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The e�ective Hamiltonian for two crossed nanotubes is derived in a k�p scheme and the conductance
between them is calculated in the Born approximation. The conductance is found to depend strongly on
the crossing angle with large maxima at commensurate stacking of lattices of two nanotubes. In a magnetic
�eld perpendicular to both nanotubes, these two maxima exhibit a �eld dependence completely di�erent to
each other.

x1. Introduction
Carbon nanotubes (CNs) are novel quantum wires

consisting of rolled graphite sheets.1) Single-wall CNs
can be synthesized in structures � 1 nm in diameter
and microns long.2;3) These molecules possess unique
electronic properties due to their small diameter and
variable lattice orientation. The purpose of this paper
is to study electric transport through crossed single-wall
CNs.

Recently, experimental studies of crossed CNs with
electrical leads attached to each end of both nanotubes
were reported.4;5) In junctions of metallic CNs, surpris-
ingly high conductances of 0:1 � 0:2e2=h have been re-
ported. Junctions of a metallic CN and a semiconducting
CN behave as Schottky diodes.4) The tunnel conductance
of about 0:03e2=h shows power-law behavior as a func-
tion of bias voltage and temperature,5) which has been
suggested to be described by a Tomonaga-Luttinger liq-
uid model for tunneling.6;7)

Transport properties of coupled CNs are interest-
ing and theoretical studies have been reported. A defor-
mation of crossed carbon nanotubes, which may a�ect
the tunneling conductance between CNs, has been calcu-
lated by the use of molecular-dynamics simulations.4;8)

By means of a pseudopotential local-density-functional
method a pseudogap has been predicted to appear for
an orientationally ordered crystal of CNs due to inter-
tube transfer.9;10) An orientation dependence has also
been found by taking into account the tunneling between
propagating Bloch states on neighboring tubes.11) The
pseudogap has also been found in a tight-binding calcu-
lation on a double-wall nanotube.12)

Many theoretical studies have clari�ed the electric
transport properties of isolated single-wall CNs as has
been reviewed in ref. 13. E�ects of impurity scattering
were studied in detail and the possibility of complete
absence of back scattering was predicted except for scat-
terers having a potential range smaller than the lattice
constant and proven rigorously.14) This intriguing fact
could be related to Berry's phase acquired by a rota-
tion in the wave-vector space for a system described by

a k�p Hamiltonian which is same as Weyl's equation for
a neutrino.15) The conductance was also calculated in
a tight-binding model as a function of the strength of
the potential.16;17) E�ects of scattering by a short-range
and huge defect potential were studied in the presence
and absence of a magnetic �eld.18�23) The conductance
is shown to be quantized into zero, one, and two times of
the conductance quantum e2=��h depending on the type
of the vacancy. The conductance of a connection of dif-
ferent CNs with topological defects has been calculated
in the presence and absence of the magnetic �eld and
universal power-law dependence was found.24�27) E�ects
of long-range Coulomb interactions were studied and ex-
plicit predictions were made on the temperature depen-
dence of the conductivity and the tunnel conductance
between CN and a metallic contact.6;7;28�30)

In this paper, we shall study the conductance be-
tween crossed metallic CNs with arbitrary chirality. In
x2 an e�ective-mass Hamiltonian is derived in the pres-
ence of interlayer transfer integrals between two graphite
sheets. In x3, transmission probabilities are calculated
explicitly for metallic CNs both in the presence and in
the absence of a magnetic �eld in the Born approxima-
tion. The numerical results for simple models are shown
in x4 and for a realistic model in x5. The conclusions are
given in x6.

x2. E�ective-Mass Equation

The structure of a two-dimensional (2D) graphite
is shown in Fig. 1 together with the �rst Brillouin zone
and coordinate systems to be used in the following. In
2D graphite, two bands having approximately a linear
dispersion cross the Fermi level (chosen at "=0) at K and
K' points of the �rst Brillouin zone. The wave vectors of
the K and K' points are given byK=(2�=a)(1=3; 1=

p
3)

and K0 = (2�=a)(2=3; 0). For states in the vicinity of
" = 0, the amplitude of the wave function at RA

i of
site A and RB

i of site B, where the subscript i = 1 or
2 numbering the graphite layer has been introduced, is
written as

 Ai(R
A
i ) = exp(iK �RA

i )F
K
Ai(R

A
i )+e

i�i exp(iK0 �RA
i )F

K0

Ai (R
A
i );

 Bi(R
B
i ) =�!ei�i exp(iK �RB

i )F
K
Bi(R

B
i )+exp(iK

0 �RB
i )F

K0

Bi (R
B
i );

(2:1)

with ! = exp(2�i=3), where �i is the chiral angle between a chiral vector Li and the x0i direction �xed on the

Submitted to Journal of Physical Society of Japan



Page 2 T. Nakanishi and T. Ando

graphite plane and FK
Ai, F

K
Bi, F

K0

Ai , and FK0

Bi are envelope functions assumed to be slowly-varying on the scale of
the lattice constant a. We have RA

i = niaa+n
i
bb+~� and RB

i = niaa+n
i
bb, where a = a(1; 0), b = a(�1=2;p3=2),

~�=~�3=a=2(1;�1
p
3), and nia and nib are integers. We de�ne ~�1 and ~�2 as shown in Fig. 1 (a), where ~�1=a(0; 1=

p
3)

and ~�2=a(�1=2;�1=2
p
3). Further, the xi axis is parallel to the chiral vector Li and yi-axis is parallel to the axis of

CNi, where CN2 is lying on top of the CN1 as shown in Fig. 1 (c).
In the nearest-neighbor tight-binding approximation, the equation of motion for the wave function on site A on

the �rst graphite sheet is given by

" A1(R
A
1 ) =�0

3X
l=1

 B1(R
A
1 �~�l)

�
X
RA
2

t(RA
1 ;R

A
2 ) A2(R

A
2 )�

X
RB
2

t(RA
1 ;R

B
2 ) B2(R

B
2 );

(2:2)

where 0 is a transfer integral between nearest-neighbor sites on the sheet, and t(RA
1 ;R

A
2 ) and t(RA

1 ;R
B
2 ) are

interlayer transfer integrals. When we substitute eq. (2.1) into the above equation, we get

"
�
eiK�RA

1 FK
A1(R

A
1 )+e

i�1eiK
0�RA

1 FK0

A1 (R
A
1 )
�

=eiK�RA
1 ei�1(k̂0x�ik̂0y)FK

B1(R
A
1 )+e

iK0�RA
1 (k̂0x+ik̂

0
y)F

K0

B1 (R
A
1 )

�
X
R
A

2

t(RA
1 ;R

A
2 )[exp(iK �RA

2 )F
K
A2(R

A
2 )+e

i�2 exp(iK0 �RA
2 )F

K0

A2 (R
A
2 )]

�
X
R
B

2

t(RA
1 ;R

B
2 )[�!ei�2 exp(iK �RB

2 )F
K
B2(R

B
2 )+exp(iK

0 �RB
2 )F

K0

B2 (R
B
2 )];

(2:3)

with =(
p
3=2)a0 and k̂0=�i~r0, where FK

B1(R
A
1 �~�l) of the �rst term on the right-hand side has been expanded

and the �rst order term has been retained.
In order to derive a Schr�odinger equation for the envelopes at the K point, we �rst rewrite the above as

"
�
FK
A1(R

A
1 )+e

i�1ei(K
0�K)�RA

1 FK0

A1 (R
A
1 )
�

=ei�1(k̂0x�ik̂0y)FK
B1(R

A
1 )+e

i(K0�K)�RA
1 (k̂0x+ik̂

0
y)F

K0

B1 (R
A
1 )

�
X
RA
2

t(RA
1 ;R

A
2 )[e

iK�RA
2
�iK�RA

1 FK
A2(R

A
2 )+e

i�2eiK
0�RA

2
�iK�RA

1 FK0

A2 (R
A
2 )]

�
X
RB

2

t(RA
1 ;R

B
2 )[�!ei�2eiK�RB

2
�iK�RA

1 FK
B2(R

B
2 )+e

iK0�RB
2
�iK�RA

1 FK0

B2 (R
B
2 )]:

(2:4)

We introduce a smoothing function g(R) normalized in such a way thatX
RA

g(RA) =
X
RB

g(RB) = 1: (2:5)

We assume that g(R) is real, has an appreciable amplitude in the region where jRj is smaller than a few times of
the lattice constant, and decays rapidly with increasing jRj. This means that spatial variation of envelope functions
in this region can be safely neglected. Multiplying both sides of eq. (2.4) by g(r1�RA

1 ) and summing over RA
1 , we

arrive at

"FK
A1(r1) =e

i�1(k̂0x�ik̂0y)FK
B1(r1)

� S�1

Z
dr2[t

KK
AA (r1; r2)F

K
A2(R2)+e

i�2tKK0

AA (r1; r2)F
K0

A2 (r2)

� !ei�2tKK
AB (r1; r2)F

K
B2(r2)+t

KK0

AB (r1; r2)F
K0

B2 (r2)];

(2:6)

with

tK1K2

S1S2
(r1; r2) =

X
R
S1

1

X
R
S2

2

g(r1�RS1
1 )t(RS1

1 ;RS2
2 )g(r2�RS2

2 )e�iK1�R
S1

1
+iK2�R

S2

2 ; (2:7)

where S1= fA;Bg, S2= fA;Bg, K1 = fK;K0g, K2= fK;K0g, S =p3a2=2 is the area of a unit cell, and use has
been made of the relations such as

FK
A1(r1) =

X
R
A

1

g(r1�RA
1 )F

K
A1(R

A
1 );

FK
B2(R

B
2 ) = S�1

Z
dr2g(r2�RB

2 )F
K
B2(r2);

(2:8)



Conductance of Crossed Carbon Nanotubes Page 3

which are valid for slowly-varying wave functions.
Similarly, the Schr�odinger equation for the envelopes at the K' point is obtained as

"FK0

A1 (r1)=e
�i�1(k̂0x+ik̂

0
y)F

K0

B1 (r1)

� S�1

Z
dr2[e

�i�1tK
0K

AA (r1; r2)F
K
A2(r2)+e

i(�2��1)tK
0K0

AA (r1; r2)F
K0

A2 (r2)

� !ei(�2��1)tK
0K

AB (r1; r2)F
K
B2(r2)+e

�i�1 tK
0K0

AB (r1; r2)F
K0

B2 (r2)]:

(2:9)

Similar equations can be derived starting with a tight-binding equation of motion for a site B on CN1 and sites A
and B on CN2. The results are summarized as

H1F1(r1) + S�1

Z
dr2H12(r1; r2)F2(r2) ="F1(r1);

H2F2(r2) + S�1

Z
dr1H21(r2; r1)F1(r1) ="F2(r2);

(2:10)

with

Hi =

0
BB@

0 (k̂xi�ik̂yi) 0 0

(k̂xi+ik̂yi) 0 0 0

0 0 0 (k̂xi+ik̂yi)

0 0 (k̂xi�ik̂yi) 0

1
CCA ; (2:11)

H12(r1; r2) = H21(r2; r1)
+

=

0
BB@

�tKK
AA !ei�2 tKK

AB �ei�2tKK0

AA �tKK0

AB

!�1e�i�1 tKK
BA �ei(�2��1)tKK

BB !�1ei(�2��1)tKK0

BA !�1e�i�1 tKK0

BB

�e�i�1tK
0K

AA !ei(�2��1)tK
0K

AB �ei(�2��1)tK0K0

AA �e�i�1tK
0K0

AB

�tK0K
BA !ei�2tK

0K
BB �ei�2 tK0K0

BA �tK0K0

BB

1
CCA ;

(2:12)

and

Fi(ri) =

0
BB@
FK
Ai(ri)

FK
Bi(ri)

FK0

Ai (ri)

FK0

Bi (ri)

1
CCA : (2:13)

The e�ective couplings tAB's in H12(r1; r2) are given by

eq. (2.7). In the above, the use has been made of the

relations:

k̂xi�ik̂yi = e�i�i(k̂x0

i
�ik̂y0

i
): (2:14)

In a magnetic �eld, we have to replace k̂ by �i~r+eA=�hc
with vector potential A.31;32)

When the contact area is su�ciently smaller than

the surface of the CNs, we can safely replace the e�ective
couplings by delta functions, because they have a range

determined by g(R) which is much shorter than the

electron wavelength, i.e.,

tK1K2

S1S2
(r1; r2) = �(r1�r01)�(r2�r02)tK1K2

S1S2
; (2:15)

where r01 and r02 are the contact position on each layer

and

tK1K2

S1S2
= S2

X
R
S1

1

X
R
S2

2

t(RS1
1 ;RS2

2 )e�iK1�R
S1

1
+iK2�R

S2

2 :

(2:16)
By using the relations �K �RA =K0 �RA � 2�=3 and

�K �RB = K0 �RB, the following symmetry relations

hold:

tKK
AA = tK

0K0

AA

�
; tKK

BB = tK
0K0

BB

�
;

tKK
AB = tK

0K0

AB

�
!�1; tKK

BA = tK
0K0

BA

�
!;

tKK0

AA = tK
0K

AA

�
; tKK0

BB = tK
0K

BB

�
;

tKK0

AB = tK
0K

AB

�
!�1; tK

0K
BA = tKK0

BA

�
!:

(2:17)

When the interlayer transfer integrals vary slowly as a

function of a position in the range larger than the lattice

constant, the coupling becomes much smaller and can

be neglected because of the cancellation due to phase

factors.

x3. Conductance
When the interlayer coupling is absent, the energy

levels and wave functions are analytically obtained for

"� 0 by applying periodic boundary condition on each

graphite sheet.33) We consider two metallic nanotubes

with a same circumference L in the presence of a mag-

netic �eld H perpendicular to both axis directions as

shown in Fig. 1 (c). When a magnetic �eld has compo-

nents parallel to the axes, a band gap is induced by the

corresponding ux due to an Aharonov-Bohm e�ect.31)

The electronic states for the gauge

A=
�
0;
LH

2�
sin

2�x

L

�
; (3:1)
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are33)

FK
sk =

1p
2A

0
B@
�is(k=jkj)F�(x)

F+(x)
0
0

1
CA exp(iky); (3:2)

and

FK0

sk =
1p
2A

0
B@

0
0

+is(k=jkj)F+(x)
F�(x)

1
CA exp(iky); (3:3)

with

F�(x) =
1p

LI0(�)
exp

h
� 1

2
� cos

2�x

L

i
; (3:4)

where A is the length of the nanotube, s=+1 and�1 for
the conduction and valence band, respectively, � is the
parameter proportional to the magnetic �eld de�ned as

� = 2
� L

2�l

�2
; (3:5)

with l=
p
c�h=eH being the magnetic length, and I0(z)

is the modi�ed Bessel function of the �rst kind de�ned

as

I0(z) =

Z �

0

d�

�
exp(z cos �): (3:6)

The corresponding eigenenergies are given by "s(k) =

sjkjI0(�)�1, which gives the group velocity v = (=�h)

I0(�)�1 and density of states D(0)= I0(�)=� at "=0.
We should note that

I0(z) �
�
1 (z�1) ,
ez=

p
2�z (z�1) .

(3:7)

In high magnetic �elds (��1), F�(x) is localized around
x = �L=2, F+(x) is localized around x = 0, the group

velocity becomes exponentially small, and the density of

states grows exponentially.

Low-energy states in the nanotubes are character-

ized by various length scales such as wavelength 2�=k

in the axis direction, wavelength L in the circumfer-
ence direction, and magnetic length l in strong magnetic

�elds. Below we shall restrict ourselves to a coupling

with a range � much smaller than these length scales,
i.e., ��2�=k, ��L, and �� l. In this case, the e�ective

couplings are replaced by the delta potentials given by

eq. (2.15) with eq. (2.16) and transmission is possible be-
tween regions around r01=0 on CN1 and r02=(�L=2; 0)
on CN2.

Next, we calculate matrix elements V1K1�;2K2� for
electrons coming from the K2 point in CN2 with positive

(+) and negative (�) velocity and going to K1 point in

CN1 with positive (+) and negative (�) direction. Some

examples are given by

V1K�;2K+ =
1

2AL

1

S

h
� tKK

AA F+F��i!ei�2 tKK
AB F�

2

�i!�1e�i�1tKK
BA F+

2�ctKK
BB F+F�

i
;

V2K�;1K+ =
1

2AL

1

S

h
� tKK

AA

�
F+F� �i!�1e�i�2tKK

AB

�
F�

2

�i!ei�1 tKK
BA

�
F+

2�c�tKK
BB

�
F+F�

i
;

V1K0�;2K0+ =
1

2AL

1

S

h
� ctK

0K0

AA F+F��ie�i�1 tK
0K0

AB F+
2

�iei�2tK0K0

BA F�
2�tK0K0

BB F+F�
i
;

V2K0�;1K0+ =
1

2AL

1

S

h
� c�tK

0K0

AA

�
F+F��iei�1tK

0K0

AB

�
F+

2

�ie�i�2 tK0K0

BA

�
F�

2�tK0K0

BB

�
F+F�

i
;

(3:8)
with c=exp [i(�2��1)] and

F� =
1p
I0(�)

exp[��=2]; (3:9)

where use has been made of the symmetry of the e�ec-
tive couplings, eq. (2.17). Other elements are given in
Appendix A.

In the absence of a magnetic �eld (�= 0) we have
F� = 1 and in high magnetic �elds (� � 1) we have
F+� (2��)1=4 and F�� e��(2��)1=4. In high magnetic
�elds, therefore, the terms including F+F� / e��

p
2��

or F�
2/e�2�

p
2�� decrease exponentially and the term

with F+
2 / p

2�� remains. As shown in Appendix A,

the term with F+
2 is one containing tKK0

BB , tK
0K

AA , tKK0

BB

�
,

and tK
0K

AA

�
, in V1K�;2K0�, V1K0�;2K�, V2K0�;1K�, and

V2K�;1K0�, respectively.
Conductances Gij are de�ned as the sum of trans-

mission probabilities between the jth and ith terminals
as shown in Fig. 1 (c). In the Born approximation, these
conductances are explicitly written for ��0 as16)

G21 = G34 =
e2

��h

X
K1;K2

�� A
�hv
V2K2�;1K1+

��2;

G12 = G43 =
e2

��h

X
K1;K2

�� A
�hv
V1K1�;2K2+

��2;

G41 = G32 =
e2

��h

X
K1;K2

�� A
�hv
V2K2+;1K1+

��2;

G23 = G14 =
e2

��h

X
K1;K2

�� A
�hv
V2K2�;1K1�

��2:

(3:10)

In the absence of a magnetic �eld we have G21=G12=
G43 = G34 and G41 = G32 = G23 = G14, because of the
time reversal symmetry. With the increase of a magnetic
�eld, these four pairs of conductances are di�erent in
general.

x4. Simple Model

In order to understand qualitative features of e�ec-
tive couplings between two CNs, we shall consider CNs
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with su�ciently large diameter and two commensurate
stackings shown in Fig. 2. In Fig. 2 (a), a B site of CN2
is just above a B site of CN1 but A sites are not, just like
the stacking in bulk graphite (Stack I). For this stack-
ing, a coordinate transformation from (x02; y

0
2) to (x

0
1; y

0
1)

corresponds to an inversion around the x01 axis. As a
result K and K' points in the (x02; y

0
2) coordinate sys-

tem are transformed to K and K' point with wave vector
�K=(2�=a)(1=3;�1=p3) and �K0=K 0=(2�=a)(2=3; 0),
respectively, in the (x01; y

0
1) coordinate system, as shown

in Fig. 1 (b). In Fig. 2 (b), six-member rings are
perfectly stacked on top of each other (Stack II). The
coordinate transformation is an inverse around the y01
axis. Therefore, K points in the (x02; y

0
2) coordinate sys-

tem are transformed to K' points in the (x01; y
0
1) sys-

tem and vice versa. The transformed wave vectors are
�K=(2�=a)(�2=3; 0) and �K 0=(2�=a)(�1=3; 1=p3).

We consider an e�ective transfer integral having a
circular symmetry t(R1;R2)= t(jR1� �R2j) independent
of A and B atoms, where �R2 denotes the point R2

expressed in the (x01; y
0
1) coordinate system. De�ne

tS1S2 =
X
R
S1

1

t(jRS1
1 � �RS2

2 j)e�iK1(R
S1

1
� �R

S2

2
): (4:1)

This can be regarded as an e�ective coupling of a single
site S2=fA;Bg of CN2 with all S1=fA;Bg sites of CN1
and is independent of K1= fK;K 0g and RS2

2 . In terms
of tS1S2 , we have

tK1K2

S1S2
= S2

X
R
S2

2

tS1S2e
�iK1� �R

S2

2
+iK2�R

S2

2 : (4:2)

For the stack I, tBB remains nonzero and tAA = tAB =
tBA=0. For the stack II, on the other hand, tAA= tBB
remains nonzero and tAB= tBA=0.

Figure 3 shows the calculated results of tBB for both
stackings as a function of the range for a Gaussian form
t(r) = t0 exp(�r2=�02). When the range is su�ciently
small (�0=a�1), it stays close to t00 because the transfer
integral does not vanish between atoms on top of each
other. It starts to decrease due to cancellation of trans-
fers among di�erent atoms when �0=a�0:5 and vanishes
for �0=a�1.

The above arguments are valid in general for the
transfer integrals with a symmetry under 120� rotation.
Further, the fact that the e�ective coupling becomes
reduced considerably due to interferences of transfers
between di�erent atoms remains valid for more general
cases of stackings of two CNs.

Equation (4.2) or eq. ? more generally shows that
e�ective couplings for neighboring atoms can exhibit a
complicated interference behavior when they are summed
up. In order to see this behavior explicitly, we consider
a simple model in which the transfer integral is t0 only
for atoms just on top of each other and lying in a disk
with a given radius centered at a carbon B site in CN2.
In this model, the coupling is given by eq. (4.2) with
tBB = t0 and tAA = tAB = tBA = 0 for the stack I and

with tAA= tBB = t0 and tAB = tBA=0 for the stack II.
Further, we can rewrite eq. (4.2) as

tK1K2

S1S2
= S2

X
R
S2

2

tS1S2e
�i(K1� �K2)� �R

S2

2
�i �K2�O2 ; (4:3)

where O2 is the origin of the (x02; y
0
2) coordinate system

expressed in the (x01; y
0
1) system.

For the stack I, we have ei
�K2� �R2 = eiK2� �R2 . This

shows that the phase factor disappears for the e�ec-
tive coupling between same points and therefore tKK

BB =

tK
0K0

BB = NBt0S2 where NB is the total number of B sites
contained in the disk. For the coupling between di�erent
points the phase factor is di�erent for atoms contained
in the disk, which lead to a cancellation (not complete)
and a small value for jtKK0

BB j= jtK0K
BB j. For example, we

have tKK0

BB = tK
0K

BB

�
= t0S

2 for (i) of Fig. 2 (a) and �2t0S2

for (ii), which does not increase in proportion to NB but
oscillates around zero.

For the stack II, on the other hand, a K point
is converted into a K' point and a K' point into a K
point when the coordinate is changed from (x02; y

0
2) into

(x01; y
0
1). Therefore, the phase factor disappears (or has

a common value) for the e�ective coupling between K
and K' points but does not for coupling between same K
points or K' points. We have explicitly tKK0

BB = tK
0K

BB =

NBt0S2 and tK
0K

AA = tKK0

AA

�
= NAt0S2! with NA being

the number of connecting pairs of A sites. Because of
the phase factors, tKK

AA = tK
0K0

AA = 0 and jtKK
BB j = jtK

0K0

BB j
remain small but nonzero. Figure 4 shows amplitudes
of the e�ective couplings for the stack I and II as a
function of the number NB of connecting pairs of B sites.
The diameter of the contact region is roughly given by
2
p
SNB=� and is shown on the upper axis.
In the Born approximation, the conductances for the

stack I at �=0 are given by

G12 = G21 = G41 = G32 = G43 = G34 = G23 = G14

=
e2

��h

� a
L

�2� t0
0

�2
I0(�)

2

� 1

4

h
2(NBF+F�)

2 +
� jtKK0

BB j
S2t0

�2
(F+

4 + F�
4)
i
;

(4:4)
which are proportional to the squares of t0=0 and a=L.
The �rst term in the bracket represents the contributions
of jtKK

BB j= jtK
0K0

BB j=NBt0S2 and the second term smaller

jtKK0

BB j= jtK0K
BB j. This result is independent of chirality,

i.e., the angle � between CNs, and the phase of the
e�ective couplings, corresponding to the fact that the
e�ective coupling does not vanish only between B sites
in eq. (3.8).

In the absence of a magnetic �eld, where F+=F�=
1, the conductance is roughly proportional to N2

B when
NB � 1. With the increase of the magnetic �eld, how-
ever, the second term, giving only a small contribution in
the absence of a magnetic �eld, increases and becomes
dominant. Figure 5 shows calculated conductances for
several values of NB as a function of a magnetic �eld.
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The corresponding tKK
BB = tK

0K0

BB and tKK0

BB = tK
0K

BB

�
are

shown in Fig. 4. Note that the result in the absence of a
magnetic �eld is valid even in the case that the size of the
coupling region is comparable to the circumference, be-
cause the amplitude of the wave function is independent
of the position.

For the stack II the conductances are obtained by
using eq. (3.8) as

G12=G43=G21=G34

=
e2

��h

� a
L

�2� t0
0

�2
I0(�)

2 1

4

h
(NA

2+NB
2)(F+

4 + F�
4)

�4NANB cos �(F+F�)
2+2

� jtKK
BB jF+F�
S2t0

�2i
;

(4:5)
and

G32=G41=G23=G14

=
e2

��h

� a
L

�2� t0
0

�2
I0(�)

2 1

4

h
(NA

2+NB
2)(F+

4 + F�
4)

+4NANB cos �(F+F�)
2+2

� jtKK
BB jF+F�
S2t0

�2i
;

(4:6)
with �=�1+�2. The conductances depend on the angle
� but not on individual parameters �1 and �2. The small
e�ective intra-valley coupling jtKK

BB j gives a contribution
to the conductance independent of �. The di�erence
between G12 = G21 and G32 = G41 lies in a cross term
proportional toNANB cos �. A dominant contribution to
the conductances comes from the �rst and second terms
both in the absence and presence of a magnetic �eld
when NB � 1 and NA� 1. The conductance increases
exponentially with the �eld strength.

x5. Realistic Model

As a more realistic model we consider a transfer
integral given by

t(R1;R2) = exp
�
� jdj
�

�h
t�
�p(R1)�d

jdj
��p(R2)�d

jdj
�

+ t�
��
p(R1)�e

��
p(R2)�e

�
+
�
p(R1)�f

��
p(R2)�f

�	i
;

(5:1)
where d= ~R2�~R1 is the distance with three-dimensional
coordinates ~R1 of an atom on CN1 and ~R2 of an atom
on CN2, p(R1) and �p(R2) are unit vectors normal to
CN at R1 and R2, respectively, and d=jdj, e, and f

constitute a set of three orthogonal unit vectors.
A range of exponentials �=a=0:325, and parameters

t�=9:340 and t�=�5:910 are determined by requiring
that eq. (5.1) reproduces the values V �

pp=4:37 eV for the
�rst term and V �

pp��0=�2:77 eV for the second term

at the distance a=
p
3=1:42 �A between nearest-neighbor

atoms on a graphite sheet, and 0.39 eV for the �rst term
at the interlayer distance of graphite D0=3:35 �A.34�37)

The former two values are obtained by �rst-principles
local-density functional calculations on polyacetylene.38)

A Slater-Koster parameterization34) and these values

have been used in band structure calculations on thin
CNs.37)

In the following D0 is assumed as the nearest-
neighbor distance between crossed two CNs. In this case
the transfer integral decays exponentially with the range
of about �0�0:8a as a function of the distance on virtual
two dimensional co-ordinate system. Calculated e�ective
transfer integrals de�ned in eq. (4.1) for the stack I and
II are � 0:080 for these parameters consistent with the
result in a Gaussian model given in Fig. 3.

In explicit numerical calculations we consider arm-
chair nanotubes CN1 and CN2, �x a B site of each CN
on top of each other, and rotate CNs around the B site.
Figure 6 shows the calculated amplitudes of the e�ective
couplings as a function of the angle � between armchair
CNs with L=

p
3a=100. Amplitudes jtKK0

BB j= jtK0K
BB j and

jtKK0

AA j = jtK0K
AA j take a large peak � 4:0�S20 around

� = �=3 and jtKK
BB j = jtK0K0

BB j around � = 2�=3 indicated
by arrows. The stackings approximately correspond to
the simple models of stack II and I, respectively, because
the contact plains of two CNs are almost at due to the
large circumference.

By studying the dependence of

I(RS2
2 ) =

X
R
S1

1

t(RS1
1 ;RS2

2 )eiK2�R
S2

2
�iK1�R

S1

1 (5:2)

on jRS2
2 j, we can estimate the size of the contact region.

Near � = �=3 and 2�=3, jI(0)j � 0:080 and jI(R)j de-
cays almost exponentially with the range � 3:9a, which
is a radius of the contact region. The half width of these
peaks is about 0:12��=3, which corresponds to the con-
dition that the ideal stacking is lost near this boundary
of the contact region by the rotation.

The amplitudes of the e�ective couplings jtKK0

AB j =
jtK0K
AB j and jtKK0

BA j = jtK0K
BA j have a dip at � = �=3, a

small peak at both sides of the dip, and decreases with
the increase of the distance from �=3. The amplitudes
jtKK
AA j = jtK0K0

AA j, jtKK
AB j = jtK0K0

AB j, and jtKK
BA j = jtK0K0

BA j
exhibit a similar behavior around � = 2�=3. These
terms remain much smaller than those of the dominant
amplitudes jtKK0

BB j = jtK0K
BB j and jtKK0

AA j = jtK0K
AA j near

�=�=3 and jtKK
BB j= jtK

0K0

BB j near �=2�=3.
The presence of the dips corresponds to the com-

plete absence of these terms for the stack I and II con-
sidered in the simple model. By rotation from the stack
I and II, the transfer integrals lose the symmetry under
the 120� rotation and the cancellation discussed for the
simple model becomes incomplete. As a result the ef-
fective couplings increase by the rotation from �=3 and
2�=3. Because of complicated interferences of various
terms the e�ective amplitude exhibits a behavior di�er-
ent between the smaller and larger angle sides. The de-
structive superposition is almost perfect at � = 1:12��=3
and 1:88��=3. Such a perfect cancellation seems to be
present only for thick CNs L=

p
3a>� 100.

Figures 7 shows calculated conductances for several
circumferences. For thick CNs (L=

p
3a = 100 and 50, in
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particular), because dominant components of the e�ec-
tive couplings are much larger than small components,
the conductances are mainly determined by the domi-
nant elements and take a peak at �=�=3 and �=2�=3.
In fact, the conductances G41=G32 and G12=G21 have
a peak with almost same height at �=2�=3 correspond-
ing to the stack I in the simple model (see eq. (4.4)). At
� = �=3, on the other hand, the peak of G41 = G32 is
higher than that of G12 =G21 due to the presence of a
term proportional to cos � in eqs. (4.5) and (4.6). These
peak heights are almost independent of the circumfer-
ence, because the size of the e�ective contact region is
proportional to the circumference and is cancelled by the
factor (a=L)2 in eqs. (4.4), (4.5), and (4.6).

With the decrease of the circumference L, the con-
tact region becomes smaller and as a result the half width
of the dominant couplings increases, leading to the in-
crease in the width of the conductance peaks around
� = �=3 and 2�=3. In fact, the estimated radius of
the e�ective contact area is 3:9a, 2:6a, 1:7a, and 1:2a
for L=

p
3a = 100, 50, 20, and 10, respectively, which

gives roughly the half width of peak 0:12�=3, 0:18�=3,
0:27�=3, and 0:38�=3, respectively. Further, the peak
position for the dominant terms is shifted according to
a change in the optimum condition of the e�ective cou-
plings due to curvature e�ects and small terms having
a dip at �= �=3 and 2�=3 start to have an appreciable
contribution to the conductance. As a result the conduc-
tance has a peak at a position away from � = �=3 and
2�=3 and also a weaker � dependence for thin CNs.

Figure 8 shows the calculated conductances in the
presence of a magnetic �eld for L=

p
3a=100. The con-

ductance of the peak around � = �=3 corresponding to
the stack II in the simple model increases exponentially
with the magnetic �eld as shown in Fig. 8 (a). This is
due to the fact that the dominant terms such as tKK0

BB

and tK
0K

AA shown in Fig. 6 mainly contribute to the con-
ductance in both presence and absence of a �eld. On
the other hand, the conductance at � = 2�=3 (stack I)
changes its feature from a single-peak to a double-peak
behavior with the increase of the �eld as shown in Fig. 8
(b). This is because the terms tKK

BB and tK
0K0

BB dominant
in the absence of a �eld are replaced by terms like tKK

BA

and tK
0K0

AB containing F+
2 in eq. (3.8) in high magnetic

�elds.
Although not shown explicitly here, the peak con-

ductance at � = �=3 reaches � 0:82�e2=��h in the �eld
(l=2�L)2 = 2. In such a case, the lowest Born approxi-
mation starts to break down and multiple tunneling pro-
cesses start to play important roles. Such higher order
e�ects are left for a future study.

x6. Summary

We have derived an e�ective Hamiltonian describing
coupling between two crossed carbon nanotubes in a
k�p scheme and gave expressions of the conductances
between them in a Born approximation. The results are
summarized as follows.

The coupling is given by a sum of transfer integrals

between atoms in two nanotubes with phase factors os-
cillating in a

p
3�p3 Kekule pattern corresponding to

wave vectors of K and K' points. The e�ective cou-
pling between an atom of one nanotube with all atoms
of the other decreases rapidly due to cancellation when
being summed up with the increase in the range of the
transfer integral. It becomes vanishingly small when the
range exceeds the lattice constant. In a realistic model,
the e�ective range is comparable to the lattice constant
and therefore the e�ective coupling is reduced consider-
ably due to cancellation but remains still appreciable.
For armchair nanotubes, dominant terms have a large
peak at ���=3 (stack II) and 2�=3 (stack I) where the
hexagons on both CNs stack in a commensurate way.

For thick nanotubes (L=
p
3a>� 50), the conductance

between two armchair nanotubes exhibits a sharp peak
at an angle corresponding to the stack I and II and re-
mains vanishingly small in other cases. The conductance
at the peaks is essentially independent of the nanotube
diameter. With the decrease in the diameter, two peaks
are broadened and their positions are slightly shifted due
to curvature e�ects. For thin nanotubes (L=

p
3a� 10),

the broadened peaks overlap each other and small terms
giving only negligible e�ects in a thick nanotube con-
tribute to the conductance. As a result, the conductance
becomes nonzero for all angles but exhibits a large oscil-
lation as a function of the angle.

When a magnetic �eld is applied perpendicular to
the axis of both nanotubes, the conductance at the peak
around stack I and II exhibits a behavior completely
di�erent from each other. The peak at � = �=3 (stack
II) increases with the magnetic �eld. On the other hand,
the peak at � = 2�=3 (stack I) is replaced by a double-
peak behavior with a dip at � = 2�=3. These can be
understood by the localization of the wave function at
the top and bottom sides of nanotubes in magnetic �elds.
Because the density of states at Fermi energy increases
exponentially, the lowest Born approximation becomes
inappropriate and multiple tunneling processes become
important in strong magnetic �elds. This problem is left
for a future study.
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Appendix A: Matrix Elements

Matrix elements describing scattering between dif-
ferent nanotubes other than those shown in x3 are given
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below:

V1K�;2K0+ =
1

2AL

1

S

h
� ei�2tKK0

AA F�
2�itKK0

AB F+F�

+i!�1ctKK0

BA F+F�+!
�1e�i�1tKK0

BB F+
2
i
;

V1K0�;2K+ =
1

2AL

1

S

h
� e�i�1 tK

0K
AA F+

2�i!ctK0K
AB F+F�

+itK
0K

BA F+F�+!e
i�2tK

0K
BB F�

2
i
;

V2K0�;1K+ =
1

2AL

1

S

h
� e�i�2 tKK0

AA

�
F�

2 +itKK0

AB

�
F+F�

�i!c�tKK0

BA

�
F+F�+!e

i�1 tKK0

BB

�
F+

2
i
;

V2K�;1K0+ =
1

2AL

1

S

h
� ei�1tK

0K
AA

�
F+

2+i!�1c�tK
0K

AB

�
F+F�

�itK0K
BA

�
F+F�+!

�1e�i�2 tK
0K

BB

�
F�

2
i
;

(A1)

V1K�;2K� =
1

2AL

1

S

h
� tKK

AA F+F��i!ei�2 tKK
AB F�

2

+i!�1e�i�1 tKK
BA F+

2�ctKK
BB F+F�

i
;

V2K�;1K� =
1

2AL

1

S

h
� tKK

AA

�
F+F�+i!

�1e�i�2 tKK
AB

�
F�

2

�i!ei�1tKK
BA

�
F+

2�c�tKK
BB

�
F+F�

i
;

V1K0�;2K0� =
1

2AL

1

S

h
� ctK

0K0

AA F+F��ie�i�1 tK
0K0

AB F+
2

+iei�2 tK
0K0

BA F�
2�tK0K0

BB F+F�

i
;

V2K0�;1K0� =
1

2AL

1

S

h
� c�tK

0K0

AA

�
F+F�+ie

i�1tK
0K0

AB

�
F+

2

�ie�i�2tK0K0

BA

�
F�

2�tK0K0

BB

�
F+F�

i
;

(A2)

and

V1K�;2K0� =
1

2AL

1

S

h
� ei�2 tKK0

AA F�
2�itKK0

AB F+F�

�i!�1ctKK0

BA F+F�+!
�1e�i�1 tKK0

BB F+
2
i
;

V1K0�;2K� =
1

2AL

1

S

h
� e�i�1tK

0K
AA F+

2�i!ctK0K
AB F+F�

�itK0K
BA F+F�+!e

i�2tK
0K

BB F�
2
i
;

V2K0�;1K� =
1

2AL

1

S

h
� e�i�2tKK0

AA

�
F�

2�itKK0

AB

�
F+F�

�i!c�tKK0

BA

�
F+F�+!e

i�1tKK0

BB

�
F+

2
i
;

V2K�;1K0� =
1

2AL

1

S

h
� ei�1 tK

0K
AA

�
F+

2�i!�1c�tK0K
AB

�
F+F�

�itK0K
BA

�
F+F�+!

�1e�i�2tK
0K

BB

�
F�

2
i
:

(A3)

In the absence of a magnetic �eld, some of the above

matrix elements become equal to each other because

F�=1. Explicitly, we have

V1K+;2K+ = cV2K0�;1K0�

=
1

2AL

1

S

h
�tKK

AA +i!ei�2tKK
AB �i!�1e�i�1 tKK

BA �ctKK
BB

i
;

V1K0+;2K0+ = cV2K�1K�

=
1

2AL

1

S

h
�ctK0K0

AA +ie�i�1tK
0K0

AB �iei�2 tK0K0

BA �tK0K0

BB

i
;

V1K+;2K0+ = cV2K�1K0�

=
1

2AL

1

S

h
ei�2 tKK0

AA �itKK0

AB +i!�1ctKK0

BA +!�1e�i�1 tKK0

BB

i
;

V1K0+;2K+ = cV2K0�1K�

=
1

2AL

1

S

h
e�i�1tK

0K
AA �i!ctK0K

AB +itK
0K

BA +!ei�2tK
0K

BB

i
;

(A4)
and

V1K�;2K+ = cV2K0�;1K0+

=
1

2AL

1

S

h
tKK
AA �i!ei�2tKK

AB �i!�1e�i�1tKK
BA �ctKK

BB

i
;

V1K0�;2K0+ = cV2K�;1K+

=
1

2AL

1

S

h
ctK

0K0

AA �ie�i�1tK0K0

AB �iei�2 tK0K0

BA �tK0K0

BB

i
;

V1K�;2K0+ = cV2K�;1K0+

=
1

2AL

1

S

h
�ei�2tKK0

AA +itKK0

AB +i!�1ctKK0

BA +!�1e�i�1tKK0

BB

i
;

V1K0�;2K+ = cV2K0�;1K+

=
1

2AL

1

S

h
�e�i�1tK0K

AA +ic!tK
0K

AB +itK
0K

BA +!ei�2tK
0K

BB

i
:

(A5)
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Figure Captions

Fig. 1 (a) Lattice structure of a two-dimensional graph-

ite sheet. �i is the chiral angle for CN1 (i = 1) and
CN2 (i = 2). Two-dimensional co-ordinate systems
(x01; y

0
1) and (x02; y

0
2) are introduced on each graph-

ite sheet. The coordinates are chosen in such a way
that xi is along the circumference of a nanotube and
yi is along the axis for i = 1 and 2. (b) The �rst
Brillouin zone and K and K' points. Reciprocal lat-
tice vectors �a and �b are shown. (c) The coordinates
for crossed nanotubes. � is the angle between axes
of CNs. A magnetic �eld H is applied in perpendic-
ular to both CNs. Four terminals 1 and 3 of CN1,
and 2 and 4 of CN2 are indicated.

Fig. 2 Lattice structure of a two-dimensional graphite
sheet near the crossing of CNs for stack I (a) and
stack II (b). Lower and upper CNs are shown by
gray and black, respectively. A view from reverse is
shown for upper CN, because (x1; y1) and (x2; y2)
are chosen as shown in Fig. 1 (c). A and B sites are
shown by the open and closed circles, respectively.
For simple models with inter-layer transfer integral
t0, examples of the contact region are indicated by
the circles (i) and (ii).

Fig. 3 E�ective transfer integrals tBB for both stack-
ings as the function of the range �0. A Gaussian
model is used in parallel graphite sheets.

Fig. 4 Absolute values of e�ective couplings as a func-
tion of the number NB of B sites in the coupling

region. tKK
BB = tK

0K0

BB

�
for the stack I is equal to

tKK0

BB = tK
0K

BB

�
for the stack II, which are shown by

crosses. tKK0

BB = tK
0K

BB

�
for the stack II is also equal

to tKK
BB = tK

0K0

BB for the stack II, which are shown by
circles.

Fig. 5 Calculated conductance as a function of weak
magnetic �eld for stack I. The magnetic �eld is
perpendicular to both CNs as shown in Fig. 1 (c).

Fig. 6 Absolute values of e�ective couplings of the
realistic model for �1 = �2 = �=6 (armchair CNs)
and L = 100

p
3a as a function of angle � between

CNs.

Fig. 7 Calculated conductances G41 = G32 = G23 =
G14 (a) and G21 = G12 = G34 = G43 (b) between
armchair CNs for several circumferences as a func-
tion of the angle � in the absence of a magnetic �eld.

Fig. 8 Calculated conductance between armchair CNs
for L=100

p
3a as a function of the angle � for (a)

0:25�<�<0:5� and (b) 0:5�<�<0:75�. Magnetic
�eld is applied in perpendicular direction to the
CNs. The origins of the conductances for several
magnetic �elds are shifted by 0.0005 in (b). Dot-
dashed lines for G23=G14 almost overlap with solid
lines for G41=G32. Note that, the conductances in
(a) are one order of magnitude larger than in (b).
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