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The effective Hamiltonian for two crossed nanotubes is derived in a k-p scheme and the conductance
between them is calculated in the Born approximation. The conductance is found to depend strongly on
the crossing angle with large maxima at commensurate stacking of lattices of two nanotubes. In a magnetic
field perpendicular to both nanotubes, these two maxima exhibit a field dependence completely different to

each other.

§1. Introduction

Carbon nanotubes (CNs) are novel quantum wires
consisting of rolled graphite sheets.") Single-wall CNs
can be synthesized in structures ~ 1 nm in diameter
and microns long.?®) These molecules possess unique
electronic properties due to their small diameter and
variable lattice orientation. The purpose of this paper
is to study electric transport through crossed single-wall
CNs.

Recently, experimental studies of crossed CNs with
electrical leads attached to each end of both nanotubes
were reported.*® In junctions of metallic CNs, surpris-
ingly high conductances of 0.1 — 0.2¢?/h have been re-
ported. Junctions of a metallic CN and a semiconducting
CN behave as Schottky diodes.*) The tunnel conductance
of about 0.03¢? /h shows power-law behavior as a func-
tion of bias voltage and temperature,”’ which has been
suggested to be described by a Tomonaga-Luttinger lig-
uid model for tunneling.5"

Transport properties of coupled CNs are interest-
ing and theoretical studies have been reported. A defor-
mation of crossed carbon nanotubes, which may affect
the tunneling conductance between CNs, has been calcu-
lated by the use of molecular-dynamics simulations.*®
By means of a pseudopotential local-density-functional
method a pseudogap has been predicted to appear for
an orientationally ordered crystal of CNs due to inter-
tube transfer.®!?) An orientation dependence has also
been found by taking into account the tunneling between
propagating Bloch states on neighboring tubes.!") The
pseudogap has also been found in a tight-binding calcu-
lation on a double-wall nanotube.'?

Many theoretical studies have clarified the electric
transport properties of isolated single-wall CNs as has
been reviewed in ref. 13. Effects of impurity scattering
were studied in detail and the possibility of complete
absence of back scattering was predicted except for scat-
terers having a potential range smaller than the lattice
constant and proven rigorously.!*) This intriguing fact
could be related to Berry’s phase acquired by a rota-

tion in the wave-vector space for a system described by
!

a k-p Hamiltonian which is same as Weyl’s equation for
a neutrino.’” The conductance was also calculated in
a tight-binding model as a function of the strength of
the potential.'%17) Effects of scattering by a short-range
and huge defect potential were studied in the presence
and absence of a magnetic field.'®*~?* The conductance
is shown to be quantized into zero, one, and two times of
the conductance quantum e?/7h depending on the type
of the vacancy. The conductance of a connection of dif-
ferent CNs with topological defects has been calculated
in the presence and absence of the magnetic field and
universal power-law dependence was found.?* =27 Effects
of long-range Coulomb interactions were studied and ex-
plicit predictions were made on the temperature depen-
dence of the conductivity and the tunnel conductance
between CN and a metallic contact.5>728=30)

In this paper, we shall study the conductance be-
tween crossed metallic CNs with arbitrary chirality. In
§2 an effective-mass Hamiltonian is derived in the pres-
ence of interlayer transfer integrals between two graphite
sheets. In §3, transmission probabilities are calculated
explicitly for metallic CNs both in the presence and in
the absence of a magunetic field in the Born approxima-
tion. The numerical results for simple models are shown
in §4 and for a realistic model in §3. The conclusions are
given in §6.

§2. Effective-Mass Equation

The structure of a two-dimensional (2D) graphite
is shown in Fig. 1 together with the first Brillouin zone
and coordinate systems to be used in the following. In
2D graphite, two bands having approximately a linear
dispersion cross the Fermi level (chosen at £=0) at K and
K’ points of the first Brillouin zone. The wave vectors of
the K and K’ points are given by K =(27/a)(1/3,1/V/3)
and K’ = (2w/a)(2/3,0). For states in the vicinity of
¢ = 0, the amplitude of the wave function at R;' of
site A and RP of site B, where the subscript i = 1 or
2 numbering the graphite layer has been introduced, is
written as

Uai(R{) = exp(iK - R (R )+ exp(iK'- R FL (R]),

Upi(RP) = —wel™ exp(iK-RP)FK(RP)+exp(iK'-RP)FK (RP),

(2.1)

with w = exp(27i/3), where 5; is the chiral angle between a chiral vector L; and the z} direction fixed on the

Submitted to Journal of Physical Society of Japan



Page 2 T. Nakanishi and T. Ando

graphite plane and FI, FE. Fi‘;/, and Fé‘ are envelope functions assumed to be slowly-varying on the scale of
the lattice constant a. We have R{* = nla+njb+7 and RP = naa+nbb where a = «(1,0), b= a(—l/Z V3/2),
F=%=a/2(1,-1/3), and n}, and n} are mtegelb We define 71 and 75 as shown in Fig. 1 (a), where 73 =a(0, 1/\/>)
and 75 :a(—l/?,—l/Q\/g). Further, the x; axis is parallel to the chiral vector L; and y;-axis is parallel to the axis of
CNi, where CN2 is lying on top of the CN1 as shown in Fig. 1 (¢).

In the nearest-neighbor tight-binding approximation, the equation of motion for the wave function on site A on
the first graphite sheet is given by

sYa (R —%27/%1 A7)
(2.2)
—Z HRY, R )van(Ry)— > H(RY, RY Jums (RY),

R}

where vp is a transfer integral between nearest-neighbor sites on the sheet, and t(R;', R3') and t(Ri', RY) are
interlayer transfer integrals. When we substitute eq. (2.1) into the above equation, we get

(R (R +eme KR PR (RY)

= el (k =ik Fify (R e B (e, +iky) FA (RY)

- > HR{ B)[exp(iK - Ry PR (B3 )+ exp(iK'- Ry F s (Ry)] (2.3)
R}

— > HR{, RY)pwe™ exp(iK - RY)Fffy (RY ) +exp(iK'-RY) Fffy (RY)],
RY

with v =(v/3/2)ay and k' = —iV’, where FE (R*—7) of the first term on the right-hand side has been expanded
and the first order term has been retained.
In order to derive a Schrédinger equation for the envelopes at the K point, we first rewrite the above as

e [P (R )+em e KKORIPI (R
=yl (k= ik ) FE (R + KR (1 ik )P (R
- Zt(Rf‘,Ré)[eiK'Ré‘*iK'Ri‘F£;<R§>+oi"Zei"’"Ré‘*i""RlAFi*;<R5‘>] (2.4)

_Z R1 ,R2 )[_woun iK-RPAK- Rf‘FA (R2 )+e iK' -R7HK- R{‘FA'(RB)]
RB

We introduce a smoothing function g(R) normalized in such a way that

> g(RY) =) g(RP)=1. (

R4 RB

Do
(W18
N

We assume that g(R) is real, has an appreciable amplitude in the region where |R| is smaller than a few times of
the lattice constant, and decays rapidly with increasing |R|. This means that spatial variation of envelope functions
in this region can be safely neglected. Multiplying both sides of eq. (2.4) by g(r1 — R{') and summing over R{', we
arrive at

eF 4 () =ye™ (K, — ikl ) Ff} (r1)

-5 /d'r2[t1‘1 (71, 72) FAy(Ro )+ th 1 (r1,m0) A (r2) (2.6)
we K (ry ey ) FE, (ro) 45 5 (v m0) FE, (2],
with
— . 5 . S
ti?slz) lrla'rZ) — Z Z ,I,,l_RS\ Rfl \ RSz) (,r,z_1{52)6—|I(1'Rl1-{-|I('2'R227 (27)
Rbl :2

where S} ={A,B}, S ={A, B}, K, ={K,K'}, K, ={K,K'}, S=1/3ad%/2 is the area of a unit cell, and use has

been made of the relations such as

Fii(m) =) g(r—R"FY(R)),
R}

(2.8)
Fi(RE) =57 [ drag(ra=REIF(ra)
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which are valid for slowly-varying wave functions.
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Similarly, the Schrodinger equation for the envelopes at the K’ point is obtained as

eFK (r))=ve (I, —|—1k' VEK! (r,

-5 / Ary [ MR K (py 0o ) FE (ry) el KK (o) VPR (1)

— wellm=n )tﬁg{ (r1. TZ)FgZ (r2)+

(2.9)

o ot gt -, R
MR (r1, o) F By ()]

Similar equations can be derived starting with a tight-binding equation of motion for a site B on CN1 and sites A

and B on CN2. The results are summarized as

H1F1 (7’1)‘}‘571/dT2H12(’I”1,?"2)F2<‘T‘2) :5F1 (1"1)_/

(2.10)
HyFy(ry) 4+ 51 /dT1H21(?“277“1)F1(7’1) =cF5(rs),
with
0 7’(kl‘i_ik’yi) 0 0
k, +ik,. 0 0 0 ,
g, = | e tiky) PR (2.11)
0 0 Y(ka, —iky,) 0
H12(7’177’2) = H21(7’2,"°1)+
_tAKAK “‘J‘Cinztgﬁ mzthh _tﬁj_}{{’
_ w*lef“ﬁ t%f; _e.i(nz—m)tleg’ Wl l(m—mthh —leA—im t%]g (2.12)
_e_”hfo%AA we‘(”f_”l )EQBB —e (77? 171)’,/52/;\ _6—17717§11%PB ’
_tgAf\' welr/zthf\' _ell'/gtgAl\' _tf\' K
|
and hold:
Ko
Fay(ri) fKK _ KK’ KK _ 2J(’A"*
F;{;‘,(T‘) AA =tasa , BB =1lBp
Fi(r;) = K' (0. (2.13) KK K’ Ix -1 KK K Is'*
Fii (ri) tip =ta .ty =13 : (2.17)
FX (p, A7
5 (1) (K K K* K tA K* ’
The effective couplings t4p’s in Hyis(ry,79) are given by 1 LK'K KK'™*
o = . o Tac . tAU :tAU s tpa =tpa w.
eq. (2.7). In the above, the use has been made of the
relations:

ko, iky, = T (ki ik, (2.14)

In a magnetic field, we have to replace k by —iﬁ—l—cA/ﬁc
with vector potential A.31:32)

When the contact area is sufficiently smaller than
the surface of the CNs, we can safely replace the effective
couplings by delta functions, because they have a range
determined by ¢g(R) which is much shorter than the
electron wavelength, i.e.,

7‘1:115112 (P1,m2) = 8(r1 —7))8(ry— 1"2)7‘{“51;1,

(2.15)
where r{ and 7 are the contact position on each layer
and

IX| IXQ

e =8> > HR{'.R;)e”

S1 pS2
RI' R}

iK.-R14iK5-R?

(2.16)
K'-R* — 21/3 and

= K'-R"”, the following symmetry relations

By using the relations —K - R* =
—-K-RB =

When the interlayer transfer integrals vary slowly as a
function of a position in the range larger than the lattice
constant, the coupling becomes much smaller and can
be neglected because of the cancellation due to phase
factors.

§3. Conductance

When the interlayer coupling is absent, the energy
levels and wave functions are analytically obtained for
¢~ 0 by applying periodic boundary condition on each
graphite sheet.?®) We consider two metallic nanotubes
with a same circumference L in the presence of a mag-
netic field H perpendicular to both axis directions as
shown in Fig. 1 (¢). When a magnetic field has compo-
nents parallel to the axes, a band gap is induced by the
corresponding flux due to an Aharonov-Bohm effect.?!)
The electronic states for the gauge

,%Slﬂ 7

LH . 27r;r,)7 (3.1)

a=(0
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are33)
| (T
- F(x
FE = —_ A exp(iky), 3.2
sk \/ﬂ 0 p( «/) ( )
0
and
0
Fj,‘;/ = L . 0 exp(iky), (3.3
A | Hs(k/ k) Fy(2)
F_(z)
with
1 2nx
Fi(x)= ———exp | £ —acos —|, 3.4
2(0) = e [ g ] (B

where A is the length of the nanotube, s=41 and —1 for
the conduction and valence band, respectively, « is the
parameter proportional to the magnetic field defined as

a= z(%f (3.5)

with [ =4/ch/eH being the magnetic length, and Io(z)
is the modified Bessel function of the first kind defined
as
T de
I(z) = / < exp(z cos ). (3.6)
0o T

The (:01rr<e-5p0ndln0 eigenenergies are given by z4(k

)
(a)™!, which gives the group velocity v = (5 /
Ig(af)’l and density of states D(0)=Io(a)/my at e =
We should note that

(:<1),

(z>1). (3.7)

1)~ {4z

In high magnetic fields (o> 1), F_(z) is localized around
x==2L/2, F(z) is localized around z = 0, the group

velocity becomes exponentially small, and the density of

states grows exponentially.

Low-energy states in the nanotubes are character-
ized by various length scales such as wavelength 27 /k
in the axis direction, wavelength L in the circumfer-
ence direction, and maguetic length [ in strong magnetic
fields.
with a range 6 much smaller than these length scales,
ie., §2n/k, §<& L, and <. In this case, the effective
couplings are replaced by the delta potentials given by

Below we shall restrict ourselves to a coupling

eq. (2.15) with eq. (2. 16) and transmission is possible be-
tween regions around 7 =0 on CN1 and rd = (£L/2,0)
on CN2.

Next, we calculate matrix elements Vi x, 4 2x,+ for
electrons coming from the K5 point in CN2 with positive
(4) and negative (—) velocity and going to K7 point in
CN1 with positive (+) and negative (—) direction. Some
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examples are given by

1 1 L -
Vit okt = ﬁg[ th i P F Fivemti P 2
Ll E R p 2 KK g F,} :
i 1 ]- * .1 -9 ¢ x D
Vokt x4+ = mg[ thE P P —jw e mth TP 2

:l:lwelmtAA F+ —C thh F+F_],

11 S
——[q: KK F+F_:|:ie_"’1tf}3" F.?

Viktox+ = 5AL S

Cjeim KK p 2 4K F+F_}
IA 11 K’ A s KK 2
‘ZK’:I:AKUr = mg[zl: t FJFF,—IE‘, tAB F+
R
(3.8)
with c=exp [i{n2 — )] and
1
Fy = ——— exp[za/2], (3.9)
V(@)

where use has been made of the symmetry of the effec-
tive couplings, eq. (2.17). Other elements are given in
Appendix A.

In the absence of a magnetic field (= 0) we have
Fy =1 and in high magunetic fields (a > 1) we have
F.=~(27a)* and F_~e~*(2ma)/4. In high magnetic
fields, therefore, the terms including Fy F_ x e “/27a
or F_2 e 2%/271q decrease exponentially and the term
with F,? o V/2ra remains. As shown in Appendix A

K'K tIxIx

the term with F+ is one containing tBB L taa, ,

and tAA *, in Vik+orx+, Viki+25+, Vox'+1x+, and
Vak+ 1K+, respectively.

Conductances G;; are defined as the sum of trans-
mission probabilities between the jth and :th terminals
as shown in Fig. 1 (¢). In the Born approximation, these
conductances are explicitly written for e~0 as'®

2
e A 2
G21 = G34 = — Z |ﬂv21s"27,1}(1+’ »

wh
K1 Ky
2
e A 2
G12 = G43 = ﬁ Z |ﬂV1A’1—,2A’2+’ P
Ki,K>
o2 4 , (3.10)
G =Gy = — Z |ﬂVH\’2+,1I\"1+’ )
(1, Ko
2
e A 2
Gos =Gy = s Z |ﬂV2K2—,1K1—| -
Ko

In the absence of a magnetic field we have Gy =Gy =
Gz = Gz4 and Gy = G35 = Ga3 = G4, because of the
time reversal symmetry. With the increase of a magnetic
field, these four pairs of conductances are different in
general.

84. Simple Model

In order to understand qualitative features of effec-
tive couplings between two CNs, we shall consider CNs
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with sufficiently large diameter and two commensurate
stackings shown in Fig. 2. In Fig. 2 (a), a B site of CN2
is just above a B site of CN1 but A sites are not, just like
the stacking in bulk graphite (Stack I). For this stack-
ing, a coordinate transformation from (x4, y4) to (27, y})
corresponds to an inversion around the z] axis. As a
result K and K’ points in the (a4,y}) coordinate sys-
tem are transformed to K and K’ point with wave vector
K=2r/a)(1/3, —1/\/_) and K'=K'=(27/a)(2/3,0),
respectively, in the (2],y]) coordinate system, as shown
in Fig. 1 (b). In Fig. 2 (b), six-member rings are
perfectly stacked on top of each other (Stack II). The
coordinate transformation is an inverse around the y}
axis. Therefore, K points in the (4}, y5) coordinate sys-
tem are transformed to K’ points in the (x],y]) sys-
tem and vice versa. The transformed wave vectors are
K=(2n/a)(=2/3,0) and K'=(27/a)(-1/3,1/V/3).

We consider an effective transfer integral having a
circular symmetry t(R,, Ry)=t(|R; — R;|) independent
of A and B atoms, where Ry denotes the point Rs
expressed in the (2], y]) coordinate system. Define

tsis, = Z t(|R;1 -

S1
R;

Ry:[je OB R (4

This can bhe regarded as an effective coupling of a single

site Sy ={A, B} of CN2 with all S} ={A, B} sites of CN1

and is independent of K} = {K, K’} and R5?. In terms
of tg, s,, we have
RSk RS
2\1{;2 5 Z tsi15,@ By iR (42)

For the stack I, tgg remains nonzero and t 44 =tsp =
tpa =0. For the stack II, on the other hand, t44 =tgp
remains nonzero and typ=tg, =0.

Figure 3 shows the calculated results of t g for both
stackings as a function of the range for a Gaussian form
t(r) = t' exp(—r?/8").
small (6’ /a< 1), it stays close to tj because the transfer
integral does not vanish between atoms on top of each
other. It starts to decrease due to cancellation of trans-
fers among different atoms when 6’ /a~0.5 and vanishes
for &' fa>>1.

The above arguments are valid in general for the
transfer integrals with a symmetry under 120° rotation.
Further, the fact that the effective coupling becomes
reduced considerably due to interferences of transfers

When the range is sufficiently

between different atoms remains valid for more general
cases of stackings of two CNs.

Equation (4.2) or eq. 7 more generally shows that
effective couplings for neighboring atoms can exhibit a
complicated interference behavior when they are summed
up. In order to see this behavior explicitly, we consider
a simple model in which the transfer integral is ¢y only
for atoms just on top of each other and lying in a disk
with a given radius centered at a carbon B site in CN2,
In this model, the coupling is given by eq. (4.2) with
tpp =ty and t 44 =t = tps = 0 for the stack I and
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with taa =tpgp =1ty and t4g =tp4 =0 for the stack II.
Further, we can rewrite eq. (4.2) as

S . = =5, .z
KiKy _ @2 —i(K1—K») R)?2—1K5- O,
tSng =5 E :tSlSZC ? ’
Sq

2

(4.3)
R

where O, is the origin of the (25,y5) coordinate system
expressed in the (2,y]) system.

For the stack I, we have e This
shows that the phabe factor disappears for the effec-
tive coupling between same points and therefore ti§5 =
tf‘;g"/ = NptoS? where Np is the total number of B sites
contained in the disk. For the coupling between different
points the phase factor is different for atoms contained
in the disk, which lead to a cancellation (not complete)
and a small value for |15KA | = |th ], For example, we
have t5 K’ :tg;BK*:tOSZ for (i) of Fig. 2 (a) and —2¢,5?
for (ii), which does not increase in proportion to Np but
oscillates around zero.

iKy-Ry _ — oiKa: Rz

For the stack II, on the other hand, a K point
is converted into a K’ point and a K’ point into a K
point when the coordinate is changed from (z),y5) into
(z4,y1). Therefore, the phase factor disappears (or has
a common value) for the effective coupling hetween K
and K’ points but does not for coupling between same K
points or K’ points. We havo explicitly tﬁﬁl = tﬁLK =
NpgteS? and fl‘ K — tl‘h = NatpS?w with N4 being
the number of Conncctmg pairs of A sites. Bccamc of
the phase factors, th i = 2""’;{" =0 and |tEE| = |7‘B K
remain small but nonzero. Figure 4 shows amplitudes
of the effective couplings for the stack I and II as a
function of the number N of connecting pairs of B sites.
The diameter of the contact region is roughly given by

SNp/m and is shown on the upper axis.

In the Born approximation, the conductances for the
stack T at e=0 are given by

G12 = G2l = G4l = G32 = G43 = G34 = G23 = G14

) (%) Ip(a)?

T |t%£,| 2 4 4
2(VpF Py 4+ (P (mt 4 Y
5%t
(4.4)
which are proportional to the squares of ¢y/7p and a/L.
The ﬁrqt term in the bracket represents the contributions

of [tEE|= |7‘k K' |=NptyS? and the second term smaller
|1«.AA | — |t1x K

-3
1
* 1

. This result is independent of chirality,
i.e., the angle # between CNs, and the phase of the
effective couplings, corresponding to the fact that the
effective coupling does not vanish only between B sites
in eq. (3.8).

In the absence of a magnetic field, where Fy = F_ =
1, the conductance is roughly proportional to N3 when
Np > 1. With the increase of the magnetic field, how-
ever, the second term, giving only a small contribution in
the absence of a magnetic field, increases and becomes
dominant. Figure 5 shows calculated conductances for
several values of Np as a function of a magnetic field.
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The corresponding tE5 = tgg‘/ and tggl = K K"
shown in Fig. 4. Note that the result in the absence of a
magnetic field is valid even in the case that the size of the
coupling region is comparable to the circumference, be-

are

cause the amplitude of the wave function is independent
of the position.

For the stack II the conductances are obtained by
using eq. (3.8) as

GIZ = G43 = G2l = G34

B %(f) C;(]l) Io(a)” i{(NAQ"i'NBZ)(FJf-I-F,J‘)

IxIx
ANANpcos (P, P42 LEEIEE YT

574, o
(4.5)
and
G32 :G4] :G.)i; :G14
62 t(] 1 |
— [V, 2 2 4 4
ﬂl(L) (%) Iy(a)? JI[( AN (P + P
N, N - 9 Wi
+4:\A:\BCOb0(F+F_) _|_2( SZtO ) i|’

(4.6)
with 8 =5, +12. The conductances depend on the angle
6 but not on individual parameters n; and 5z. The small
effective intra-valley coupling |th 5| gives a contribution
to the conductance independent of .
between GG1o = Gy and Ggy = G4 lies in a cross term
proportional to No4Npg cosf. A dominant contribution to
the conductances comes from the first and second terms
both in the absence and presence of a magnetic field
when Ng > 1 and N4> 1. The conductance increases
exponentially with the field strength.

The difference

§5. Realistic Model

As a more realistic model we consider a transfer
integral given by
() )
6 |d| |d|

+t:{ (p(R1)-€) (p(Ra) ) + (p(R1)-£) (p(R2)- 1)}
(5.1)

where d= RZ—R1 is the distance with three-dimensional
coordinates R1 of an atom on CN1 and R2 of an atom
on CN2, p(R;) and —p(R3) are unit vectors normal to
CN at R; and Rj, respectively, and d/|d|, e, and f

constitute a set of three orthogonal unit vectors.

t(R1, Ry) = exp(—

A range of exponentials §/a =0.325, and parameters
to =9.3479 and t; =—5.91v are determined by requiring
that eq. (5.1) reproduces the values Vo, =4.37 eV for the

first term and V,J, ~—7=—2.77 eV for the second term

at the distance (L/\/§= 1.42 A between nearest-neighbor

atoms on a graphite sheet, and 0.39 eV for the first term
at the interlayer distance of graphite Dy=3.35 A.34=37)
The former two values are obtained by first-principles

local-density functional calculations on polyacetylene.3®)

A Slater-Koster parameterization®® and these values
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have been used in band structure calculations on thin
CNs.37)

In the following Dy is assumed as the nearest-
neighbor distance between crossed two CNs. In this case
the transfer integral decays exponentially with the range
of about ¢’ ~0.8a as a function of the distance on virtual
two dimensional co-ordinate system. Calculated effective
transfer integrals defined in eq. (4.1) for the stack I and
IT are ~ 0.08v for these parameters consistent with the
result in a Gaussian model given in Fig. 3.

In explicit numerical calculations we consider arm-
chair nanotubes CN1 and CN2, fix a B site of each CN
on top of each other, and rotate CNs around the B site.
Figure 6 shows the calculated amplitudes of the effective
couplings as a function of the angle 8 between armchair
CNs with L/\fa— 100. Amplitudes [t55|=|tK K| and
|tIx K’

= [tK'K| take a ldlge peak ~ 4.0x S%yy around
f=m/3 and |[tEK|= |tBB | around # = 27/3 indicated
by arrows. The stackings approximately correspond to
the simple models of stack IT and I, respectively, because
the contact plains of two CNs are almost flat due to the
large circumference.

By studying the dependence of

_ 1
Zt(Rf17R>Z) |I£2R |K1R
R

I(RS) = (5.2)

on |R;Z |, we can estimate the size of the contact region.
Near 6 = 7/3 and 27/3, |I(0)| ~ 0.08v and |[I(R)| de-
cays almost exponentially with the range ~ 3.9a, which
is a radius of the contact region. The half width of these
peaks is about 0.12x7/3, which corresponds to the con-
dition that the ideal stacking is lost near this boundary
of the contact region by the rotation.

The amplitudes of the effective couplings |7‘I‘r§”| =
|1‘1‘ A and |t & /| = |1LA ] have a dip at # = 7/3, a
small peak at both sides of the dip, and decreases with
the increase of the distance from 7/3. The amplitudes
|tAA| — |tK’K' |tAA |tK’K'|, and |tAA| — |tK’K'
exhibit a similar behavior around § = 27/3. These
terms remain much smaller than those of the dominant
amplitudes [t X K = |7‘BBK| and |7‘KK/| = |T£:4"| near
f=m/3 and [t} _|t" K | near 6 =2x/3.

The presence of the dips corresponds to the com-
plete absence of these terms for the stack I and II con-
sidered in the simple model. By rotation from the stack
I and II, the transfer integrals lose the symmetry under
the 120° rotation and the cancellation discussed for the
simple model becomes incomplete. As a result the ef-
fective couplings increase by the rotation from /3 and
27/3. Because of complicated interferences of various
terms the effective amplitude exhibits a behavior differ-
ent between the smaller and larger angle sides. The de-
structive superposition is almost perfect at § = 1.12x7/3
and 1.88x71/3. Such a perfect cancellation seems to be
present only for thick CNs L/‘\/ga 2, 100.

Figures 7 shows calculated conductances for several
circumferences. For thick CNs (L/\/ga = 100 and 50, in
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particular), because dominant components of the effec-
tive couplings are much larger than small components,
the conductances are mainly determined by the domi-
nant elements and take a peak at § =7 /3 and §=27/3.
In fact, the conductances GG;; =G5y and G =G4y have
a peak with almost same height at #=27/3 correspond-
ing to the stack I in the simple model (see eq. (4.4)). At
6 = w/3, on the other hand, the peak of G413 = Gy is
higher than that of G'j2 = G231 due to the presence of a
term proportional to cosé in eqs. (4.5) and (4.6). These
peak heights are almost independent of the circumfer-
ence, because the size of the effective contact region is
proportional to the circumference and is cancelled by the
factor (a/L)* in eqs. (4.4), (4.5), and (4.6).

With the decrease of the circumference L, the con-
tact region becomes smaller and as a result the half width
of the dominant couplings increases, leading to the in-
crease in the width of the conductance peaks around
¢ = n/3 and 27/3. In fact, the estimated radius of
the effective contact area is 3.9a, 2.6a, 1.7a, and 1.2a
for L/v/3a = 100, 50, 20, and 10, respectively, which
gives roughly the half width of peak 0.127/3, 0.18x/3,
0.277/3, and 0.387/3, respectively. Further, the peak
position for the dominant terms is shifted according to
a change in the optimum condition of the effective cou-
plings due to curvature effects and small terms having
a dip at § =7/3 and 27/3 start to have an appreciable
contribution to the conductance. As a result the conduc-
tance has a peak at a position away from 6 = 7/3 and
27/3 and also a weaker § dependence for thin CNs.

Figure 8 shows the calculated conductances in the
presence of a magnetic field for L/\/ga: 100. The con-
ductance of the peak around 6 = 7/3 corresponding to
the stack II in the simple model increases exponentially
with the magnetic field as shown in Fig. 8 (a). This is
due to the fact that the dominant terms such as tgg/
and tﬁ':f shown in Fig. 6 mainly contribute to the con-
ductance in both presence and absence of a field. On
the other hand, the conductance at § = 2w/3 (stack I)
changes its feature from a single-peak to a double-peak
behavior with the increase of the field as shown in Fig. 8
(b). This is because the terms t55 and tgg"/ dominant
in the absence of a field are replaced by terms like 54

K'K'
and t4 g

fields.

Although not shown explicitly here, the peak con-
ductance at § = /3 reaches ~ 0.82x ¢?/7h in the field
(1/2xL)* =2. In such a case, the lowest Born approxi-
mation starts to break down and multiple tunneling pro-
cesses start to play important roles. Such higher order
effects are left for a future study.

containing F1* in eq. (3.8) in high magnetic

§6. Summary

We have derived an effective Hamiltonian describing
coupling between two crossed carbon nanotubes in a
k-p scheme and gave expressions of the conductances
between them in a Born approximation. The results are
summarized as follows.

The coupling is given by a sum of transfer integrals

Page 7

between atoms in two nanotubes with phase factors os-
cillating in a /3 x v/3 Kekule pattern corresponding to
wave vectors of K and K’ points.
pling between an atom of one nanotube with all atoms
of the other decreases rapidly due to cancellation when
being summed up with the increase in the range of the
transfer integral. It becomes vanishingly small when the
range exceeds the lattice constant. In a realistic model,
the effective range is comparable to the lattice constant
and therefore the effective coupling is reduced counsider-
ably due to cancellation but remains still appreciable.
For armchair nanotubes, dominant terms have a large
peak at  ~ /3 (stack II) and 27 /3 (stack I) where the
hexagons on both CNs stack in a commensurate way.

For thick nanotubes (L/v/3a 2 50), the conductance
between two armchair nanotubes exhibits a sharp peak
at an angle corresponding to the stack I and IT and re-
mains vanishingly small in other cases. The conductance
at the peaks is essentially independent of the nanotube
diameter. With the decrease in the diameter, two peaks
are broadened and their positions are slightly shifted due
to curvature effects. For thin nanotubes (L/v/3a ~ 10),
the broadened peaks overlap each other and small terms
giving only negligible effects in a thick nanotube con-
tribute to the conductance. As a result, the conductance
becomes nonzero for all angles but exhibits a large oscil-
lation as a function of the angle.

The effective cou-

When a magnetic field is applied perpendicular to
the axis of both nanotubes, the conductance at the peak
around stack I and II exhibits a behavior completely
different from each other. The peak at § = w/3 (stack
IT) increases with the magnetic field. On the other hand,
the peak at § =2x/3 (stack I) is replaced by a double-
peak behavior with a dip at # = 27/3. These can be
understood by the localization of the wave function at
the top and bottom sides of nanotubes in magnetic fields.
Because the density of states at Fermi energy increases
exponentially, the lowest Born approximation becomes
inappropriate and multiple tunneling processes become
important in strong magnetic fields. This problem is left
for a future study.
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Appendix A: Matrix Elements

Matrix elements describing scattering between dif-
ferent nanotubes other than those shown in §3 are given
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below:
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(A3)

In the absence of a magnetic field, some of the above

matrix elements become equal to each other because
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Fy =1. Explicitly, we have

— Y/
Vikto2kx+ = cVag/— 1k -

= i § [ e e e — ],
Vikgony =cVak k-

= i & | e il ],
Vikyokie = cVag 1

= ﬁ 1 {oirzz tf{ff'/ —itﬁfﬁ" +iw™ Ctgfl +uwtem tggl] )
Vikgons = cVagr k-

- ﬁé [e—imt%K_iwt%KHtg;{{+wei,72tgg{]7

(A1)

and

Vik—2x+ =Vor_ 14

_ KK - ing 1 K K o1 A KK AA]
= ——|t —1we "%t —1Ww e t —ct
2‘41'/5 AA AB BA BB |»
1K — 2K+ = Vo 1K+
1 1 |: gt . — . gt —
_ K'K s A KK s i KK K'K
= — |ct —1e 't —1e ?tg i —t ],
2AL § L71AA AB BA BB
Vik—oky =cVog_ 14
1 1 |: . . p— . . .
_ ing 4 K K KK 1 2 KK —1 A KK
= ———|—e"?t +1t +1w et +w e Nt }
2AL S AA AB BA BB |
1K — 2K+ = ¢Vog/ — 1K+

_ 11
T 24L S

s K'K . K'K LK'K . K'K
[—o TSt Hlewt g Fitg 4 —|—w(‘”72tBB‘].

(45)
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Figure Captions

Fig.1 (a) Lattice structure of a two-dimensional graph-
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ite sheet. 7; is the chiral angle for CN1 (7 = 1) and
CN2 (i = 2). Two-dimensional co-ordinate systems
(zf,y1) and (25, y5) are introduced on each graph-
ite sheet. The coordinates are chosen in such a way
that x; is along the circumference of a nanotube and
y; is along the axis for ¢ = 1 and 2. (b) The first
Brillouin zone and K and K’ points. Reciprocal lat-
tice vectors @ and b are shown. (c) The coordinates
for crossed nanotubes. 6 is the angle between axes
of CNs. A maguetic field H is applied in perpendic-
ular to both CNs. Four terminals 1 and 3 of CN1,
and 2 and 4 of CN2 are indicated.

Fig. 2 Lattice structure of a two-dimensional graphite
sheet near the crossing of CNs for stack I (a) and
stack II (b). Lower and upper CNs are shown by
gray and black, respectively. A view from reverse is
shown for upper CN, because (z1,y1) and (wg,y2)
are chosen as shown in Fig. 1 (¢). A and B sites are
shown by the open and closed circles, respectively.
For simple models with inter-layer transfer integral
to, examples of the contact region are indicated by
the circles (i) and (ii).

Fig. 3 Effective transfer integrals ¢z for both stack-
ings as the function of the range ¢’. A Gaussian
model is used in parallel graphite sheets.

Fig. 4 Absolute values of effective couplings as a func-
tion of the number Ng of B sites in the coupling

< ’a ootk -

region. tEE =55 for the stack I is equal to
tggl = t%';gk* for the stack II, which are shown by
tRE tlﬁ’;BK*

crosses. tpp =t for the stack II is also equal
to tgg :tgg‘” for the stack II, which are shown by
circles.

Fig. 5 Calculated conductance as a function of weak
magnetic field for stack I. The magnetic field is
perpendicular to both CNs as shown in Fig. 1 (c).

Fig. 6 Absolute values of effective couplings of the
realistic model for 1 = 53 = m/6 (armchair CNs)
and L = 100v/3a as a function of angle 6 between
CNs.

Fig. 7 Calculated conductances Gy1 = G30 = Gy =
G4 (a) and Go; = Gio2 = Gay = Gy3 (b) between
armchair CNs for several circumferences as a func-
tion of the angle ¢ in the absence of a magnetic field.

Fig. 8 Calculated conductance between armchair CNs
for L=100v/3a as a function of the angle ¢ for (a)
0.25m <0 < 0.5 and (b) 0.5 <6 <0.757. Maguetic
field is applied in perpendicular direction to the
CNs. The origins of the conductances for several
magnetic fields are shifted by 0.0005 in (b). Dot-
dashed lines for G23 =G4 almost overlap with solid
lines for GG4; = G32. Note that, the conductances in
(a) are one order of magnitude larger than in (b).




T. Nakanishi and T. Ando




Conductance of Crossed Carbon Nanotubes Page 11

Diameter (units of a)

02 4 6 8 10
———— :
—T T T T T T T T {. —T—T | o |tBBKK |:|tBBK K| for Stack I i
Gaussian Model | L 1tggRK|=|tag’K| for Stack Il P
o= —~ 80+ [tesKK|=[tggK K| for Stack I, -
= : 3 - |tes"K=tggXK| for Stack Il :
- S| ltes™" |=Itas"™ " + 7
+"é’ 1 5 | ]
%]
=) +
= | = 60 + ]
o 2t + 1
(@)
o 1 3 1
= = B i
= 1 = +
N 3 40 _
L. | + .
= 2
) | B i |
2 £ 20 - .
8 T f
1 | + |
1 + o °
| o O o O p
00 b v 11 L o9 o .. o . .00, . |
0.0 0.5 1.0 15 2.0 0 20 40 60 80
Range (units of a) Number of B Sites
Fig. 3 Fig. 4
—— P e U S
| Stack | 1 L Armc(t;ju_r CN's i 1
~ 8000 ] ] | L=100/3a i :. |
‘)‘_T B sites = H ]
< I 73 | < |
Eé | 61 | ﬁ’_) 3+ P -
= 55 ° | o]
J’E 6000 [~ 43 1 "2 L o :. H |
3 I 1 5 ltes"X|=Ites" ] - -
o 37 = | KK'|=[to o K'K i ; 1
g . a1 1 & | ltea™ [=lteg™ " — &+ 1
° » 2L [tan K =ltan | — -
12 19 = KK|=[to, KK’ ; i
‘S 4000 |- 13 4 = lteA™|=ltBa" * | ===y :
2 . 1 81 [tas"K|=ltagk | -\ §
§ - 1 o [ [tan<KI=ltaa" K] - |\
S 5 \\ 1 % [ [Stack Il |/ [tgak€|=|tgak K] —-—-
1 , ,
S 2000 | 3 l 4 27 [tas"¥ |=[tas" ]| -~
2 AN |
I o
y‘/ | /' \ g
= — e e R 0 Ve e~
0.0 0.5 1.0 15 2.0 1.0 15
Magnetic Field (units of (L/21)2) Angle (units of 173)

Fig. 5 Fig. 6



T. Nakanishi and T. Ando

Page 12

o % % e
< e Caive 3 ‘
(O) et 1
) _w 42 Y/
pd = L /
o9 s o ol NS 1 /
= o QY \ TS T
T o N S %) /,
£ O S838S \ A - V|
Qi TR TAT / ~ =S o 4
€ g R T \ AN I e
O ) © i~ T
\ m ~— L T TEE J
c
/ S
N—r .
Q .m..o I 1
2 = o §39S
< (2 2900 °
-, ¥ 8898
A CNONUNG)
L 5 8 ]
EX |1
< 4 b
- T B Ll Ll o i ,
3 0 o 0 o 1) o 0 o
(a2} [32] N N — - o o
m o = o o o o S =]
) S S =} S S s} S S
o o o o o o o o o
(W/z® Jo syun) souedNpuod
Aﬁ f f f ‘\\N : : :
%) = 8393 »
P T - o O OO0 z
ol . P T 3 28
Z GZ N PN BNt = W ]
© I 1 [ONOROUNV] N N+ o b
] = o
g4 3 SEEE = £ W
S k E oy < 4
E 9 5 rod
< O E |
Yo 2
15 =
/| (U\ ~— |
o~
K mu ab [
= o <
.~ | < = \
.~ . 1
ygaz=s o
4° |
8
S 8 3 8
o o o o
(LL/z® Jo suun) soueNpPUOD (wL/z® Jo suun) aduelonpuod

2.0

Angle (units of 173)
Fig. 8 (b)

1.5

15
Angle (units of 17/3)

Fig. 8 (a)

1.0




