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1. Introduction

Carbon nanotubes are regarded as ballistic conductors. In
metallic nanotubes, in particular, the backward scattering is
entirely suppressed for scatterers with potential range larger
than the lattice constant of a two-dimensional graphite and
the conductance is quantized into 2e2=�h� .1–3) When several
bands are occupied, a perfectly conducting channel trans-
mitting through the system without being scattered back is
present.4) It is known that scanning tunneling microscopy
(STM) and spectroscopy (STS) are a powerful technique
for directly viewing electronic wave functions at the
atomic level. Quite recently multi-probe STM was devel-
oped.5–14) In this paper, we calculate two-probe STM image
to explicitly visualize interference effects in ballistic carbon
nanotubes.

STM measurements have been conducted to observe the
electronic wavefunctions in carbon nanotubes.15,16) Energy-
dependent interference patterns in the wavefunctions were
observed in nanotubes shortened to less than 40 nm.16)

Numerical calculations were made on electronic states and
STM images in a finite carbon nanotube.17,18) Topographical
STM images have been calculated within a tight-binding
model and the appearance of the honeycomb structure
has been demonstrated in infinitely long nanotubes.19,20)

The tight-binding calculation has been applied to investi-
gate native defects in carbon nanotubes,21) and effects of tip
shape.22) Orbital magnetic moments were shown to be
induced in carbon nanotubes placed between STM probes.23)

In this work, we shall calculate the conductance between
two STM probes in carbon nanotubes and demonstrate
the importance of interference effects. In §2, a model and
method of calculation are discussed together with a realistic
model of STM probes, and the appearance and disappear-
ance of interference patters due to the presence of K and K0

points are discussed. Numerical results are presented in §3.
A discussion and summary are given in §4.

2. Formulation

2.1 Preliminaries
Figure 1(a) shows the structure of two-dimensional (2D)

graphite or graphene, two primitive translation vectors a
and b, and three vectors �l (l ¼ 1; 2; 3) connecting nearest-
neighbor atoms. A unit cell contains two carbon atoms

denoted as A (open circle) and B (closed circle). The origin
of the coordinates is chosen at a B site, i.e., a B site is
given by RB ¼ naaþ nbb and an A site is RA ¼ naaþ
nbbþ � with na and nb being integers and � � �1 ¼
ðaþ 2bÞ=3. In the coordinate system ðx0; y0Þ fixed onto the
graphene sheet, we have a ¼ að1; 0Þ, b ¼ að1=2;

ffiffiffi
3
p
=2Þ, and

� ¼ að0; 1=
ffiffiffi
3
p
Þ, where a ¼ 0:246 nm is the lattice constant.

In the following we use a tight-binding model with a nearest-
neighbor hopping integral ��0.

In a 2D graphite, two bands having approximately a linear
dispersion cross the Fermi level at corner K and K0 points
of the first Brillouin zone. The wave vectors of the K and
K0 points are given by K ¼ ð2�=aÞð1=3; 1=

ffiffiffi
3
p
Þ and K0 ¼

ð2�=aÞð2=3; 0Þ. For states in the vicinity of the Fermi level
" ¼ 0, the wavefunction is written as24)

 AðRAÞ ¼ eiK�RAFK
AðRAÞ þ ei�eiK0�RAFK0

A ðRAÞ;

 BðRBÞ ¼ �!ei�eiK�RBFK
B ðRBÞ þ eiK0�RBFK0

B ðRBÞ;
ð2:1Þ

in terms of the slowly-varying envelope functions FK
A ,

FK
B , FK0

A , and FK0

B . Then, in the vicinity of the K point, for
example, they satisfy the k�p equation:

�ð� � k̂kÞFKðrÞ ¼ "FKðrÞ;
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Fig. 1. (a) Lattice structure of a two-dimensional graphite sheet. The

coordinates are chosen in such a way that x is along the circumference of

a nanotube and y is along the axis. � is the chiral angle. (b) A schematic

view of a carbon nanotube with two STM tips modeled by 1D wires. (c) A

model of the STM tip and the carbon nanotube with a � orbital on a

carbon atom at R. � is the normal distance of the STM tip to the

nanotube.

Journal of the Physical Society of Japan

Vol. 77, No. 2, February, 2008, 024703

#2008 The Physical Society of Japan

024703-1

http://dx.doi.org/10.1143/JPSJ.77.024703
http://dx.doi.org/10.1143/JPSJ.77.024703


FKðrÞ ¼
FK

AðrÞ
FK

B ðrÞ

 !
ð2:2Þ

where � ¼
ffiffiffi
3
p

a�0=2 is the band parameter, k̂k ¼ ðk̂kx; k̂kyÞ ¼
�ir is a wave vector operator, " is the energy, and �x and �y
are the Pauli spin matrices.

In nanotubes, the coordinate system ðx; yÞ will be chosen
in such a way that the x axis is in the chiral direction, i.e., the
direction along the circumference or the chiral vector L, and
the y axis in the direction of the axis. In metallic nano-
tubes, the k�p equation is solved under a periodic boundary
condition in the x direction. The wave function for the
linear bands at " ¼ 0 is independent of the position and
given by

FK�ðrÞ ¼
1ffiffiffiffiffiffiffiffiffi
2LA
p

�i

1

� �
; ð2:3Þ

FK0�ðrÞ ¼
1ffiffiffiffiffiffiffiffiffi
2LA
p

�i

1

� �
; ð2:4Þ

where L ¼ jLj, A is the length of the nanotube, and the upper
and lower signs correspond to right and left-going waves,
respectively.

2.2 Interference between K and K0 points
In this work, we consider an armchair nanotube with

L ¼ 2naþ nb with integer n and chiral angle � ¼ ��=2,
which is metallic without depending on L. We consider the
conductance between two STM tips in an infinitely long
nanotube as illustrated in Fig. 1(b). In this case, we have

 AðRAÞ ¼ eiK�RAFK
AðRAÞ � i eiK0 �RAFK0

A ðRAÞ; ð2:5Þ

 BðRBÞ ¼ i! eiK�RBFK
B ðRBÞ þ eiK0�RBFK0

B ðRBÞ: ð2:6Þ
First, we consider traveling wave with " � 0 injected from

the B site RB ¼ 0. We may approximately take the lowest
order of the coupling between the STM tip and carbon
atoms, because the coupling is usually very weak. The
injected electron equally propagates to both right and left
directions, because of the symmetry of the configuration.
Further, the wavefunction of the injected electron is
decomposed into those at the K and K0 point with the same
amplitude. Then, eq. (2.6) shows that on the right hand side
of the injection point RB ¼ 0, where the envelope functions
become

FKðrÞ ¼ �i!�1�FKþðrÞ;

FK0 ðrÞ ¼ �FK0þðrÞ;
ð2:7Þ

with � being the amplitude. Upon substitution of the above
into eqs. (2.5) and (2.6), we have

 AðRAÞ ¼
�ffiffiffiffiffiffiffiffiffi
2LA
p ðei�=3eiK�RA þ eiK0�RA Þ

¼ i

ffiffiffiffiffiffiffi
2

LA

r
� ei�na sin

�

3
ðna � 2nbÞ

� �
;

 BðRBÞ ¼
�ffiffiffiffiffiffiffiffiffi
2LA
p ðeiK�RB þ eiK0�RB Þ

¼
ffiffiffiffiffiffiffi
2

LA

r
� ei�na cos

�

3
ðna � 2nbÞ

� �
:

ð2:8Þ

The conductance between the STM probe at the origin and
that at RB is approximately proportional to the probability
density j BðRBÞj2. It becomes the maximum / 2�2 for

na � 2nb ¼ 3m with an integer m and becomes / ð1=2Þ�2
for na � 2nb ¼ 3m� 1. The probability density at A sites
vanishes for na � 2nb ¼ 3m and / ð3=2Þ�2 for na � 2nb ¼
3m� 1.

The sites ~RR ¼ naaþ nbb satisfying na � 2nb ¼ 3m with
integer m form a honeycomb lattice. Its basis vectors can
be chosen as ~aa ¼ �a� 2b and ~bb ¼ 2aþ b as shown in
Fig. 1(a), for example, and therefore the lattice constant isffiffiffi

3
p

a and the area of the unit cell is 3�0 with �0 ¼ ð
ffiffiffi
3
p
=2Þa2

being the area of the original honeycomb lattice spanned
by the basis vectors a and b. The maximum conductance is
observed when two STM probes couple to atoms on this
enlarged lattice for both A and B sublattices. This Kekulé
pattern is a result of the interference of traveling waves at
the K and K0 points as clearly shown in eq. (2.8). This so-
called Kekulé pattern also appears in the wavefunction
around a single vacancy25) and a cap.26)

Next we consider two interesting cases of injection
through several atoms. It has been shown that the k�p
equation has a special symmetry valid in metallic nano-
tubes.27) We consider transformation � defined as

� :

FK
Aðx; yÞ

FK
B ðx; yÞ

FK0

A ðx; yÞ

FK0

B ðx; yÞ

0
BBBB@

1
CCCCA!

þiFK
B ð�x; yÞ

�iFK
Að�x; yÞ

þiFK0

B ð�x; yÞ

�iFK0

A ð�x; yÞ

0
BBBB@

1
CCCCA: ð2:9Þ

This operation � commutes with the Hamiltonian and the
boundary condition in metallic nanotubes. Because �2 is an
identity, � has eigenvalues p ¼ �1, which is called parity.
The physical meaning of this symmetry is clear in armchair
nanotubes. The transformation � is nothing but a mirror
reflection around the y axis. In metallic nanotubes, the states
are classified by the parity, i.e., FKþ and FK0� have parity
p ¼ �1, while FK� and FK0þ have parity p ¼ þ1.

It is possible in a special case to inject electron into one
of the states with a parity. If a wave is injected from two
neighbor sites at RB and RB þ �1 aligning in the circum-
ference direction with the same amplitude, the injected
symmetric state has the parity p ¼ þ1. Thus, the wave
traveling in the positive y direction consists only of the K0

point and that in the negative y direction consists only of the
K point. As a result, there is no interference between the K
and K0 points and the resulting conductance does not exhibit
a Kekulé pattern but that due to the original lattice.

On the other hand, the injection into the anti-symmetric
(p ¼ �1) state is achieved, for examples, when the same
waves are injected from a B site at RB and two A sites at
RB þ �2 and RB þ �3. In fact, because

� �0

X3

l¼1

 AðRB þ �lÞ ¼ " BðRBÞ � 0; ð2:10Þ

for " � 0, the equal injection from these two A sites
corresponds to the injection with opposite sign of the
wavefunction from the A site at RB þ �1. In this case, the
wave traveling in the positive y direction consists only of the
K point and that in the negative y direction consists only of
the K0 point. As a result, the conductance again does not
exhibit a Kekulé pattern but that due to the original lattice.
These features manifest themselves in the actual STM
images shown in the next section.
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2.3 Tip model
Next, we consider a more realistic model of a nanotube

with curvature and an STM tip with coupling to several
carbon atoms. First, we assume that each � orbital is
oriented in the direction perpendicular to the curved cylinder
surface and possible lattice distortion due to curvature is
completely neglected. An STM tip is located on the surface
of a cylinder with the same axis as the nanotube radius and
with a fixed distance �. The STM tip is modeled by a chain
of s-like atoms with nearest neighbor hopping integral �t
and the Fermi energy being fixed at the center of the one-
dimensional band. An actual STM tip usually has a radius
larger than the atomic distance and therefore the present
model may be too simple. Effects associated with this
complication will briefly be discussed in §5.

The hopping integral between the tip s atom and a �
orbital at R of the tube is given by sp Slater–Koster
form:19,20)

tR ¼ t0wR exp �
dR

�

� �
cos �R;

wR ¼ expð�	2d2
RÞ

X
R0

expð�	2d2
R0 Þ

" #�1

;

ð2:11Þ

where dR is the distance between the tip atom and the carbon
atom, �R is the angle with the orientation of the � orbital as
shown in Fig. 1(c). This model hopping integral with
parameters � ¼ 0:085 nm, 	�1 � 0:13 nm, and � ¼ 0:5 nm
has been introduced in previous works,19,20) in which the
asymmetry between A and B carbon atoms in multi-layer
graphite28) has successfully been reproduced. This hopping
integral has a strong tendency to pick up contributions of
carbon atoms lying closest to the tip because of the weight
factor wR. The tip–sample coupling depends on the cur-
vature of nanotubes and therefore the deviation from the
hexagonal symmetry valid in 2D graphite is significant in the
so-called (10,10) nanotube with L=a ¼ 10

ffiffiffi
3
p

for which
actual numerical calculations are performed.

In order to deal rigorously with the infinite nanotube, we
solve numerically a scattering problem in a finite nanotube
between two STM probes connected at both ends to semi-
infinite nanotubes. We calculate the transmission probability
between these two STM tips. In terms of the transmission
probability T , the conductance G is given by G ¼ ðe2=�h� ÞT
using the Landauer formula. In actual calculations we
consider the so-called (10,10) nanotube with L ¼ 10

ffiffiffi
3
p

a,
and choose fixed parameters t0=�0 ¼ �10, t=�0 ¼ 1, and
" ¼ 0.

3. Numerical Results

In the following, the left STM tip is fixed at several points
on the lines shown in Fig. 2 and the right tip is continuously
swept over the wide region. The actual coordinates of the
left tip are given in Table I.

Figure 3 shows the conductance for varying the position
of the right STM tip when the left tip is fixed at points ‘‘a’’ to
‘‘f’’ shown in Fig. 2. The position of the left tip is denoted by
an open circle, but its actual position is shifted by ð0; �45Þa
in the coordinate system ðx; yÞ shown in the Fig. 1(a) and
therefore is quite far from the right tip position. Because the
distance between two tips is much larger than the circum-

ference, the contribution only of traveling modes is domi-
nant and therefore the conductance varies periodically in all
the cases.

When the left tip is on top of site B1 denoted by ‘‘a’’ in
Fig. 2, the conductance exhibits a clear Kekulé pattern and
follows the simplified estimation presented in §2. In fact, the
conductance is largest at B sites ~RRB related to the left-tip
atom by the basis vectors ~aa and ~bb. Further, it is the second
largest at A sites ~RRB þ �2 and ~RRB þ �3, the third largest at B
sites other than ~RRB, and minimum at A sites ~RRB þ �1. With
the increase in the displacement ‘‘b’’ and ‘‘c’’ corresponding
to (b) and (c), respectively, this Kekulé pattern becomes
weaker.

When the amount of the shift in the circumference x

direction reaches 0:63� a=
ffiffiffi
3
p

as in Fig. 3(d), the left tip
couples almost equally to the B site at the origin and two
of the neighboring A sites through �2 and �3. In this case,
only the traveling wave with p ¼ �1 is injected into FKþ

and the Kekulé pattern disappears as has been mentioned in
§2. Because the traveling wave is anti-symmetric between
neighboring A and B sites along the circumference, the
conductance vanishes when the right STM tip is located
between them. Such destructive interference does not occur
between neighboring A and B sites in other directions
because their phase difference is e��i=3. As a result, the

a

b
c
d
e
f gh

i
j

B1

A3A2

B2

A1

B3

τ1

τ3
τ2

k
l

m
n

A4

Fig. 2. The left STM-tip positions for which the STM image of the right

tip is calculated. The actual coordinates are given in Table I.

Table I. The coordinates of the left STM tip shown in Fig. 2 and the

maximum values of the conductance, Gmax, used for plotting Figs. 3–5.

ffiffiffi
3
p

�x=a 3�y=a
Gmax

(10�10e2=�h� )

(a) 0 0 9.9

(b) 0.25 0 7.1

(c) 0.5 0 3.2

(d) 0.63 0 1.6

(e) 0.75 0 1.2

(f) 1.0 0 0.24

(g) 0.9 0.1 0.60

(h) 0.8 0.2 1.4

(i) 0.7 0.3 2.4

(j) 0.6 0.4 3.8

(k) 0.25 0.75 6.2

(l) 0.125 0.375 8.1

(m) �0:25 0 8.3

(n) �0:5 0 4.2
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conductance takes a stripe-like pattern consisting or parallel
lines in the axis direction.

In Fig. 3(e), a Kekulé pattern is recovered although weak.
In this case, the coupling of the left STM tip to two A sites at
�2 and �3 is the largest. However, the conductance is not
maximum when the right tip is at corresponding A sites
related through the basis vectors ~aa and ~bb, but maximum at
other A sites. This is to be expected because the injection
from these two A sites is equivalent to the injection with
opposite sign of the wavefunction from the other A site at �1,
as mentioned in §2.

In Fig. 3(f), the left STM tip is located at the center of
a hexagon. Because of the mirror symmetry, electron is
injected only into the right-going wave at K0 point with
p ¼ 1 and thus the Kekulé pattern disappears. The con-
ductance is the largest at the middle of neighbor carbon
atoms along the circumference, due to constructive interfer-
ence of wavefunctions at these atoms with the same phase.
Such strong constructive interference does not occur along
�2 or �3, where a phase difference is 2�=3 between the
nearest-neighbor atoms.

Figure 4 shows the results for varying the position from
‘‘g’’ to ‘‘l’’ shown in Fig. 2. As shown in (g), the slight shift
of the left tip near the center of the hexagon gives rise to a
drastic change in the conductance pattern. This happens due
to the variation of interference because the couplings to
several carbon atoms are comparable. With the increase in
the deviation from the hexagon center, the image varies
continuously from (g) to (k). In (k), in particular, the left

STM is located above the middle of them �3=2, where the
couplings of the STM tip to two neighbor carbon atoms are
the same. In this case, the Kekulé pattern is shown with
maximum at translational symmetry position of these two
atoms. In (l), while the left tip shifts toward the initial B site,
calculated conductance becomes similar to Fig. 3(a), where
the coupling to the B site dominates.

Figure 5 shows the results for the left tip at ‘‘m’’ and ‘‘n’’
shown in Fig. 2. With the deviation of the left tip from the B
site to the neighboring A site in the direction �1, the Kekulé
pattern becomes weaker as shown in (m). When the tip is at
the middle of the A and B site as in (n), the mirror symmetry
is recovered and the conductance is qualitatively the same as
Fig. 3(f) without the Kekulé interference.

4. Discussions and Conclusions

The numerical results presented in the previous section
shows that a Kekulé pattern appears in the conductance of
two STM tips due to interference of waves associated with K
and K0 states. This fact is expected to prevail in all metallic
nanotubes other than the armchair type considered here.
Further, in special cases where an electron is injected into a
single propagating state classified by the parity in the k�p
scheme, such interference pattern disappears. This fact is
also not limited to armchair nanotubes. In fact, the injection
to a single parity state is shown to be possible for arbitrary
chirality as discussed in Appendix.

An actual STM tip usually has a radius larger than the
atomic distance and therefore the tunneling process may be
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Fig. 3. Calculated conductance as a function of right

STM tip position for the left-tip position from ‘‘a’’ to

‘‘f’’ of Fig. 2. The left STM tip is fixed above a

position denoted by a open circle, but its actual

position is at ð0;�45Þa in the coordinate system

and therefore is quite far from the right tip. The

conductance is shown by the density in the

maximum listed in a Table I as plot range.
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much more complicated than discussed in the present model.
In fact, the tunneling current injected into a carbon atom of
the nanotube is likely to pass through the closest atom on the
tip surface. The relevant tip atom can be different for each
carbon atom depending on the detailed structure of the STM
tip and may even vary with a slight movement of the tip
position.

Although the injection into a single parity state is pos-
sible even in such a case, the tip position is likely to be
different from that obtained above and vary depending of
the local atomic structure of the tip. Therefore, a very
precise control of the tip position is required for the
observation of STM image without a Kekulé pattern
resulting from the injection into a single parity state. Further
improvement of the spatial resolution in the multi-tip STM
measurement may be required for the observation of the

appearance and disappearance of interference effects pre-
dicted in this paper.

In summary, we have calculated numerically the con-
ductance between two STM probes in an armchair nanotube.
The STM probes have been modeled with sp Slater–Koster
hopping terms. It has been shown that a Kekulé pattern
usually appears due to interference between traveling waves
at K and K0 points. We also find special cases that the
Kekulé pattern disappears when the electron wave is injected
into a single K or K0 point. It is also interesting to study the
similar problem in semiconducting nanotubes and in a
narrow graphene ribbon. Those are left for a future study.
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Appendix: Disappearance of Interference

We have shown that the injection into a single parity state
is possible in armchair nanotubes in §2. Here we extend
our argument to nanotubes with arbitrary chirality. As
the simplest example, we consider the case that an STM
tip weakly couples with three neighboring carbon atoms.
Consider first the right-going wave at the K point FKþ with
parity p ¼ �1 given by eq. (2.5). The wave function at a B
site denoted by B1 with RB and those at three neighboring A
sites denoted by Al with RB þ �l (l ¼ 1; 2; 3) are

 AðRB þ �lÞ ¼ eiK�ðRBþ�lÞ �iffiffiffiffiffiffiffiffiffi
2LA
p ;

 BðRBÞ ¼ �!ei�eiK�RB
1ffiffiffiffiffiffiffiffiffi
2LA
p :

ðA:1Þ

Therefore, the phases of  AðRB þ �lÞ relative to  BðRBÞ
are z1 ¼ ie�i� for A1, z2 ¼ i!e�i� for A2, and z3 ¼ i!�1e�i�

for A3. These points are plotted together with z0 ¼ 1 cor-
responding to B1 in a complex plane in Fig. A·1. The chiral
angle has been chosen in the region 0 	 � < �=6.

For this choice the triangle consisting of B1, A1, and
A2 contains the origin. By moving A1 to A01 along the
line OA1 and A2 to A02 along OA2 in appropriate manner,
we can construct a triangle B1A01A02 in such a way that its
center-of-mass is at the origin. Let A01 and A02 be the distance

between the origin and the points A01 and A02. Then, we
obviously have

 AðRB þ �1ÞA01 þ  AðRB þ �2ÞA02 þ  BðRBÞ ¼ 0: ðA:2Þ

At a point satisfying the condition that the coupling to these
three sites A1, A2, and B1 corresponds to A01�, A

0
2�, and �,

respectively, with appropriate value of �, the electron is
not injected into FKþ but into FK0þ only, and therefore no
interference pattern appears in the STM image. A similar
condition can be written down for the right-going wave FK0þ

at the K0 point and we can find out the position where the
electron is not injected into this traveling wave.
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Fig. A�1. The phases of B1, A1, A2, and A3 of the right-going wave at the

K point in a complex plane. The phase of B1 has been chosen as real and

positive. The origin is inside the triangle B1A1A2 for 0 	 � < �=6. We

can construct the triangle B1A01A02 with its center-of-mass point at the

origin by choosing A01 on line OA1 in such a way that C2 on line A2O is at

the center of A01B1 and then A02 in such a way that C1 on line A1O is at the

center of A02B1.
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