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Conductivity in Carbon Nanotubes with Aharonov-Bohm Flux
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The Boltzmann conductivity is calculated for carbon nanotubes in the presence of an
Aharonov-Bohm magnetic flux. Effects of impurity scattering are considered at low temperatures
and those of electron-phonon scattering are considered at room temperature. Effects of strains
and curvature manifest themselves as a prominent conductivity peak as a function of the flux. The
appearance of the peak corresponds to the absence of backscattering in metallic linear bands.
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§1. Introduction

Carbon nanotubes are novel quantum wires con-
sisting of rolled graphite sheets.1) Single-wall nanotubes
can be synthesized in structures ∼ 1 nm in diameter
and millimeters long.2−4) Their cylindrical shape leads
to a strong Aharonov–Bohm (AB) effect in the band
structure due to a magnetic field parallel to the axis.5,6)

The purpose of this paper is to study conductivity in the
presence of AB flux.

The electronic states change from metallic to semi-
conducting depending on the tubular circumferential
vector characterizing a nanotube. The characteristic
properties were predicted by calculations in tight-binding
models7−16) and also in a k·p scheme or an effective-
mass approximation.17,18) The AB effect on the band
gap in nanotubes was theoretically predicted in the
effective-mass approximation.5,6,19,20) Recently, splitting
of optical absorption and emission peaks due to the
AB effect was observed.21) A shift in the gate voltage
corresponding to the conductance peak was also observed
in Fabry-Perot interference regime and attributed to the
AB effect.22)

Metallic nanotubes are known as a ballistic conduc-
tor due to the absence of backward scattering as long
as the potential range of scatterers is not smaller than
the lattice constant of two-dimensional graphite.23−25)

When several bands are occupied, a perfectly conducting
channel transmitting through the system without being
scattered back is present.26) These intriguing features are
due to the existence of a special symmetry present in the
Schrödinger equation in the lowest-order k·p equation.
The absence of backscattering is robust, but the perfect
channel is fragile against various symmetry breaking
effects such as a magnetic field and flux,27) short-range
scatterers,28) and trigonal warping of the bands appear-
ing in higher-order k·p terms.29) Metallic nanotubes are
almost ballistic with a mean free path exceeding 1 µm
even at room temperature.30,31) A lattice vacancy with
strong and short-range potential causes an interesting
conductance quantization.32−37)

Mechanical deformation is known to modify the

band gap.38,39) In fact, the presence of a lattice distortion
can be incorporated in the k·p scheme as an effective
flux.20,31,40−42) It is also shown in the k·p scheme that
the nonzero curvature causes an effective flux.20,40,43)

Recent experiments on the conductance in metallic nano-
tubes are understood by taking a small gap induced by an
effective flux into account.22,44) Nanotubes millimeters
long synthesized recently by a water-assisted technique
is likely to show a diffusive behavior.4)

In this paper, we shall calculate the Boltzmann
conductivity in the k·p scheme and explore effects of AB
flux on transport properties of nanotubes in the diffusive
region. In §2, the k·p scheme is reviewed very briefly.
Some examples of explicit results of the conductivity
in the presence of flux are presented in §3 for impurity
scatterings and in §4 for the electron-phonon scattering,
demonstrating a possibility to directly determine a small
gap present in metallic nanotubes experimentally. The
results are discussed in §5 and summarized in §6.

§2. Effective-Mass Approximation

2.1 Energy bands and wave functions

The structure of a two-dimensional graphite is
shown in Fig. 1 together with the first Brillouin zone and
coordinate systems to be used in the following. In a two-
dimensional graphite, two bands having approximately a
linear dispersion cross the Fermi level (chosen at ε = 0)
at K and K’ points of the first Brillouin zone. Electronic
states of the π-bands near a K point are described by the
k·p equation:17,20,45)

γ(σxk̂x + σy k̂y)F (r) = εF (r), (2.1)

where γ is a band parameter, σx and σy are the Pauli

spin matrices, and k̂ = (k̂x, k̂y) = −i∇ is a wave-vector
operator. Two components of the wave function F (r)
correspond to the amplitude at A and B sites in a unit
cell.

The structure of a nanotube is specified by a chiral
vector L corresponding to the circumference as shown in
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Fig. 1. It is written as

L = naa+nbb, (2.2)

in terms of two integers na and nb, where a and b are the
primitive translation vectors of a graphite sheet. In the
following we shall choose the x axis in the circumference
direction and the y axis in the axis direction, i.e., L =
(L, 0), where L is the circumference. The angle η
between L and the horizontal axis is called the chiral
angle. Electronic states of a nanotube with a sufficiently
large diameter are obtained by imposing the boundary
conditions around the circumference direction:

F (r+L)=F (r) exp(2πiΦ), (2.3)

where Φ=−ν/3 with integer ν =0 or ±1 determined by

na+nb = 3M +ν, (2.4)

with integer M . Metallic and semiconducting nanotubes
correspond to ν =0 and ±1, respectively.

A nonzero curvature causes a shift in the origin of
k̂x and k̂y in the k·p Hamiltonian. The shift in the y
direction is irrelevant and that in the x direction can be
replaced by an effective flux ϕs. The flux was estimated
as20,43)

ϕs =
2π

4
√

3

a

L
p cos 3η, (2.5)

with a being the lattice constant of the two-dimensional
graphite, p = 1−(3/8)γ′/γ, γ =−(

√
3/2)V π

ppa, and γ′ =

−(
√

3/2)(V σ
pp−V π

pp)a, where V π
pp (=−γ0) and V σ

pp are the
conventional tight-binding parameters for neighboring
p orbitals.43) The curvature effect is largest in zigzag
nanotubes with η=0 and absent in armchair nanotubes
with η=π/6.

The presence of a lattice distortion u = (ux, uy, uz)
causes also an effective flux. It is estimated as31)

ϕs =
Lg2

2πγ
[(uxx−uyy) cos 3η−2uxy sin 3η], (2.6)

where uµν (µ, ν =x, y) denotes the lattice strain given by

uxx =
∂ux

∂x
+

2πuz

L
, uyy =

∂uy

∂y
, 2uxy =

∂ux

∂y
+

∂uy

∂x
,

(2.7)
and g2 is the electron-phonon interaction energy given
by g2 = (α/2)γ0 with α ∼ 1, where γ =

√
3aγ0/2.31,42)

This shows that twist and stretch deformation give rise
to nonzero flux in armchair η = π/6 and zigzag η = 0
nanotubes, respectively.

In the presence of such flux ϕs due to finite curvature
and strain, we have Φ=ϕe with

ϕe = −ν

3
+ ϕs. (2.8)

In the presence of flux φ due to a magnetic field parallel
to the axis, further, we have

Φ = ϕ + ϕe, (2.9)

where ϕ = φ/φ0 with the magnetic flux quantum φ0 =

ch/e. An effective flux, defined by

φe = ϕeφ0, (2.10)

is used also in the following.
The energy bands are specified by s = ±1, integer

n corresponding to the discrete wave vector along the
circumference direction, and the wave vector k in the axis
direction, where s = +1 and −1 denote the conduction
and valence bands, respectively. The wave function for
a band associated with the K point is written as

F K =
1√
2AL

(

bϕ+ϕe
(n, k)
s

)

exp [iκϕ+ϕe
(n)x + iky],

(2.11)
where A is the tube length,

κϕ+ϕe
(n) =

2π

L
(n+ϕ+ϕe), (2.12)

and

bϕ+ϕe
(n, k) =

κϕ+ϕe
(n)−ik

√

κϕ+ϕe
(n)2 + k2

. (2.13)

The corresponding energy is given by

ǫs
ϕ+ϕe

(n, k) = sγ
√

κϕ+ϕe
(n)2+k2. (2.14)

The energy bands and wave functions for the K’ point
are obtained by replacing k̂y by −k̂y and in the boundary
conditions ϕe by −ϕe. Correspondingly, we have κ′ =
κϕ−ϕe

(n) and b′=bϕ−ϕe
(n, k)

∗
.

Figure 2 shows an example of the energy dispersion
of the band n = 0 near the Fermi energy for small ϕe.
In the absence of magnetic flux ϕ, as shown by dotted
lines, the energy dispersions are the same between the
K and K’ points with gap 2|ϕe|(2πγ/L). When ϕe > 0,
the gap diminishes at the K’ point by applying ϕ, while
it increases at the K point, as shown by solid lines. The
Fermi wave-number in the axis direction is denoted by
k0 for the K point and k′

0 for the K’ point, with

k0 =
√

(ε/γ)2−κ2
ϕ+ϕe

,

k′
0 =

√

(ε/γ)2−κ2
ϕ−ϕe

,
(2.15)

for the Fermi energy ε, where

κϕ±ϕe
≡ κϕ±ϕe

(0), (2.16)

for simplicity. When the electron concentration is suffi-
ciently small, the K point or the K’ point is depopulated
by electrons for sufficiently large magnetic flux ϕ. At
ϕ=ϕe, the dispersion becomes completely linear at the
K’ point. The same thing happens for the K point at
ϕ=−ϕe.

The conductivity is evaluated under two different
conditions, fixed energy and electron density. The latter
is expected to be more appropriate for long nanotubes
exhibiting diffusive conduction. The electron density
is characterized by the average Fermi wave number k+

defined by

k+ =
1

2
(k0+k′

0). (2.17)

2.2 Effective potential of impurity

Most of scatterers including charged centers are



Conductivity in Carbon Nanotubes with AB Flux Page 3

expected to be characterized by a potential with range
larger than the lattice constant a. For such scatterers,
the Hamiltonian is given by a diagonal matrix for both
K and K’ points, and matrix elements between K and
K’ points are safely neglected.23) These scatterers will
be called long-range although their potential range can
be comparable to the lattice constant and therefore can
actually be much shorter than the electron wavelength
typically of the order of the nanotube circumference. In
the following, we shall confine ourselves to the case that
the potential range of long-range scatterers is sufficiently
smaller than the circumference. In this case we can
replace the potential of each scatterer by a delta function
with strength uL.

When the potential range becomes shorter than the
lattice constant, the potential for A and B sub-lattice
points in a unit cell can be different and matrix elements
between K and K’ points can no longer be neglected.
As such scatterers, we shall consider those with po-
tential range much smaller than the lattice constant
and strength uS, giving rise to the same amplitude for
scattering within the K and K’ points and for scattering
between the K and K’ points. These scatterers are called
short-range in the following.

In the lowest Born approximation the scattering
strength for long- and short-range scatterers is char-
acterized by the dimensionless quantity WL and WS ,
respectively, with

WL =
nL〈|uL|2〉

4πγ2
, WS =

nS〈|uS |2〉
4πγ2

, (2.18)

where nL and nS are the concentration of long- and
short-range scatterers in a unit area, respectively.28) In
the following, we shall fix the total strength W with

W = WL + WS , (2.19)

and vary the parameter δ defined by

δ =
WS

W
, (2.20)

in order to see effects of short-range scatterers.28)

2.3 Effective potential for phonon

The electron-phonon interaction is considered in a
continuum model for long-wavelength acoustic phonons.
An effective Hamiltonian for the electron-phonon inter-
action for the K point is given by31)

Hel-ph =

(

V1 V2

V ∗
2 V1

)

, (2.21)

with

V1 = g1(uxx+uyy),

V2 = g2e
3iη(uxx−uyy+2iuxy),

(2.22)

where the strain tensor is defined in eq. (2.7). The
Hamiltonian for the K’ point is obtained by replacing
V2 with −V ∗

2 and V ∗
2 with −V2. The diagonal term

represents coupling through the deformation potential g1

and the off-diagonal coupling g2 through the bond-length

change. It has been shown that g1≫g2.
31) Note that eq.

(2.6) is derived easily from eq. (2.21).
Phonons contributing to the electron scattering are

described well by the potential-energy functional

U [u] =

∫

dxdy
1

2
{B(uxx+uyy)

2+µ[(uxx−uyy)
2+4u2

xy]},
(2.23)

where B and µ are the bulk and shear modulus, respec-
tively. An elastic scattering approximation is employed,
because the phonon velocity is much slower than the
electron. Further, a high-temperature approximation
is used for the phonon distribution function. Then,
the relaxation time due to electron-phonon scattering
becomes independent of the chirality η.31)

2.4 Boltzmann conductivity

In this study, we calculate the Boltzmann conduc-
tivity

σ =
e2

πh̄

∑

m

Λm(ε), (2.24)

where Λm(ε) is the mean free path.27,46) It satisfies the
transport equation

∑

m′

(Km−m′+−Km+m′+)Λm′(ε) = 1, (2.25)

where m and m′ denote the bands crossing the energy ε,
and +(−) the wave vector corresponding to the positive
(negative) velocity in the y direction. The kernel for the
transport equation is given by

Kνµ =
A〈|Vνµ|2〉
h̄2|vνvµ|

, (2.26)

for ν 6=µ, where vµ is the velocity of mode µ≡(m±) and
〈· · ·〉 denotes an average over impurities or a thermal
average. The diagonal elements are defined by

Kµµ =−
∑

ν 6=µ

Kνµ. (2.27)

§3. Impurity Scattering

3.1 Conductivity

When a magnetic flux is present, the occupation of
the bands varies and some bands can be depopulated by
electrons completely. First, we shall consider the case
that such depopulation does not occur and the lowest
conduction band is occupied by electrons for both K and
K’ points. In this case the Fermi energy ε is related to
k+ given by eq. (2.17) through

ε =
2πγ

L

√

[

1+
(2πϕe

k+L

)2]

ϕ2 + ϕ2
e +

(k+L

2π

)2

. (3.1)

This shows that ε increases with the magnetic flux ϕ.
The conductivity is given by

σ(ϕ) =
e2

πh̄
(ΛK +ΛK′

), (3.2)

where ΛK and ΛK′

are the mean free path for the K and
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K’ points. For the K point, we have

1

ΛK
=

1

ΛK
L

+
1

ΛK
S

,

1

ΛK
L

=
2πW (1 − δ)

L

κ2
ϕ+ϕe

k2
0

,

1

ΛK
S

=
2πWδ

L

(

1+
κ2

ϕ+ϕe

k2
0

)1/2

×
[(

1+
κ2

ϕ+ϕe

k2
0

)1/2

+
(

1+
κ2

ϕ−ϕe

k′
0
2

)1/2]

,

(3.3)

where ΛK
L and ΛK

S are contributions of long- and short-
range scatterers, respectively. The results for the K’
point, ΛK′

, ΛK′

L , and ΛK′

S , are given by exchanging k0

and k′
0 and replacing ϕe with −ϕe.

The absence of backward scattering23) corresponds
to the divergence of ΛK

L at ϕ=−ϕe and ΛK′

L at ϕ=+ϕe,
giving rise to infinitely large conductivity in the absence
of short-range scatterers, i.e., δ=0. At these values of the
flux, therefore, the mean free path and the conductivity
of the corresponding point are determined by scattering
by short-range scatterers.

3.2 Metallic nanotubes

In metallic nanotubes, the effective flux is very
small, i.e, |ϕe|≪1, and therefore the condition ϕ=+ϕe

or ϕ = −ϕe can be reached easily using a conventional
magnet. In the vicinity of ϕ = −ϕe, for example, the
mean free path for the K point is written as

1

ΛK
=

2πW

L

( 2π

Lk0

)2

(1−δ)[(ϕ+ϕe)
2+∆ϕ2], (3.4)

with

∆ϕ =

√

δ

1−δ

Lk0

2π

(

1+
[

1+4ϕ2
e

( 2π

Lk′
0

)2]1/2)1/2

. (3.5)

Therefore, the mean free path exhibits a Lorentzian-like
peak at ϕ = −ϕe with width ∆ϕ. The condition that
σ(ϕ) has actually a peak can be obtained approximately
by the condition σ(ϕe) > σ(0) as ∆ϕ <

√
2|ϕe|. For

Lk+/2π ≫ |ϕe|, for example, we have k0 ≈ k′
0 ≈ k+ and

therefore the condition for the peak appearance becomes
√

δ/(1−δ)(Lk+/2π)< |ϕe|.
When

√

δ/(1−δ)(Lk+/2π)≫|ϕe|, the contribution
of long-range scatterers can be neglected safely and the
conductivity is given by

σ(ϕ) =
e2L

2π2h̄Wδ

(

1+
κ2

ϕ+ϕe

k2
0

)−1/2(

1+
κ2

ϕ−ϕe

k2
0

)−1/2

.

(3.6)
This does not exhibit any peak structure at ϕ∼±ϕe, but
rather decreases with the increase of ϕ and approaches
the value independent of ϕ and ϕe,

σ(ϕ) → e2L

2π2h̄Wδ
. (3.7)

for Lk+/2π≫|ϕe|.
Figure 3 shows some examples of the conductivity

for δ=0.01 as a function of ϕ/ϕe with the fixed electron
density. A prominent peak appears for the small electron

density k+. Note that, results for a fixed Fermi energy
are similar to those for the fixed density in this region of
the electron density.

Figure 4 shows the conductivity for several values
of δ at (k+L/2π)/ϕe = 5. For δ = 0 the conductivity
diverges at ϕ = ϕe. For nonzero δ, the peak appears
and its height decreases with the increase of δ. The
peak disappears around δ =0.04, in agreement with the
condition obtained above.

3.3 Semiconducting nanotubes

In semiconducting nanotubes, the effective flux is
given by ϕe ≈ ±1/3 (± depending on the structure).
It is almost impossible to reach this amount of the
flux using conventional magnets for which ϕ ≪ 1. We
can discuss only whether the flux tends to increase or
decrease the conductivity. The first derivative dσ/dϕ at
ϕ=0 vanishes identically because dΛK/dϕ and dΛK′/dϕ
cancel each other, and therefore we have

σ(ϕ) = σ(0) +
1

2
σ′′(0)ϕ2 + . . . . (3.8)

When the electron concentration is not extremely large
we have Lk+/2π≪1/3. In this case, we have

σ′′(0) =
4e2

πh̄W

2π

L

1−4δ−δ2

(1+δ)3
1

k2
+

, (3.9)

for a fixed electron density. It is positive for δ<
√

5−2=
0.236 . . . and negative otherwise.

It is concluded, therefore, that a usual semiconduct-
ing nanotube exhibits a positive magnetoconductivity,
its amount being strongly dependent on the electron
concentration. Only dirty semiconducting nanotubes
containing large amount of short-range scatterers exhibit
a negative magnetoconductivity. The tendency that
dominant long-range scatterers cause a positive magne-
toconductivity, while short-range scatterers cause a neg-
ative magnetoconductivity, corresponds to the behavior
of the peak structure in metallic nanotubes, discussed in
the previous section.

3.4 Band depopulation

When the electron concentration is small and the
band edge of K and K’ points cross the Fermi level as a
function of the flux, the conductivity exhibits a singular
behavior depending strongly on whether the electron
density or the Fermi level is fixed. Several examples of
calculated Fermi energy are shown with the fixed electron
densities as a function of the magnetic flux for ϕe >0 in
Fig. 5. The band edges γ|κϕ−ϕe

| and γ|κϕ+ϕe
| are also

shown by thin solid and dotted lines, respectively. Only
the K’ point is populated in the region between the solid
and dotted thin lines, and both K and K’ points are
populated above the dotted thin lines. Near the band
edges, the corresponding energy strongly depends on the
magnetic flux.

The conductivity under the condition of a fixed
energy and a fixed electron density are shown in Figs.
6 and 7, respectively. At a critical flux the conductivity
vanishes due to the divergence in the scattering probabil-
ity caused by the infinite density of states characteristic
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of the one-dimensional system. Beyond this flux the K
point is depopulated completely and electrons are only
in the band associated with the K’ point. Apart from
this singular behavior, the conductivity has a general
tendency to exhibit a peak at ϕ=ϕe (also at ϕ=−ϕe).

§4. Electron-Phonon Scattering

In the presence of the electron-phonon interaction
eq. (2.21), where the scattering is only within the K point
or K’ point, we have the conductivity

σ(ϕ) =
e2

πh̄
(ΛK +ΛK′

), (4.1)

with

1

ΛK
=

2π

L

kBT

γ2

[g2
1

B

κ2
ϕ+ϕe

k2
0

+
g2
2

µ

(

1+
κ2

ϕ+ϕe

k2
0

)]

, (4.2)

and ΛK′ obtained by replacing κϕ+ϕe
with κϕ−ϕe

and
k0 with k′

0. When only a single valley is occupied,
the conductivity is given by its contribution alone. For
ϕ=ϕe =0, in particular, this expression is reduced to

σA =
e2

h

2Lγ2µ

g2
2kBT

, (4.3)

obtained previously.31)

Figure 8 shows the conductivity of a metallic nano-
tube as a function of the magnetic flux under the condi-
tion of a fixed electron density for g1/g2 =10 and B/µ=
3/

√
2.31) A peak with height ∼ σA/2 appears at ϕ=ϕe

when the electron density is low. With the increase of
the electron density, the peak becomes less prominent
and disappears around (k+L/2π)/(φe/φ0) ∼ 10. This
behavior is very similar to the case of the impurity
scattering in Fig. 3 for δ = 0.01. The conductivity
approaches σA for sufficiently large electron density. The
figure contains also some results for a small electron
density [(k+L/2π)/ϕe =1, 0.5, and 0.25] for which the K
or K’ valley is depopulated with the increase of the flux.
No singular behavior appears even in such a case.

In semiconducting nanotubes with ϕe ≈ ±1/3 and
k+L/2π≪1, we have eq. (3.8) with

σ′′(0) = σA
2Bg2

2

Bg2
2+µg2

1

( 2π

k+L

)2

. (4.4)

Therefore, a semiconducting nanotube almost always
exhibits a positive magnetoconductivity and its amount
is strongly dependent on the electron concentration.

§5. Discussion

An effective flux due to the curvature of a nanotube
(eq. (2.5)) is estimated as ϕs∼0.05×p cos3η for a typical
nanotube with L∼5 nm with a parameter |p|<1.43) This
flux is the greatest in the zigzag tubes with η=0, followed
by chiral tubes, and is nonexistent in the armchair tubes
with η = π/6, as confirmed by an experiment with
numerical simulations.22) An effective flux appears in
the presence of uniaxial stress as well as a hydrostatic
pressure because of eq. (2.6). The total effective flux can
vary among different nanotubes although their structure

is the same. The present calculation shows that the
effective flux can be measured directly by a sharp peak
as a function of the applied magnetic flux in metallic
nanotubes. In fact, the flux can be as large as φ/φ0 =
5 × 10−3 at 10 T for a typical nanotube with L∼5 nm.

The sharpness of the conductivity peak as a function
of the flux is sensitive to the electron density and the
amount of short-range scatterers. The electron density
may be controlled by a gate voltage and therefore a
careful analysis of the gate-voltage dependence in the
presence of a flux can give important information on
dominant scatterers in metallic nanotubes.

At a room temperature, electron-phonon scattering
constitutes the main origin of the resistivity, and the
conductivity is likely to exhibit a peak structure as
a function of an applied flux in metallic nanotubes.
A careful analysis of possible gate-voltage dependence
can reveal the relative strength of the electron-phonon
interaction through a deformation potential and a bond-
length change.

In metallic nanotubes with linear dispersion, effects
of electron-electron interaction of a Tomonaga-Luttinger
type47−53) can be important and may modify the flux
dependence. The fact that the conductivity exhibits a
sharp peak as a function of a magnetic flux is expected
to be valid even if such interaction effects are considered.

Whether we have positive or negative magnetocon-
ductivity in semiconducting nanotubes in the presence
of a flux can depend on the change in the strength of
screening effects. The static screening constant in the
long-wavelength limit is determined by the density of
states

D(ϕ) =
h̄

γ

(

1+
κ2

ϕ+ϕe

k2
0

)1/2

+
h̄

γ

(

1+
κ2

ϕ−ϕe

k′
0
2

)1/2

= D(0) +
1

2
D′′(0)ϕ2 + . . . .

(5.1)

For ϕe≈±1/3 and k+L/2π≪1, we have

D′′(0) ≈ 4

27

h̄

γ

( 2π

k+L

)5

, (5.2)

under the condition of a fixed electron density. The
second derivative is positive also under the condition of
a fixed energy. Thus, the screening has a tendency to
be enhanced due to flux. For the conductivity, however,
screening for the wave number 2k+ is important. The
logarithmic divergence of the screening function at 2k+

is known to be responsible to a power-law tempera-
ture dependence of the conductivity.54,55) This screening
problem in the presence of flux is left for a future study.

§6. Conclusion

We have calculated the Boltzmann conductivity in
carbon nanotubes in the presence of a magnetic flux in
the k·p scheme. A gap induced by strain or curvature
effects can be identified as a peak in the conductivity by
applying an Aharonov-Bohm flux in metallic nanotubes.
The peak corresponds to the absence of backscattering
in metallic nanotubes with no effective flux. Various
information on curvature and strain effects and the rela-
tive amount of short-range scatterers can be obtained by
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careful measurement of the conductivity in the presence
of the magnetic flux and by changing the electron den-
sity through a gate voltage. Semiconducting nanotubes
exhibit a positive magnetoconductivity and its amount
increases with the decrease of the electron concentration.
Experiments along these lines are highly desired.
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Figure Captions

Fig. 1 (a) Lattice structure of a two-dimensional
graphite sheet. The coordinates (x′, y′) are fixed
on the graphite sheet and (x, y) are chosen in such a
way that x is along the circumference and y is along
the axis. η is the chiral angle. (b) The first Brillouin
zone and K and K’ points. (c) The coordinates for
the nanotube. An Aharonov-Bohm flux φ is applied
in the axis direction of the nanotube.

Fig. 2 A schematic view of the bands near the Fermi
energy. In the absence of a magnetic flux shown
by dotted lines, the energy gaps of 4πγ|ϕe|/L are
present at the K and K’ point. As shown by solid
lines, the band gap diminishes at the K’ point
and increases at the K point in the presence of
magnetic flux φ for ϕe > 0. k0 and k′

0 are the
Fermi wave-number measured from K and K’ points,
respectively.

Fig. 3 Calculated Boltzmann conductivity for several
values of the electron density k+, when electrons

occupy the lowest conduction band of the K and K’
points. The ratio of the short-range scatterers is
chosen as δ=0.01.

Fig. 4 Boltzmann conductivity for several values of δ
for the electron density (k+L/2π)/ϕe =5.

Fig. 5 The Fermi energy as a function of the magnetic
flux ϕ = φ/φ0 for several values of the electron
density k+ for ϕe > 0. The band edges are shown
by thin lines, where solid and dotted lines are for
K’ and K point, respectively. Only the K’ point is
populated in the region between the solid and dotted
thin lines and both K and K’ points are populated
above the dotted thin lines.

Fig. 6 Boltzmann conductivity with fixed Fermi energy
at low concentrations.

Fig. 7 Boltzmann conductivity with fixed electron
density at low concentrations.

Fig. 8 Calculated conductivity dominated by electron-
phonon scattering as a function of the AB flux ϕ
for several values of the fixed electron density. The
phonon parameters are g1/g2 =10 and B/µ=3/

√
2.
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