small w corresponding to 1.9 ≤ G/(e2/πh̄) ≤ 2. The
results given in Fig. 3 show that the conductance is given
by a universal function of 2weff/L in the whole range of
weff , as has been expected.

The inset of Fig. 3 shows the resulting effective num-
ber of removed sites given by 4πw2

eff/
√
3a2 as a function

of the actual number, which shows clearly that they are
well correlated to each other. It should be noted that
the intra-valley backscattering rKK and rK′K′ and inter-
valley transmission tKK′ and tK′K , are always absent
for ring-center vacancies because of a mirror symmetry
about a plane containing the axis.29)
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Fig. 3 Calculated conductance as a function of
2weff/L for CN’s with a ring-center vacancy. The
inset shows the effective number of removed atoms
corresponding to weff as a function of the number of
actual removed atoms.
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Fig. 4 Calculated conductance as a function of
2weff/L for CN’s with a ring-center vacancy. The
inset shows the effective number of removed atoms
corresponding to weff as a function of the number of
actual removed atoms.

Figure 4 shows an example of calculated conduc-
tance and ∆NAB for CN’s with a site-center vacancy as a
function of

√
3w/a for L/

√
3a=100 and 0<

√
3w/a≤10.

In this case, the conductance is always quantized into ze-
ro or one times the conductance quantum e2/πh̄, in con-
trast to ring-center vacancies. In fact, we have G=e2/πh̄
for ∆NAB = 1 and G = 0 for ∆NAB ≥ 2. These results
do not depend on the radius of a vacancy and the cir-
cumference of CN’s, but depend only on ∆NAB. For
∆NAB =1, both intra- and inter-valley components have
an equal amplitude for both transmission and reflection
processes, i.e., |tµν |= |rµν |=1/2. When the conductance
vanishes for ∆NAB ≥2, a perfect reflection occurs within
the same valley, i.e., |rKK|= |rK′K′ |=1.

Figure 5(a) shows the histogram giving the distribu-
tion of the conductance for CN’s with a general vacancy
for L/

√
3a= 50. The histogram has a width 5.0×10−2

in units of e2/πh̄ and is normalized by the total num-
ber of vacancies with specified ∆NAB. The calculat-
ed conductance is almost completely quantized into t-

wo, one, or zero times the conductance quantum e2/πh̄,
depending exactly on whether ∆NAB = 0, ∆NAB = 1,
or ∆NAB ≥ 2. In fact, the conductance always van-
ishes, independent of the shape and configuration of a
vacancy, when ∆NAB ≥ 2 and the distribution function
has a sharp peak at G = e2/πh̄ for ∆NAB = 1 and at
G=2e2/πh̄ for ∆NAB =0. It has a very small tail on the
left-hand side for ∆NAB =0 and 1. This deviation from
the quantized conductance arises mainly from vacancies
which are exceptionally long in the circumference direc-
tion. An example of such vacancies is illustrated in an
inset of Fig. 5(a).
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Fig. 6 Calculated distribution of the conductance of C-
N’s with a general vacancy for (a) L/

√
3a=50 and

5≤N ≤ 13 and for (b) L/
√
3a=10 and 5≤N ≤ 10.

Open, shaded, and hatched portions denote results
for ∆NAB = 0, 1, and ≥ 2, respectively. The his-
togram has a width 5.0×10−2 in units of e2/πh̄ and
is normalized by the total number of vacancies hav-
ing specified ∆NAB. The inset shows an example of
a vacancy which causes a large deviation from the
quantized conductance.

When the circumference of CN’s is not large e-
nough compared with the size of a vacancy, the conduc-
tance quantization is destroyed, as shown in Fig. 5(b) for
L/

√
3a=10. In this case, the distribution function has a

broad peak around G=1.6×e2/πh̄ when ∆NAB =0 and
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has a sharp peak at G = e2/πh̄ accompanied by a long
tail for ∆NAB =1. When ∆NAB ≥ 2, however, the con-
ductance is always given by G=0 and a perfect reflection
occurs.

Recently, effects of strong and short-range scatterers
on the conductance were studied using an effective-mass
approximation developed earlier.12) The resulting con-
ductance was shown to be quantized into zero, one, and
two times of the conductance quantum, in agreement
with the general rule obtained in this paper. This will
be reported elsewhere.30)

In this letter, we have studied the effects of a lattice
vacancy on the quantum transport in carbon nanotubes.
The conductance has been calculated for approximately
1.6× 105 CN’s with a different lattice vacancy using
a multi-channel Landauer’s formula. The results have
demonstrated clearly that for vacancies much smaller
than the circumference, the conductance vanishes for
∆NAB ≥2 and is quantized into one and two times e2/πh̄
for ∆NAB = 1 and 0, respectively, where ∆NAB is the
difference in the number of removed A and B sublattice
sites.
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