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The Boltzmann conductivity is calculated for carbon nanotubes in the presence of an Aharonov-Bohm
magnetic flux. Effects of strain or curvature manifest themselves as a prominent conductivity peak as a
function of the flux. The appearance of the peak corresponds to the absence of backscattering in metallic
linear bands and makes it possible to determine a gap due to curvature and strain.
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1 Introduction Carbon nanotubes (CN) are novel quantum wires consisting of rolled graphite sheets
[1]. Their cylindrical shape leads to an Aharonov–Bohm (AB) effect in the band structure due to a magnetic
field parallel to the axis [2, 3]. The purpose of this paper is to study conductivity in the presence of the AB
flux and show that the AB effect is useful for the determination of a gap due to curvature and strain.

Intriguing electronic properties in CNs have been theoretically revealed in the k·p scheme [4]. Metallic
nanotubes are known as a ballistic conductor due to the absence of backward scattering as long as a poten-
tial range of scatterers is not smaller than the lattice constant of two-dimensional graphite [5, 6, 7]. A small
gap is induced in metallic carbon nanotubes by effects of lattice strain or curvature. In the k·p scheme, the
presence of a lattice distortion can be incorporated as an effective flux [4, 8, 9] and the same is applicable
to a nonzero curvature [4, 8, 10]. Therefore, this small gap is controlled by a magnetic field.

In this paper we calculate a Boltzmann conductivity in magnetic fields and demonstrate the manifesta-
tion of a strong AB effect on the conductivity due to the change in the small band gap. It is an extension of
a previous work to the more general case in the presence of a perpendicular magnetic field [11].

2 Effective-mass approximation In two-dimensional graphite, two bands having approximately a lin-
ear dispersion cross the Fermi level (chosen at ε= 0) at K and K’ points of the first Brillouin zone. The
electronic states of the π-bands near the K point are described by the k·p equation [2, 4]:

γ(σxk̂x + σy k̂y)F(r) = εF(r),

where γ is a band parameter, σx and σy are the Pauli spin matrices, and k̂ = (k̂x, k̂y) =−i∇ is a wave-
vector operator. The two components of the wave function F(r) correspond to the amplitude at sub-lattice
sites in a unit cell. Electronic states of a metallic nanotube with a sufficiently large diameter are obtained
by imposing generalized periodic boundary conditions around the circumference direction:

F(r+L)=F(r) exp(2πiΦ).
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Fig. 1 (a) The coordinates for the nanotube. A magnetic field H is applied at an angle θ with the axis direction of
the nanotube. (b) The energy bands edges in a metallic nanotube in the presence of an effective flux Φ. A flux due
to curvature and strain, φe, is opposite between the K and K’ points and then a magnetic flux φ shifts Φ in the same
direction. (c) A schematic view of the bands near the Fermi energy. In the absence of a magnetic flux shown by
dotted lines, the energy gaps of 4πγ|ϕe|/L are present at the K and K’ point. As shown by solid lines, the band gap
diminishes at the K’ point and increases at the K point in the presence of magnetic flux φ for ϕe>0. k0 and k′0 are the
Fermi wave-number measured from K and K’ points, respectively. At ϕ = ϕe the dispersion becomes linear at the K’
point.

where Φ is an effective magnetic flux passing through the cross section and L is a vector corresponding to
the circumference. For the K’ point, Schrödinger equations are obtained by replacing k̂y by −k̂y and the
effective flux can be different as will be discussed below.

A nonzero curvature causes a shift in the origin of k̂x and k̂y in the k·p Hamiltonian [4, 8, 10]. The shift
in the y direction is irrelevant and that in the x direction can be replaced by an effective flux ϕc for the K
point and−ϕc for the K’ point. The flux is obtained as

ϕc =
φc
φ0

=
2π

4
√

3

a

L
p cos 3η, (1)

where φ0 = ch/e is the flux quantum, a is the lattice constant of the two-dimensional graphite, p is a
dimensionless quantity of the order of unity determined by details of tight-binding parameters, and η is
a chiral angle determining the structure of CN (η = 0 for zigzag CNs and η = π/6 for armchair CNs).
This causes an opening of a narrow gap (2πγ/L)|ϕc| ∝ L−2| cos 3η|. The presence of a lattice strain uµν
(µ, ν=x, y) causes also an effective flux, φs and −φs for the K and K’ point, respectively. It is estimated
as [9]

ϕs =
φs
φ0

=
Lg2

2πγ
[(uxx−uyy) cos 3η−2uxy sin 3η], (2)

where g2 is the electron-phonon interaction energy. This flux gives rise to a band-gap opening also [12, 13].
In the presence of a magnetic flux φ = ϕφ0 corresponding to an applied magnetic field H as shown in

Fig. 1(a), the effective flux becomes Φ = ϕ+ ϕe for the K point and Φ = ϕ− ϕe for the K’ point, where
ϕe = ϕc + ϕs. Figure 1(b) illustrates band edges as a function of Φ and Fig. 1 (c) shows an example
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of the energy dispersion of the band near the Fermi energy. In the absence of magnetic flux ϕ, as shown
by dotted lines in (b) and (c), the energy dispersions are the same between the K and K’ points with gap
2|ϕe|(2πγ/L). When ϕe>0, the gap diminishes at the K’ point by applying ϕ, while it increases at the K
point, as shown by solid lines. At ϕ=ϕe, the dispersion becomes completely linear at the K’ point. The
same thing happens for the K point at ϕ=−ϕe.

In the presence of a magnetic fieldH perpendicular to the axis, we have to introduce the vector potential
A = (Ax, Ay) with Ax = 0 and Ay = (LH/2π) sin(2πx/L) and replace k̂ by k̂ + (e/ch̄)A. Then,
explicit calculations of the energy band in H can be performed only numerically [2].

3 Impurity scattering Most of scatterers including charged centers are characterized by a potential
with range larger than the lattice constant a. For such scatterers, the Hamiltonian is given by a diagonal
matrix for both K and K’ points, and matrix elements between K and K’ points are safely neglected [5].
It has been shown that the conductivity becomes infinitely large due to the absence of backward scattering
in the metallic CNs characterized by linear bands [5]. These scatterers will be called long-range although
their potential range can be comparable to the lattice constant and therefore can actually be much shorter
than the electron wavelength typically of the order of the circumference. When the potential range becomes
shorter than the lattice constant, the potential for two sub-lattice points in a unit cell can be different and
matrix elements between K and K’ points can no longer be neglected. These short-range scatterers cause
backward scattering and make the conductivity finite [5].

In the lowest Born approximation the scattering strength for long- and short-range scatterers is charac-
terized by the dimensionless quantity WL and WS , respectively, with

WL =
nL〈|uL|2〉

4πγ2
, WS =

nS〈|uS |2〉
4πγ2

,

where nL and nS are the concentration of long- and short-range scatterers in a unit area, respectively,
and uL and uS are the corresponding integrated intensity of the potential [14]. Define the total strength
W = WL+WS and the ratio δ ≡WS/W . The Boltzmann conductivity is calculated under the conditions
of fixed electron density k+ = (k0 + k′0)/2 where k0 and k′0 are the Fermi wave-number measured from
the K and K’ point, respectively, as shown in Fig. 1 (c).

Figure 2 shows some examples of the conductivity for δ= 0.005 and ϕe = 0.01 with a fixed electron
density. A fixed field H is applied and the angle θ with the axis direction is varied from θ = 0 to π/2. In
the left figure the field H (= 4πφe/L

2) corresponds to the flux ϕ = ϕe at θ = 0 and in the right figure
H corresponds to ϕ = 2ϕe at θ = 0. When ϕ = ϕe, the magnetic flux cancels the effective flux ϕe due
to curvature or strain, recovering a linear dispersion near the K’ point, as shown by dashed lines in Fig. 1
(b). In this case the contribution of dominant long-range scatterers can be neglected and the conductivity
is determined only by short-range scatterers for the K’ point at the value of the flux. No significant change
occurs in the conductivity for the K point. The appearance of the peak for the small electron density k+

corresponds to the absence of this backward scattering in metallic linear bands.
Such a prominent conductivity peak disappears when the electron density becomes larger. For the large

electron density, where the dispersion at the Fermi level is nearly linear, the amount of the backward
scattering is already small for long-range scatterers and the conductivity is limited mostly by short-range
scatterers. As a result the conductivity becomes almost independent of the flux. The condition for the peak
appearance is shown as

√
δ/(1−δ)(Lk+/2π)< |ϕe| in the absence of a perpendicular magnetic field [11].

Explicit calculations for larger values of ϕe show that effects of the perpendicular component of the field
starts to play important roles when ϕe becomes of the order of unity.

4 Conclusion The Boltzmann conductivity is calculated for carbon nanotubes in the presence of an
Aharonov-Bohm magnetic flux with taking into account impurity scatterings. We have shown that effects
of strains or curvature manifest themselves as a prominent conductivity peak as a function of the magnetic
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Fig. 2 Calculated Boltzmann conductivity as a function of the direction of the applied magnetic field for several
values of the electron density k+, when electrons occupy the lowest conduction band of the K and K’ points. The ratio
of the short-range scatterers is chosen as δ= 0.005. H = 4πφe/L

2 in the left figure and H = 8πφe/L
2 in the right

figure.

flux in metallic carbon nanotubes. A careful analysis of possible gate-voltage dependence of the AB effect
on the conductivity can reveal important information on curvature and strain effects and the potential range
of dominant scatterers.
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