
Thermopower of a Quantum Dot in a Coherent Regime

Takeshi NAKANISHI1;2;3 and Takeo KATO3

1National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568
2CREST, JST, Kawaguchi, Saitama 332-0012

3Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581

(Received August 25, 2006; revised December 15, 2006; accepted December 18, 2006; published March 12, 2007)

Thermoelectric power due to coherent electron transmission through a quantum dot is theoretically
studied. In addition to the known features related to resonant peaks, we show that a novel significant
structure appears between the peaks. This structure arises from the so-called transmission zero, which is
characteristic of coherent transmission through several quantum levels. Because of sensitivity to the
phase-breaking effect in quantum dots, this novel structure indicates the degree of coherency in the
electron transmission.
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1. Introduction

Understanding electron transport through quantum dots
(QDs) has been of great importance in the recent develop-
ment of quantum-state engineering in semiconductor heter-
ostructures. Although most experiments have focused on
conductance, thermoelectric power (TEP) also gives useful
information about the transport processes through QDs. The
sequential tunneling theory predicts a sawtooth-shaped TEP
oscillation as a function of gate voltage at high temperatures
in a Coulomb blockade regime,1) while cotunneling proc-
esses are expected to suppress TEP between Coulomb
blockade peaks at low temperatures.2) These predictions
have been confirmed in recent experiments of QDs fab-
ricated in two-dimensional electron gases3–5) and single-wall
carbon nanotubes.6,7) In the previous theoretical studies of
TEP, only incoherent tunneling processes have been con-
sidered. Therefore, it remains an unsolved problem how
coherent electron transmission affects the TEP oscillations.

Coherent electron transport through QDs has first been
revealed by conductance measurement of a QD embedded
in an Aharonov–Bohm (AB) interferometer.8–10) In the
experiments, it has been shown that a transmission phase
of electrons changes by � at each resonant peak in
accordance with a Breit–Wigner model. This indicates that
most electrons retain their coherency during the transmission
through QDs.

Here, let us focus on one important feature in the
experiments of the transmission phase.8–10) A surprising
and unexpected finding in these experiments is that the phase
of two adjacent peaks are the same. This indicates that the
transmission phase has to change by � also at another point
between the peaks, even though conductance shows no
detectable feature there. In order to explain this intriguing
phenomenon called a ‘‘phase lapse,’’ a substantial body of
theoretical work has been presented.11–16) One of the key
ideas for the phase lapse was proposed by Lee.13) By general
discussion based on the Friedel sum rule, he showed that
vanishing of the transmission amplitude, called a trans-
mission zero, may occur at a specific energy in quasi-1D
systems with the time-reversal symmetry. He claimed that
the abrupt jump of the transmission phase originates from

this transmission zero. The existence of the transmission
zero has been confirmed in simple noninteracting mod-
els.14,15,17) Recently, it has been shown that the transmission
zeros survive even in the presence of Coulomb interaction
within the Hartree approximation.18)

In this paper, we study TEP due to coherent electron
transmission through a QD using a noninteracting model.
We show that, in addition to the known TEP oscillation, a
novel structure appears at the transmission zero, while no
clear feature is observed in conductance there. The condition
for appearance of this structure is discussed in the multilevel
QD systems. We also show that this novel structure is
suppressed by weak phase breaking of electrons in QDs.
These features provide us with useful information about the
coherency of electrons being transported through the QD.

The outline of this paper is as follows. In §2, we formulate
the TEP of a QD on the basis of the Landauer formula. An
artificial lead is also introduced to describe the phase
breaking of electrons in the QD. In §3, we calculate TEP as a
function of the chemical potential, and discuss the character-
istic structures near the transmission zeros. Finally, the
results are summarized in §4.

2. Thermoelectric Power of a Quantum Dot

2.1 Formulation of thermoelectric power
In a coherent regime, the conductance and TEP of

mesoscopic systems are given by the Landauer formu-
la,3,19–25)

Gð�; TÞ ¼
e2

�h�

Z
d" Tð"Þ �
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with a transmission probability Tð"Þ and a chemical potential
� in leads. Here, the derivative of a Fermi distribution
function f is given by �ð@ f =@"Þ ¼ ð4kBTÞ�1 cosh�2ðð"�
�Þ=2kBTÞ. TEP is rewritten as S ¼ �h�i=ðeTÞ, where h�i is
an average of an internal energy � ¼ "� �. Hence, TEP can
be interpreted as a measure of an asymmetry in the
transmission probability Tð"Þ near the Fermi energy in the
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range of the thermal broadening kBT . Here, we should note
that the enhancement of TEPs is expected if transmission
zeros [Tð"Þ ¼ 0] are located near the Fermi level, because
the denominator of eq. (2.2) becomes very small at low
temperatures. Throughout this paper, the exact expression
(2.2) is used for the calculation of TEPs.

Here, we comment on the Mott formula.26) The Mott
formula has been used widely for analysis of the TEP
measurements.3–7) It is derived by the Sommerfeld expan-
sion of eqs. (2.1) and (2.2) up to the first order of T as

SMð�;TÞ ¼ �
�2k2

BT

3e

1

Gð�; TÞ
@Gð�; TÞ
@�

: ð2:3Þ

In the Mott formula, it is assumed that the TEP is determined
only by the asymmetry of conductance at the Fermi energy.
It is a good approximation as long as the product
Tð"Þ½�@ f =@"� is sufficiently large near the Fermi energy.
The Mott formula is, however, not applicable to the case
where the asymmetry of the product far from the Fermi level
makes a significant contribution. In the present study, the
Mott formula gives correct results at low temperatures, while
it shows clear deviation from the exact result (2.2) at much
higher temperatures than a resonant width of quantum levels
in a QD. In the Appendix, we will discuss the validity of
the Mott formula in detail and give a new ‘‘extended’’ Mott
formula, which always reproduces the correct TEP of
noninteracting systems with arbitrary transmission proba-
bility Tð"Þ.

2.2 Model Hamiltonian
We study TEP in a coherent regime using the model

Hamiltonian

H ¼
X

"k;�C
y
k;�Ck;� þ

X
j

"jd
y
j dj

þ
X
k;�; j

½V�; jCyk;�dj þ H.c.�;
ð2:4Þ

where operators Ck;� refer to electronic states in left ð� ¼ LÞ
and right ð� ¼ RÞ leads, and operators dj ( j ¼ 1; . . . ;N) to
quantum states in the QD. In the presence of the time-
reversal symmetry, we can take real coupling strengths
fV�; jg. The model for N ¼ 2 is schematically shown in Fig. 1
(the role of the reservoir will be explained in the next
subsection). For this noninteracting model, the transmission
coefficient can be expressed in terms of Green’s function in a
matrix form.17) From the transmission coefficient, conduct-
ance eq. (2.1) and TEP eq. (2.2) are calculated by numerical
integration.

2.3 Phase-breaking effect
In reality, there is always some inelastic or phase-breaking

scattering. Effects of phase breaking can be studied by
adding one fictitious voltage probe � ¼ F connected to a
reservoir.21,22,28) Here, we only consider the two-level case
(N ¼ 2) with the coupling VF;1 ¼ V 0 and VF;2 ¼ V 0 expði�Þ
(see Fig. 1). For simplicity, the phase factor � is taken as
�.29) The chemical potential of the reservoir is determined by
the condition that the current through the fictitious voltage
probe vanishes. This condition is necessary to make this
voltage probe play a role of simple phase breaking and to
avoid other effects coming from current flow between the
QD and the reservoir. Then, conductance is given by28)

G ¼
e2

�h�
TRL þ

TRFTLF

TRF þ TLF

� �
; ð2:5Þ

with
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where T��0 ð"Þ is the transmission probability from lead �0 to
�. For the symmetric case TLFð"Þ ¼ TRFð"Þ, TEP is easily
calculated with the effective transmission probability TRL þ
TLF=2 in eq. (2.2). Although phase breaking is considered in
the minimal model, which should be improved for quanti-
tative comparison with experiments, we can examine the
crossover from a fully coherent regime to an incoherent one.

3. Results

3.1 Two-level case
We start with the two-level case (N ¼ 2) for the

symmetric coupling V�; j ¼ Vj ( j ¼ 1; 2) in the absence of
the phase-breaking effect. The transmission coefficient is
calculated as

tð"Þ ¼
�1 þ �2

D
ð"� "0Þ; ð3:1Þ

where

D ¼ ð"� "1Þð"� "2Þ þ ið�1 þ �2Þð"� "0Þ; ð3:2Þ

with �i ¼ 2�jVij2� and the density of states � in the leads.
The transmission probability Tð"Þ ¼ jtð"Þj2 vanishes at a
specific energy "0 ¼ ð�1"2 þ �2"1Þ=ð�1 þ �2Þ between the
resonant peaks at " ¼ "1 and "2. This point is called a
transmission zero.

Figure 2 shows conductance calculated for �1 ¼ 2�2 ¼ �

at several temperatures. Two resonant peaks with the Breit–
Wigner line shape are shown at "1 ¼ �50� and "2 ¼ 50�.
Although the transmission zero is located at � ¼ "0 ¼
50�=3 (indicated by the arrow in the figure), it is not clearly
seen in conductance.

TEP calculated for the same parameter set is shown
in Fig. 3. Around the conductance peaks, " ¼ �50� and
" ¼ 50�, TEP shows a linear dependence on the Fermi
energy with a slope dS=d� ¼ 1=ðeTÞ. Far from the con-
ductance peaks, TEP deviates from this linear dependence,
and decreases as the temperature decreases. These features
can be understood on the basis of the sequential-tunneling
and cotunneling theories1,2) as explained in §3.3. The most
unique finding is the additional sharp structure around the
transmission zero (� ¼ "0 ¼ 50�=3, indicated by the arrow

VL,2

Lead LeadVL,1

VR,2

VR,1

VF,1VF,2

Reservoir

Dot

Fig. 1. A system composed of two ideal leads and a quantum dot. The

reservoir connected to the dot is introduced to describe the phase-

breaking effect.
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in the figure). We can relate this structure to the vanishing
transmission amplitude as follows. By expanding the trans-
mission amplitude around the transmission zero by "� "0,
and using the Mott formula justified at low temperatures, the
TEP is obtained to be approximately

SMð�; TÞ � �
�2k2

BT

3e

2ð�� "0Þ
ð�� "0Þ2 þ �2k2

BT
2=3

: ð3:3Þ

This form fits the result shown in Fig. 3 at low temperatures.
From eq. (3.3), it can be shown that TEP takes maximum
and minimum values at � ¼ "0 � �kBT=

ffiffiffi
3
p

as

SMax � ��kB=
ffiffiffi
3
p

e; ð3:4Þ

in the low-temperature limit. For high temperature ��
kBT � � � "2 � "1, one observes a sawtooth-like shape
as predicted by the sequential tunneling theory.1) The
interference effects responsible for the transmission zero
are smeared out due to the thermal broadening, and TEP
vanishes at the middle point between "1 and "2 regardless of
the position of the transmission zero.

Next, we replace the coupling for level 2 with an
asymmetric one (VR,2 ¼ �VL,2 ¼ V2) leaving level 1 sym-
metric (VL,1 ¼ VR,1 ¼ V1). Then, the transmission coeffi-
cient becomes the difference of two Breit–Wigner line
shapes as

tð"Þ ¼
�1

"� "1 þ i�1

�
�2

"� "2 þ i�2

; ð3:5Þ

and therefore the transmission amplitude never vanishes in
the region between "1 and "2. Reflecting the disappearance
of the transmission zero, the TEP has no structure between
the resonant peaks. Thus, the appearance of the novel
structure in TEP between the resonant peaks is related to the
sign of the couplings.

In general, the transmission probability vanishes between
the j-th and ð jþ 1Þ-th conductance peaks for the case that
the relative coupling sign, �j � signðVL; jVR; jVL; jþ1VR; jþ1Þ,
equals þ1, while no transmission zero appears for �j ¼
�1.14,15,17) Hence, the appearance of the novel structure
between the j-th and ð jþ 1Þ-th conductance peaks depends
only on the relative coupling sign �j. We demonstrate this by
studying the multilevel case in the next subsection.

3.2 Multilevel case
Figure 4 shows an example of the multilevel case at low

temperature kBT ¼ 0:2�. The conductance peaks at "j=� ¼
500ð j� 3Þ for j ¼ 1; . . . ; 5 correspond to the levels in the
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Fig. 2. Conductance with resonant peaks at "1 ¼ �50� and "2 ¼ 50�

for several temperatures, kBT=� ¼ 0:2 (solid line), 1 (dotted line), 2

(dashed line), and 5 (dot-dashed line). The vertical arrow indicates the

transmission zero.
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Fig. 3. Thermoelectric power for the same parameter set as that used

for the conductance shown in Fig. 2. The vertical arrow indicates the

transmission zero.
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Fig. 4. Conductance and thermoelectric power of a dot with five quantum

levels coupled to leads with the coupling strengths defined in the text

(for kBT ¼ 0:2�).
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QD with the couplings V�;1 ¼
ffiffiffi
2
p

V , V�;2 ¼
ffiffiffi
5
p

V , and
V�;3 ¼ V�;5 ¼ V for � ¼ L, R, while VL,4 ¼ V and VR,4 ¼
�V , where � ¼ 2�jVj2�. TEP for the same parameter set
shows, in addition to small spikes corresponding to the
conductance peaks, sharp structures with an amplitude 	
ð�=

ffiffiffi
3
p
ÞðkB=eÞ at the transmission zeros, " 	 �860� and

�80�. These structures are observed between the con-
ductance peaks of j ¼ 1 and 2, and also between those
of j ¼ 2 and 3, because the relative coupling signs take
�j ¼ þ1 for j ¼ 1; 2. On the other hand, no sharp structure is
found between other adjacent peaks, because �j ¼ �1 for
j ¼ 3; 4. Thus, the appearance of the structures between
resonant peaks can be related to the relative coupling
signs, which gives the phase information of a wave function
in the QD.

In general, observation of the transmission zeros in
conductance measurement is rather difficult. For example,
in the ordinary lead-dot-lead configuration, it is difficult to
identify the transmission zeros in the region where the
conductance is exponentially suppressed far from the con-
ductance peaks. In principle, in a hybrid structure with an
AB ring, the zero transmission can be detected by the abrupt
jump of the transmission phase.13) The actual analysis for
this type of hybrid systems, however, is highly complicated,
since the whole system consisting of a reference arm and QD
should be considered as one resonator; For example, the
interference within the AB ring significantly affects con-
ductance.12,16,27) Compared with conductance measurement,
observation of the transmission zeros by using TEP may
have an advantage because both measurement and analysis
are simple.

3.3 Phase-breaking effect
Let us now discuss the phase-breaking effect on TEP. The

strength of phase breaking can be controlled by the coupling
�0 ¼ 2�jV 0j2�0 with the density of states �0 in the fictitious
probe. Figure 5 shows the TEP of a QD with two quantum
levels (N ¼ 2) for several values of �0, where we chose
�1 ¼ �2 ¼ �, "1 ¼ �50�, and "2 ¼ 50� as a typical
example. With the increase in the degree of phase breaking,
the structure at the transmission zero (� ¼ "0 ¼ 0) is
suppressed, because the destructive interference between
two possible paths through the two levels in the QD, which
is responsible for the transmission zero, is sensitively
diminished by the loss of coherency. On the other hand,
the small spikes corresponding to the conductance peaks are
not changed so much by the phase breaking, because the
conductance peak, which is determined by one dominant
path through one quantum level, is insensitive to the
perturbation caused by the coupling with the reservoir as
long as �0 � �.

For large phase breaking, it is expected that the higher-
order processes with respect to the coupling V�; j can be
neglected, and that only the lowest-order ones representing
the sequential-tunneling and/or cotunneling process make
the main contribution. Then, the calculation in a coherent
regime can be related to the known theory based on these
two tunneling processes as follows.1,2) Far from the resonant
peaks, TEP is determined dominantly by the inelastic
cotunneling process, which predicts the chemical-potential
dependence of TEP as2)

Sco ¼
k2
BT

e

4�2

5

1

�� "1
þ

1

�� "2

� �
: ð3:6Þ

This expression, which is drawn using the thin solid line in
Fig. 5, explains well the behavior of TEP for large phase
breaking except at the vicinity of the conductance peaks.
The cotunneling theory breaks down near the conductance
peaks, where the sequential tunneling process becomes
dominant.2) Around the conductance peaks, the slope
dS=d� ¼ 1=ðeTÞ is predicted from the sequential tunneling
theory1) in the quantum limit U � �, where U and � are a
Coulomb interaction in the QD and a level spacing,
respectively.30) This predicted slope near the resonant peaks
is consistent with all the results of TEP for weak or moderate
phase breaking. For large phase breaking (�0 & �), the
slope becomes smaller than 1=ðeTÞ due to broadening of the
conductance peaks.

The cotunneling theory discussed above does not work for
a small level spacing �, where the higher-order processes
are more important. We show such an example of the TEP
for a small level spacing � ¼ 10� ("1 ¼ �5� and "2 ¼ 5�)
in Fig. 6. The feature of cotunneling, which removes the
structure around the transmission zero as expected from
eq. (3.6), is not found even for large phase breaking, and
more complicated behavior is observed. The phase breaking
decreases the TEP in a wide range of the Fermi energy,
while the structure at the transmission zero is suppressed by
phase breaking more gradually than that for � ¼ 100� in
Fig. 5. This global change of TEP due to phase breaking
may suggest the possibility of actual observation of electron
coherency in QDs.

In order to clarify the behaviors of TEP around the
transmission zero, we consider the perturbation theory with
respect to the coupling V�; j. The whole transmission
probability including the phase-breaking effect is evaluated
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Fig. 5. Phase-breaking effect on thermoelectric power at low temperature

kBT ¼ 0:2� for several phase-breaking strengths: �0=� ¼ 0 (dotted line),

0.01 (dashed line), 0.1 (dot-dashed line), and 1 (dot-dot-dashed line).

The thin solid line shows the thermoelectric power predicted by the

cotunneling theory [eq. (3.6)].
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around the transmission zero (" ¼ 0) up to the fourth order
with respect to V�; j as

Tð"Þ �
8��0

�2
þ

64�ð�þ �0Þ
�4

"2; ð3:7Þ

for �, �0 � �. The first term proportional to ��2 describes
the incoherent cotunneling process, which leads to a finite
value of the transmission amplitude at " ¼ 0. The trans-
mission zero in coherent transport appears as a result of the
destructive interference between two paths, each of which
corresponds to the coherent transmission through each level
in the QD. This interference process starts with the fourth
order perturbation with respect to V�; j. As a result, the
coherent part responsible to the transmission zero appears in
the second term in eq. (3.7), and is proportional to ��4.
From the expansion (3.7), the slope of TEP at the trans-
mission zero can be calculated at low temperatures as

dSM

d�

����
�¼"0
� �

kB

e

16�2kBT

3�2

�

�0
þ 1

� �� �
; ð3:8Þ

which approximates well the slopes at � ¼ 0 in Figs. 5 and
6. In the limit �0 ! 1, the slope agrees with that of the
cotunneling theory.2) Within this approximation, the peak
height is proportional to ðkB=eÞðkBT=�Þð1þ �=�0Þ1=2 at low
temperatures. Hence, a small value of � is preferable to
observe the structure at the transmission zero.

As demonstrated so far, the structure of TEP around the
transmission zero is sensitive to the phase-breaking effect.
Therefore, TEP may provide a useful tool for measuring the
coherency of electrons being transported through QDs. So
far, the coherency of transmission electrons has been
measured using the conductance of a QD embedded in an
AB ring with a magnetic field. The analysis of this system
is, however, complicated as discussed in §3.2. The TEP
measurement, which does not need either a hybrid structure
like an AB ring or an external magnetic field, may give an
alternative simple method for the study of coherency in

electron transport, in particular, for the off-resonant region
far from the conductance peaks.

4. Summary

Thermoelectric power in a fully coherent regime has been
studied theoretically. It was shown that a novel sharp
structure appears at the so-called transmission zero, at which
a transmission amplitude vanishes. The appearance of these
structures is directly related to the sign of the coupling with
leads, reflecting the phase information of wave functions in
quantum dots. It was also shown that these structures are
sensitively suppressed by weak phase breaking, and that the
calculated thermoelectric power can be interpreted on the
basis of the cotunneling theory for sufficiently large phase
breaking. It was proposed that, due to sensitivity to phase
breaking, thermoelectric power can be used to measure
the degree of electron coherency in a quantum dot, even if
the Aharonov–Bohm oscillation cannot be used due to a
fairly small amplitude. The effect of Coulomb interaction
on the thermoelectric power remains an important problem
for future study.
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Appendix: Extended Mott Formula

The Mott formula is not applicable to the case where the
asymmetry far from the Fermi energy makes an important
contribution. Actually, TEP calculated with the Mott
formula (2.3) clearly deviates from the exact formula (2.2)
at high temperature �� kBT � � in the present study. In
order to understand the deviation, we replace the trans-
mission amplitude with one with a simple form Tð"Þ ¼P

n 	ð"� "nÞ, where "n is an energy level in the QD. TEP
is calculated from eq. (2.2) as Sð�; TÞ ¼ kBð�� "NÞ=eT ,
with "N denoting a particular "n closest to a given �. On the
other hand, the Mott formula gives an incorrect result
ð�2=3Þ tanhðð�� "NÞ=2kBTÞ. Another example is a point
contact that is almost pinched off.31) In this case, the
transmission probability is given by the step function as
Tð"Þ ¼ �ð"Þ. TEP is calculated from eq. (2.2) as S ¼
ðkB=eÞ½�
�þ lnð1� f ð0ÞÞ= f ð0Þ�, while the Mott formula
(2.3) gives a different result SM ¼ ð�2=3ÞðkB=eÞð1� f ð0ÞÞ,
where f ð0Þ ¼ 1=ðe�
� þ 1Þ. Thus, we should use the Mott
formula carefully by noting its limitation.

For general noninteracting models, we can derive an exact
formula from eqs. (2.1) and (2.2) as

Sð�; TÞ ¼ �
1

e

1

Gð�; TÞ

Z �

d�0
@Gð�0;TÞ
@T

: ðA:1Þ

This ‘‘extended Mott formula’’ relates TEP to the derivative
of conductance with respect to the temperature T instead of
the chemical potential �. The same relation can be rewritten
in a derivative form as

@

@�
ðSð�; TÞGð�; TÞÞ ¼ �

1

e

@Gð�; TÞ
@T

: ðA:2Þ

Since this formula is always correct for noninteracting
systems, it will be useful for the analysis of experimental
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results. On the other hand, it may become invalid in
interacting electron systems. For example, the transmission
probability of a carbon nanotube may depend also on the
chemical potential � when the Schottky barrier is formed
at the interface between the carbon nanotube and leads.
Then, a deviation from eq. (A·1) will be observed.
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15) A. L. Yeyati and M. Büttiker: Phys. Rev. B 62 (2000) 7307.

16) A. Aharony, O. Entin-Wohlman, B. I. Halperin, and Y. Imry: Phys.

Rev. B 66 (2002) 115311.

17) A. Silva, Y. Oreg, and Y. Gefen: Phys. Rev. B 66 (2002) 195316.

18) D. I. Golosov and Y. Gefen: Phys. Rev. B 74 (2006) 205316.

19) R. Landauer: IBM J. Res. Dev. 1 (1957) 223.

20) R. Landauer: Philos. Mag. 21 (1970) 863.
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