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The absence of back scattering in carbon nanotubes is shown to be ascribed to Berry's phase
which corresponds to a sign change of the wave function under a spin rotation of a neutrino-like
particle in a two-dimensional graphite. E�ects of trigonal warping of the bands appearing in a
higher order k�p approximation are shown to give rise to a small probability of back scattering.
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x1. Introduction
A carbon nanotube (CN) consists of coaxially rolled

graphite sheets.1) Because the distance between di�erent
sheets is much larger than the distance between the
nearest neighbor carbon atoms, electronic properties of
CN's are determined essentially by those of a single-
shell CN. A single-shell CN can be either a metal or
a semiconductor depending on the circumference length
and the helical fashion. The purpose of this paper is
to clarify the origin of the absence of back scattering
for scatterers having a potential range comparable to or
larger than the lattice constant, predicted previously.2)

Various calculations have been performed to un-
derstand energy bands of CN's.3�13) The characteris-
tic properties are all reproduced quite well in a k�p
method.14;15) It has been successful in the study of mag-
netic properties including the Aharonov-Bohm (AB) ef-
fect on the band gap,16;17) optical absorption spectra,18�20)

and lattice instabilities in the presence and absence of a
magnetic �eld.21;22)

Transport properties of CN's are interesting because
of their unique topological structure. There have been
some reports on experimental study of transport in CN
bundles.23) Measurements of magnetotransport of a sin-
gle nanotube became possible.24;25) Tunneling probabili-
ties at a �nite-length CN26) and a connection of di�erent
CN's27�30) were calculated. The conductivity was calcu-
lated also in a constant-relaxation-time approximation
in the absence of a magnetic �eld.31) The magnetocon-
ductivity was calculated using the Boltzmann transport
equation32) and in a transmission approach33) for a mod-
el of short-range scatterers.

In a previous paper,2) e�ects of impurity scatter-
ing in CN's were studied in detail and a possibility of
complete absence of back scattering was pointed out and
proved rigorously except for scatterers having a potential

range smaller than the lattice constant. In this paper we
shall relate this intriguing fact to Berry's phase acquired
by a rotation in the wave vector space in the system de-
scribed by a k�p Hamiltonian which is the same as that
of a neutrino satisfying Weyl's equation. E�ects of trig-
onal warping of the bands appearing in a higher order
k�p approximation are studied also.

x2. E�ective-Mass Equation

The lattice structure of a two-dimensional (2D)
graphite and corresponding �rst Brillouin zone are shown
in Fig. 1. A unit cell contains two carbon atoms denot-
ed as A and B. The coordinate system (x0; y0) is �xed
onto the graphite sheet (x0 is in the direction of a with
a= jaj being the lattice constant) and (x; y) is chosen in
such a way that the x axis is in the chiral direction of
CN, i.e., the direction along the circumference, and the
y axis in the direction of the axis. The angle between
the x and x0 direction is called a chiral angle and de-
noted as �. We have � = 0 for a zig-zag nanotube and
�=�=6 for an armchair nanotube. The conduction and
valence bands of 2D graphite cross each other at K and
K' points where the bands have approximately a linear
dispersion as a function of the wave vector. The K and
K' points are located at a corner of the boundary of the
�rst Brillouin zone and are not equivalent.

In the e�ective-mass approximation, the electronic
states of a 2D graphite near a K point are described by
a k�p equation as34)

 (~� � k̂)F (r) = "F (r); (2:1)

or



�
0 k̂x�ik̂y

k̂x+ik̂y 0

��
FA(r)
FB(r)

�
= "

�
FA(r)
FB(r)

�
;

(2:2)
where  is the band parameter, ~�=(�x; �y) is the Pauli
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Fig. 1 Lattice structure and �rst Brillouin zone of a two-dimensional graphite. The coordinate system (x0; y0)
is �xed onto the graphite sheet and (x; y) is chosen in such a way that the x axis is in the circumference direction
of CN and y in the axis direction. The chiral angle is denoted as �. A unit cell contains two carbon atoms
denoted as A and B. The corner points K and K' of the Brillouin zone are not equivalent.

spin matrix, k̂=(k̂x; k̂y) is a wave vector operator de�ned

by k̂ = �i~r, and FA and FB represent the amplitude
of the envelope functions at A and B carbon atoms,
respectively. The eigen wave functions and energies of
this Hamiltonian are written as

Fsk(r) =
1p
LA

exp(ik�r)Fsk; (2:3)

"s(k) = sjkj; (2:4)

where L is the circumference of CN, A is the length,
and s = +1 and �1 denote conduction and valence
bands, respectively. In metallic CN's the wave vector
in the kx direction is quantized into kx = �(n) with
�(n)=2�n=L where n is an integer. In general, we can
write eigenvector Fsk as

Fsk = exp[i�s(k)]R
�1[�(k)] js); (2:5)

where �s(k) is an arbitrary phase factor, �(k) is the angle
between wave vector k and the ky axis, i.e., kx+iky =
ijkjei�(k), R(�) is a spin-rotation operator, given by

R(�) = exp
�
i
�

2
�z

�
=

�
exp(+i�=2) 0

0 exp(�i�=2)
�
;

(2:6)
with �z being a Pauli matrix, and js) is the eigenvector
for the state with k in the positive ky direction, given by

js) = 1p
2

��is
1

�
: (2:7)

Obviously, we have

R(�1)R(�2) = R(�1+�2); R(��) = R�1(�); etc:
(2:8)

Further, because R(�) describes the rotation of a spin, it
has the property

R(��2�) = �R(�); (2:9)

which gives R(��)=�R(+�). In order to de�ne states
and corresponding wave functions uniquely, we shall as-
sume in the following that

�� < �(k) � +�: (2:10)

By choosing the phase �s(k) in an appropriate manner,

the wave function can be chosen as either continuous

or discontinuous across the point corresponding to � =

+� and �� in the k space. The results are certainly

independent of such choices.

x3. Absence of Back Scattering

In the following we shall consider a back scattering

process k!�k due to an arbitrary external potential

having a range larger than or comparable to the lattice

constant in a 2D graphite sheet, where k=(0; k). Only

di�erence arising in nanotubes is discretization of the

wave vector in the kx direction as mentioned above. We

shall con�ne ourselves to states in the vicinity of the

K point, but the extension to states near a K' point is

straightforward. Introduce a T matrix de�ned by

T = V + V
1

"�H0
V + V

1

"�H0
V

1

"�H0
V + � � � ; (3:1)

where V is the impurity potential given by a diagonal

matrix, i.e.,

V =

�
V (r) 0
0 V (r)

�
; (3:2)

" is the energy, and H0=~��k is the Hamiltonian in the

absence of the potential. The (p+1)th order term of the

T matrix is written as

(s;�kjT (p+1)js;+k) = 1

LA

X
s1k1

1

LA

X
s2k2

� � � 1

LA

X
spkp

� V (�k�kp) � � �V (k2�k1)V (k1�k)
["�"sp(kp)] � � � ["�"s2(k2)]["�"s1(k1)]

� e�i�s(�k)(sjR[�(�k)]R�1[�(kp)]jsp)
� � � � � (s2jR[�(k2)]R�1[�(k1)]js1)
� (s1jR[�(k1)]R�1[�(k)]js)ei�s(k);

(3:3)

where V (ki�kj) is a Fourier transform of the impuri-

ty potential and phase factors exp[i�sj (kj)] have been

cancelled out for all the intermediate states j=1; . . . ; p.

Actually, we have �(k)=0 and �(�k)=+�.
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Fig. 2 Schematic illustration of the spin rotation corresponding to the scattering process k! k1! k2!�k
(a) and its time-reversal process k!�k2!�k1!�k. We have chosen �(k)= 0 and �(�k)=+�. In process
(c), the �nal state is chosen as that obtained by �(�k)! �(�k)�2�=��.

De�ne

S(p+1) = (sjR[�(�k)]R�1[�(kp)]jsp)
� � � � � (s2jR[�(k2)]R�1[�(k1)]js1)
� (s1jR[�(k1)]R�1[�(k)]js):

(3:4)

This quantity describes matrix elements of a rotation in
the spin space and can be illustrated by a diagram as
shown in Fig. 2(a). For each term in eq. (3.3), there is a
term obtained through the replacement

(s1;k1)! (sp;�kp); (s2;k2)! (sp�1;�kp�1); etc:;
(3:5)

corresponding to the electron motion of a time-reversal
path (see Fig. 3). Both matrix elements of the impurity
potential and energy denominators remain unchanged by
this replacement in eq. (3.3) except that S should be
replaced by S0 given by

S(p+1)0 =(sjR[�(�k)]R�1[�(�k1)]js1)
� � � � � (sp�1jR[�(�kp�1)]R

�1[�(�kp)]jsp)
�(spjR[�(�kp)]R�1[�(k)]js):

(3:6)
This process is given by a diagram as shown in Fig. 2(b).
Instead of the above we consider the quantity S(p+1)00

given by

S(p+1)00 =(sjR[�(�k)�2�]R�1[�(�k1)]js1)
�� � � � (sp�1jR[�(�kp�1)]R

�1[�(�kp)]jsp)
�(spjR[�(�kp)]R�1[�(k)]js);

(3:7)
which has been obtained from eq. (3.6) through the
replacement �(�k)!�(�k)�2� and can be represented
by a diagram shown in Fig. 2(c). Using eq. (2.9), we have
S(p+1)00=�S(p+1)0. According to the present de�nition
of the angle given by eq. (2.10), we have

�(�kj) =
�
�(kj)� � if �(kj) > 0 ,
�(kj) + � if �(kj) � 0 .

(3:8)

However, we can always put �(�kj) = �(kj)� � for
j = 1; . . . ; p in the expression of S(p+1)00 because of eq.
(2.9) since �(�kj) always appears in a pair. By making

the replacement �(k)!�(�k)�� and �(�k)!�(k)+�,
we can immediately obtain

S(p+1)00 = �S(p+1)0 = S(p+1)�: (3:9)

More explicitly, we have

(sjR(�)R�1(�0)js0) =
(

cos[(���0)=2] (s=s0);

�i sin[(���0)=2] (s 6=s0);
(3:10)

which is either real or pure imaginary. Because the
number of matrix elements for di�erent bands is always
even in the expression of S(p+1), we see immediately that
S(p+1) is given by a real number. Therefore, we have

S(p+1)00 = �S(p+1)0 = S(p+1); (3:11)

which shows that each term is canceled by the contribu-
tion of a corresponding time-reversal process in eq. (3.3).
Further, the origin of the cancellation can be traced back
to eq. (2.9), i.e., the fact that a rotation in the spin space
by 2� gives rise to a sign change in the wave function.

The above discussion shows that each scattering
process is described by a corresponding spin rotation.
This is a direct consequence of the fact that a neutrino
described by Weyl's equation (2.1) has a helicity, i.e., its
spin is always in the direction of its wave vector. Howev-
er, although states of 2D graphite in the vicinity of the
Fermi level are formally described by Weyl's equation,
two components of the wave function do not describe s-
tates of the actual electron spin but correspond only to
the amplitude at two carbon sites in a unit cell. Even
in this case the rotation of the wave vector around the
origin gives rise to the same signature change. This can
be directly obtained as a Berry's phase.35;36)

Consider a wave function given by

 s(k) =
1p
2

� �is
exp[i�(k)]

�
: (3:12)

This is the \spin" part of an eigenfunction of the k�p
equation, obtained by choosing �s(k) = �(k)=2 in such
a way that the wave function becomes continuous as a
function of �(k).37) When the wave vector k is rotated
in the anticlockwise direction adiabatically as a function



2860 T. Ando, T. Nakanishi, and R. Saito

Fig. 3 Schematic illustration of a back scatter-
ing process (solid arrows) and corresponding time-
reversal process (dashed arrows).

of time t around the origin for a time interval 0<t<T ,
the wavefunction is changed into  s(k) exp(�i'), where
' is Berry's phase given by

' = �i
Z T

0

dt
D
 s[k(t)]

��� d
dt
 s[k(t)]

E
= �: (3:13)

This shows that the rotation in the k space by 2� leads
to the change in the phase by +�, i.e., a sign change.
Note that R�1[�(k)]js) is obtained from eq. (3.12) by
continuously varying the direction of k including Berry's
phase.

A similar phase change of the back scattering pro-
cess is the origin of the so-called anti-localization e�ect
in systems with strong spin-orbit scattering.38) In the ab-
sence of spin-orbit interactions, the scattering amplitude
of each process and that of corresponding time-reversal
process are equal and therefore their constructive inter-
ference leads to an enhancement in the amplitude of
back scattering processes. This gives rise to the so-called
quantum correction to the conductivity in the weak lo-
calization theory.39) In the presence of a strong spin-orbit
scattering, however, scattering from an impurity causes
a spin rotation and resulting phase change of the wave
function leads to a destructive interference. As a re-
sult the quantum correction has a sign opposite to that
in the absence of a spin-orbit scattering.40) This anti-
localization e�ect was observed experimentally.41;42)

x4. Higher Order E�ective-Mass Equation

The absence of back scattering can be destroyed by
various e�ects. When the potential range becomes short-
er than the lattice constant, the back scattering appears
because of two reasons as was shown previously.2) The
�rst is that the e�ective potential of an impurity for A
and B sites can be di�erent. This causes mixing of the
spin space and the momentum space and the resulting
\spin-orbit" interaction makes the back-scattering prob-
ability nonzero. The second, which is more important, is

the appearance of inter-valley matrix elements between
K and K' points.
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Fig. 4 Some examples of equi-energy lines in the
vicinity of the K point. The trigonal warping in-
creases with ak0=2� where k0 is the magnitude of the
wave vector corresponding to the energy obtained
by neglecting higher order terms. The k0x and k0y
directions are �xed onto the graphite sheet.

As another example we shall consider e�ects of high-
er order k�p terms. A higher order k�p equation was de-
rived already in a simple tight-binding model including
only a � orbital for each carbon atom as15)0
B@ 0 

h
(k̂x�ik̂y)+ ae

3i�

4
p
3
(k̂x+ik̂y)

2
i


h
(k̂x+ik̂y)+

ae�3i�

4
p
3
(k̂x�ik̂y)2

i
0

1
CA
�
FA
FB

�
="

�
FA
FB

�
;

(4:1)
for the K point, where � is the chiral angle. This gives
trigonal warping of the band around the K point. In fact,
the energy bands are given in the lowest order of ajkj by

"s(k) = sjkj+�"s(k); (4:2)

with

�"s(k)=sjkj ajkj
4
p
3
sin[3(�+�)]; (4:3)

where � = �(k). Figure 4 gives some examples of equi-
energy lines for various values of ak0=2� with "= sk0.
The corresponding results for the K' point are obtained
by rotating those for the K point by �=3.

The wave function of the state corresponding to
wave vector k=(kx; ky) is given by eqs. (2.3) and (2.5),
where �(k) is replaced by

~�(k) = �(k)+��(k); (4:4)

with

��(k) = � ajkj
4
p
3
cos[3(�+�)]: (4:5)

For a given energy "=sk0 (">0 and k0>0), the wave
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vector in the y direction for kx=0 changes from +k0 into
k+=k0+�k+ and from �k0 into k�=�k0+�k� with

�k+ = �k� = � ak20
4
p
3
sin 3�: (4:6)

These expressions are correct to the order in ajkj or ak0.
The matrix element of the potential V (r) corre-

sponding to scattering from a state k+ = (0; k+) to
k�=(0; k�) is calculated as

ei[�s(k+)��s(k�)]
V (�2k0)
AL

(sjR[~�(k�)]R�1[~�(k+)]js)

=ei[�s(k+)��s(k�)]
V (�2k0)
AL

ak0

4
p
3
cos 3�; (4:7)

in the lowest order with respect to ak0, where

V (�2k0) =
Z
dx

Z
dy V (r) exp(2ik0y): (4:8)

The result shows that in the lowest order Born approx-
imation the back scattering probability is proportional
to

(k0a)
2 cos2 3� jV (�2k0)j2; (4:9)

which increases in proportion to "2 except in the case of
�=�=6 (armchair CN).

When �=�=6, the wave vector in the axis direction
is modi�ed by higher order terms most strongly as shown
in eq. (4.6) and in Fig. 4, while the wave function remains
as eqs. (2.3) and (2.5) because ��(k+) = ��(k�) = 0.
The \spin" part of the wave function for k+ and k� are
orthogonal to each other, which leads to the vanishing
back scattering probability. This is a direct consequence
of the symmetry of the energy bands under the mirror
reection kx!�kx. In other cases, the phase of the wave
functions for states with k+ and k� changes in a di�erent
way and the resulting phase di�erence proportional to
k0a cos 3� gives rise to the nonvanishing back-scattering
probability.

More generally in armchair CN's, the e�ective-mass
equation for kx=0 is written as



0
B@ 0 �2i

a

h
sin k̂a2 + 1p

3

�
1�cos k̂a2

�i
2i
a

h
sin k̂a2 + 1p

3

�
1�cos k̂a2

�i
0

1
CA
�
FA
FB

�
="

�
FA
FB

�
;

(4:10)

with k̂ being the wave vector operator in the y direction.
This shows that the eigenfunction remains the same
and that the back scattering probability vanishes in the
lowest order Born approximation even if further higher
order k�p terms are included.

It is highly likely that the back scattering has a
nonzero probability when terms in higher orders in the
external potential are included, i.e., in a higher order
Born approximation, even at k=0 and also in armchair
nanotubes. In fact, in previous sections the use has been
made of the fact "s(�k) = "s(k) explicitly in showing

the exact cancellation of a term in the T matrix with
a term corresponding to a time reversal process. The
inversion symmetry of the energy band is destroyed by
the trigonal warping and the discussion there becomes
no longer valid. This is expected to cause a small back
scattering probability unless some other mechanisms of
cancellations are still present.

Consider, for example, an armchair nanotube and
an external potential which is symmetric under a mirror
reection with respect to a line parallel to the axis. In
this case we can use the symmetry of the energy bands
under the mirror reection kx!�kx to show vanishing
back scattering probability. In fact, each term in the
T matrix can be shown to be cancelled by a term in
which kj=(kjx; k

j
y) for intermediate states j=1; . . . ; p is

replaced by �kj=(�kjx; kjy).

x5. Discussion and Conclusion

The absence of back scattering k ! �k has been
shown to be related to the well-known sign change of
an electron spin under a rotation of angle 2�. This is
nothing but a Berry's phase acquired by a rotation of
the wave vector in the system described by a degenerate
k�p Hamiltonian arising from the presence of two carbon
atoms in a unit cell. E�ects of trigonal warping of the
bands appearing in a higher order k�p approximation
have been shown to give rise to a small but nonzero
probability of back scattering.

Most of the results given so far are expected to be
valid for scattering from dynamical perturbations such
as lattice vibrations. In fact, at suÆciently low tempera-
tures, only long wavelength acoustic phonons are excited
and their e�ects can be incorporated as a deformation
potential given by a diagonal matrix in the k�p scheme.
This immediately leads to the vanishing back scatter-
ing at least in the lowest Born approximation. At high
temperatures, however, optical phonons may give rise to
nonzero back scattering probability through inter-valley
scattering between K and K' points. A similar conclusion
can be reached also for mutual electron-electron scatter-
ing. These problems are left for a future study.

The present results have been obtained under the
assumption that the energy bands of CN's can be re-
produced by introducing periodic boundary conditions
in the circumference direction into the energy bands of
a 2D graphite sheet. Actually we have to consider mix-
ing of the � bands with � and other higher-lying bands
due to the presence of a �nite curvature particularly in
CN's having a small circumference. This mixing is likely
to cause a small but nonzero back scattering probability.
Such e�ects of a �nite curvature are interesting but also
left for a future study.

The absence of back scattering can lead to an ex-
tremely large conductivity in carbon nanotubes. As was
shown previously,2) this e�ect disappears in magnetic
�elds, which is likely to give rise to a huge positive mag-
netoresistance. The conductance of a single-wall nan-
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otube was observed quite recently,43;44) but experiments
show large charging e�ects presumably due to nonide-
al contacts. It is highly desirable to become able to
measure transport of a single-wall nanotube with ideal
Ohmic contacts.
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