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An effective-mass theory is developed on transport of non-doped carbon nanotubes with local
and short-range impurities in the presence of a magnetic field. The conductance is shown to be
scaled completely by the field component in the direction of impurities. In a weak-field regime,
the conductance strongly depends on strength of potential and the difference in the number of
impurities at A and B sublattices ΔNAB. In a strong-field limit, the conductance is reduced to
e2/πh̄ if impurities exist only on A or B sublattices and vanishes in all other cases. These results
are intuitively understood by localized charge distribution of the wave function in magnetic fields.

KEYWORDS: carbon nanotube, conductance, effective-mass theory, magnetic field, impurity potential

§1. Introduction

Carbon nanotubes (CN’s) are quasi one-dimensional
materials which are built by wrapping a graphene sheet
into tubes on nanometer scale.1) Electronic structure of
a single CN has been studied theoretically, which pre-
dicted that CN becomes either metallic or semiconduct-
ing depending on its chiral vector, i.e., boundary con-
ditions in the circumference direction.2-11) These pre-
dictions have been confirmed by Raman experiments12)

and direct measurements of local density of states by
scanning tunneling spectroscopy (STS).13-15) In view of
mesoscopic physics, CN’s are classified into a new kind
of quantum wires which have unique geometric and elec-
tronic structures different from conventional ones fabri-
cated using semiconductor heterostructures. The pur-
pose of this work is to study effects of short-range impu-
rities on transport of CN’s in magnetic fields based on
an effective-mass theory.
It is well known that defects play important roles

in electronic states of CN’s and graphene sheets. Ef-
fects of topological defects, i.e., five- or seven-member
rings, in nanotube junctions were calculated and a uni-
versal power-law dependence on the conductance was
shown.16-18) Electronic structure of CN’s with various
caps was also studied.19) In a graphene sheet with a finite
width, localized edge states are formed near the Fermi
level when the boundary is in a certain specific direc-
tion.20-22) In an effective-mass scheme, these defects can
often be obtained by local boundary conditions imposed
on envelope functions. For example, such edge states are
easily obtained by imposing rigid boundary conditions
along a line in a certain direction.
A point defect also leads to peculiar electronic states.

STM images of a graphene sheet, simulated in the pres-
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ence of a local point defect, showed that a
√
3×
√
3 inter-

ference pattern is formed in the wave function near the
impurity.23) This is intuitively understood by a mixing
of wave functions at K and K ′ points.
Effects of scattering on impurity potential in CN’s

were studied theoretically and it was proved that a Born
series for back-scattering vanishes identically for scatter-
ers having a potential with a range larger than the lattice
constant.24, 25) This intriguing fact was related to Berry’s
phase acquired by a rotation in the wave-vector space in
the system described by a k · p Hamiltonian.26)

The k·p scheme was extended to the study of effects of
strong and short-range impurity potentials.27) The scat-
tering matrix obtained analytically shows a rule of the
conductance quantization in the limit of strong scatter-
ers that the conductance vanishes for |ΔNAB |≥2 and is
quantized into one and two times e2/πh̄ for |ΔNAB |=1
and 0, respectively, where ΔNAB is difference in the
number of impurities at A and B sublattices. This result
is in agreement with that for the lattice-vacancy obtained
numerically in a tight-binding model.16, 28-32) See ref. 33
for a review on the effective-mass description.
In the presence of a magnetic field perpendicular to

the axis, the band structure is known to be strongly
modified due to a formation of two dimensional Lan-
dau states.34-36) This leads to various peculiar electronic
properties transport.37-39) Therefore, the mag-
netic field is expected to have a strong influence on the
conductance in the presence of short-range impurities. In
fact, the conductance in the presence of a simple lattice-
vacancy has been shown to exhibit strong dependence
on ΔNAB in a magnetic field.

28, 32) A peculiar feature
is the existence of the universal dependence on the field
component in the direction of the vacancy, which will be
called conductance scaling in the following.

including
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where uAj and u
B
j are the strength of a δ function poten-

tial at an A site rj and a B site rj , respectively, and we
have defined vectors aj and bj as

aj =
1
√
2

(
ajK

ajK′

)
=
1
√
2

(
eiφ

A
j /2

e−iφ
A
j /2

)
,

bj =
1
√
2

(
bjK

bjK′

)
=
1
√
2

(
eiφ

B
j /2

e−iφ
B
j /2

)
, (2.7)

with

φAj = (K
′ −K) · rj + η,

φBj = (K
′ −K) · rj − η + π/3. (2.8)

where K and K′ are the wave vectors at K and K ′

points, respectively.

2.2 Landau wave function at ε=0

The k·p HamiltonianH0 in the presence of a magnetic
field is related to H00 in its absence through

H0 = P (r)
−1H00 P (r)

−1, (2.9)

where P (r) is a diagonal matrix defined by

P (r) =

⎛
⎜⎜⎜⎝
e−f(α,x) 0 0 0

0 ef(α,x) 0 0

0 0 ef(α,x) 0

0 0 0 e−f(α,x)

⎞
⎟⎟⎟⎠ ,

(2.10)

with

f(α, x) = α cos
2πx

L
, (2.11)

Fig. 1. (a) Lattice structure of a graphite sheet. η is the chiral
angle. The coordinates are chosen in such a way that x is along
the circumference of a nanotube and y is along the axis. (b) The
first Brllouin zone and K and K′ points. (c) The coordinates
for a nanotube and definition of the angle θH .

within the Landau gauge, where L is the circumference
and H is the strength of the field.
We consider the impurity potential used in the former

study,27) which is given by

V =
∑
j

∑
α=A,B

V αj δ(r − rj), (2.5)

with

V Aj =

(
2uAj aja

+
j 0

0 0

)
, V Bj =

(
0 0

0 2uBj bjb
+
j

)
,

The outline of the paper is as follows: A formalism
of a perturbation approach for calculating the T matrix
in a magnetic field based on an effective-mass theory is
developed and origin of the conductance scaling is de-
scribed in the §2. In §3, we present analytical results
of magnetoconductance and give general discussions in a
weak and a strong-field limit. Results of numerical calcu-
lation using an effective-mass theory and a tight-binding
model are given in §4. Section 5 is devoted to summary
and discussion.

§2. e Mass Approximation

2.1 Hamiltonian
We show the lattice structure of a graphite sheet and

its first Brillouin zone in Fig. 1 with the definition of
coordinates. A unit cell has two carbon atoms denoted
by A and B, and L and η are chiral vector and angle,
respectively.
Electronic structure of a graphite sheet near the Fermi

level consists of π-π∗ bands. These two bands have con-
ical dispersion and touch at K and K ′ point in the first
Brillouin zone. The Shrödinger equation near the Fermi
level within an effective-mass scheme is given by

HF (r) = εF (r),

H = H0 + V, (2.1)

where H0 is a k · p Hamiltonian for an ideal graphite
sheet, V is impurity potential, and F (r) is an envelope
function. Hamiltonian is given by the following 4×4 ma-
trix,

KA K ′A KB K ′B

H0 = γ

⎛
⎜⎜⎜⎝

0 0 k̂x − ik̂y 0

0 0 0 k̂x + ik̂y

k̂x + ik̂y 0 0 0

0 k̂x − ik̂y 0 0

⎞
⎟⎟⎟⎠ ,

(2.2)

where γ is a band parameter and k̂ = (k̂x, k̂y) is a wave
vector operator defined by

k̂ = −i∇+
e

ch̄
A. (2.3)

Effect of a magnetic field is included through vector po-
tential A. In this study, we deal with a magnetic field
perpendicular to the axis. This leads to

A = (Ax, Ay) =

(
0,
LH

2π
sin
2π

L
x

)
, (2.4)

Effectiv

the

(2.6)
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by the parameter α. We have two regimes, a weak-
field regime α�1 and a strong-field regime α�1. In
the strong-field regime, F+(r) and F−(r) are localized
around x=0 and x=±L/2, i.e., top and bottom of CN’s,
respectively. Because of this localized feature of the Lan-
dau wave function, envelope functions for A and B sites
do not overlap each other in the strong-field regime. The
group velocity at ε=0 is given by

v =
h̄

γI0(α)
. (2.17)

In the following we shall mainly confine ourselves to the
case ε=0 where analytic expressions can be obtained for
the wave functions and Green’s functions. The extension
to the case ε �= 0 is straightforward except that numerical
calculations are required for wave functions and Green’s
functions.

2.3 Green’s function at ε=0

One particle Green’s function at ε = 0 is defined by

[i0−H 0]G = [i0− P
−1H00P

−1]G = 1. (2.18)

In terms of Green’s function G0 in the absence of a mag-
netic field, given by [i0−H 00]G

0=1, we have

G = PG0P. (2.19)

In r-representation, this becomes

Gjj′ = P (rj)G
0
jj′P (rj′). (2.20)

With the use of Green’s function obtained previously in
the absence of a magnetic field,27) we have explicitly

Gjj′ =
−iA

2γ

(
GAAjj′ GABjj′

GBAjj′ GBBjj′

)
, (2.21)

with

GAAjj′ =

(
g−0 0

0 g+0

)
, GBBjj′ =

(
g+0 0

0 g−0

)
,

GABjj′ =

(
g1 0

0 ḡ1

)
, GBAjj′ =

(
ḡ1 0

0 g1

)
, (2.22)

where

g±0 (rj , rj′) = exp
[
±(fj + fj′)

]
g0(rjj′),

g1(rj , rj′) = exp
[
− (fj − fj′)

]
g1(rjj′),

ḡ1(rj , rj′) = exp
[
+(fj − fj′)

]
g∗1(rjj′), (2.23)

and rjj′=rj−rj′ . The diagonal Green’s function g
±
0 rep-

resents propagation among same sublattice points and
the off-diagonal terms g1 and ḡ1 represent propagation
between different sublattices. In the above equation, we
have introduced

fj ≡ f(α, xj), (2.24)

and the diagonal and off-diagonal Green’s functions in
the absence of a magnetic field,

g0(rjj′) = 1, (2.25)

g1(rjj′) =
cos[π(x+ iy)/L]

sin[π(x+ iy)/L]
. (2.26)

with x=xj−xj′ and y=yj−yj′ . When impurities are lo-
calized within a distance of a few times of the lattice
constant, g1(rjj′) becomes extremely large. This singu-
lar behavior is the origin of the conductance quantization
of CN’s with the local lattice-vacancy which we have al-
ready discussed in the former study.27)

In the perturbation expansion of the T matrix, diag-
onal and off-diagonal Green’s functions always appear
only between matrix elements of impurities and there-
fore in the form

a+j G
AA
jj′ aj′ = (aj ,aj′) g̃

AA
jj′ ,

b+j G
BB
jj′ bj′ = (bj , bj′) g̃

BB
jj′ ,

a+j G
AB
jj′ bj′ = (aj , bj′) g̃

AB
jj′ ,

b+j G
BA
jj′ aj′ = (bj ,aj′) g̃

BA
jj′ , (2.27)

with

g̃AAjj′ = cosh[fj + fj′ ] + i sinh[fj + fj′ ] tan[φ
AA
jj′ ],

g̃BBjj′ = cosh[fj + fj′ ]− i sinh[fj + fj′ ] tan[φ
BB
jj′ ],

g̃ABjj′ =
1

2

[
g1(rjj′)e

−[fj−fj′ ]e−iφ
AB
jj′

+g∗1(rjj′)e
[fj−fj′ ]eiφ

AB
jj′
]
(ai, bj)

−1,

g̃BAjj′ =
1

2

[
g∗1(rjj′)e

[fj−fj′ ]e−iφ
BA
jj′

+g1(rjj′)e
−[fj−fj′ ]eiφ

BA
jj′
]
(bi,aj)

−1, (2.28)

where φαβjj′=(φ
α
j − φ

α
j′)/2 (α, β = A or B). This means

that we can always use g̃αβjj′ for Green’s function describ-
ing the propagation from a β site at rj′ to an α site at
rj .

α =
( L
2πl

)2
, (2.12)

and l being the magnetic length defined by l ≡
√
ch̄/eH.

With the use of the above relation between H0 and
H00, Landau wave functions at ε=0 are determined ex-
actly.37, 38) They are given by

FK±(r) =
1
√
AL
fK±(r), FK′±(r) =

1
√
AL
fK′±(r),

(2.13)

where A is the length of CN and

fK±(r) =

⎡
⎢⎢⎣
F−(r)
0

±iF+(r)
0

⎤
⎥⎥⎦ , fK′±(r) =

⎡
⎢⎢⎣

0
F+(r)
0

∓iF−(r)

⎤
⎥⎥⎦ ,
(2.14)

with

F±(r) =
1√
2I0(α)

exp [±f(α, x)] , (2.15)

and I0(z) being the modified Bessel function defined as

I0(z) =
1

π

∫
dθ exp(z cos θ). (2.16)

The effective strength of the field is characterized
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The equation for Tij is given by

Tij =
1

AL
Viδij +

1

AL
Vi
∑
k

GikTkj (2.35)

Effect of the multiple scattering from a single impurity is
exactly taken into account by introducing renormalized
potential Ṽ by

Ṽi =
[
1−

1

AL
ViGii

]−1
Vi (2.36)

Then the equation for Tij can be rewritten with use of
Ṽ as

Tij =
1

AL
Ṽiδij +

1

AL
Ṽi
∑
k �=i

GikTkj . (2.37)

In general, we can write

Tij =

(
TAAij TABij
TBAij TBBij

)
, (2.38)

in terms of (2, 2) matrices TAAij , etc.
When ε = 0, metallic CN’s always have two open chan-

nels at K and K ′ point. Therefore we can write the
scattering matrix as

S =

⎛
⎜⎜⎜⎝
rKK rKK′ t′KK t′KK′

rK′K rK′K′ t′K′K t′K′K′

tKK tKK′ r′KK r′KK′

tK′K tK′K′ r′K′K r′K′K′

⎞
⎟⎟⎟⎠ , (2.39)

where t’s and r’s are transmission and reflection coeffi-
cients, respectively.
Using the Landau wave function at ε = 0, S(1) can be

written as

S
(1)
αβ = −i

A

γ
I0(α)

∑
ij

fα(ri)
+ Tij fβ(rj), (2.40)

where summation is taken over all combination of impu-
rities. Once transmission coefficients are obtained, con-

ductance is calculated by Landauer formula,40) given by

G =
e2

πh̄

∑
μ,ν

|tμν |
2, (2.41)

where combinations of {μ, ν} are given by {K,K},
{K ′,K ′}, {K ′,K}, and {K,K ′}. The former two cor-
respond to intra-valley scattering and the latter two cor-
respond to inter-valley scattering between K and K ′

points.

2.5 Scaling of conductance
In the following we shall confine ourselves to the case

that impurities are localized within a range smaller than
circumference of CN, i.e., |rj−rj′ |�L, at ε = 0. Then,
equation (2.23) can be rewritten as

g±0 (rj , rj′) = exp[±2f0],

g1 (rj , rj′) = g1(rjj′),

ḡ1 (rj , rj′) = g
∗
1(rjj′), (2.42)

with f0 = f(α, x0), where r0=(x0, y0) is the center-of-
mass of impurities. In eq. (2.42), effects of the magnetic

with

field appear only in the diagonal Green’s function which
is determined by the local density of states at r0.
We can also replace eq. (2.40) by

S
(1)
αβ = −i

A

γ
I0(α) fα(r0)

+ TS fβ(r0), (2.43)

with

TS =
∑
ij

Tij . (2.44)

The factor I0(α) appearing in eq. (2.43) is canceled by
the normalization factor of the wave function F as in
eq. (2.15). Therefore, the magnetic field appears in
the S matrix only in the form f0 = f(α, x0). Be-
cause f(α, x0) = (L/2πl)

2 cos θH with θH = 2πx0/L,
this means that the S matrix depends only on the field
component H cos θH in the direction perpendicular to
the nanotube surface at the center-of-mass of impurities.
This is the origin of the scaling law of conductance which
we found in a previous numerical study.28, 32)

In this case, the Green’s functions are rewritten as

g̃AAjj′ = cosh[2f0] + i sinh[2f0] tan(φ
AA
jj′ ),

g̃BBjj′ = cosh[2f0]− i sinh[2f0] tan(φ
BB
jj′ ),

g̃ABjj′ = Re
[
g1(rjj′)e

−iφ̃AB
jj′
]
(aj , bj′)

−1,

g̃BAjj′ = Re
[
g∗1(rjj′)e

−iφ̃BA
jj′
]
(bj ,aj′)

−1. (2.45)

2.6 T matrix
In the following, we shall exclusively consider the case

that all impurities have a same strength, i.e., uj=u. An
extension to other cases is straightforward. By using
eq. (2.36), the renormalized impurity potential can be
written as

u→
γL

ig̃0
ζ, (2.46)

2.4 Scattering matrix

The scattering matrix can be written formally as

S = S(0) + S(1), (2.29)

with

[S(0)]αβ = δαβ , (2.30)

[S(1)]αβ = −i
A

h̄
√
vαvβ

Tαβ , (2.31)

where vα and vβ are velocity of channels α and β, re-
spectively, and T is a T matrix defined by

T = V + V GV + V GV GV + · · · = V + V GT. (2.32)

In the k-representation, eq. (2.32) becomes

Tαβ =
∑
ij

f+α (ri)Tijfβ(rj), (2.33)

with

Tij =
[(
1−

1

AL
V G
)−1 1
AL
V
]
ij
, (2.34)

where the summation is taken over impurities and Tij
is the T matrix in the r-representation.

all
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Then, the reflection coefficients are given by

(1− ζ + ζg̃−10 Γ
BB)tBB = 1− ζg̃−10 Γ

BAtAB ,

(1− ζ + ζg̃−10 Γ
AA)tAB = −ζg̃−10 Γ

ABtBB ,

(1− ζ + ζg̃−10 Γ
BB)tBA = −ζg̃−10 Γ

BAtAA, (2.51)

where we define the following matrices:

tAA = (tAAij ), t
BB = (tBAij ),

tAB = (tAAij ), t
BA = (tBAij ),

ΓAA = (ΓAAij ), Γ
BB = (ΓBBij ),

ΓAB = (ΓABij ), Γ
BA = (ΓBAij ), (2.52)

with

ΓAAij = g̃
AA
ij a

+
i aj , Γ

BB
ij = g̃BBij b

+
i bj ,

ΓABij = g̃
AB
ij a

+
i bj , Γ

BA
ij = g̃

BA
ij b

+
i aj . (2.53)

If there are NA and NB impurities at A and B site, re-
spectively, tAA and ΓAA are an (NA, NA) matrix, t

BB

and ΓBB are an (NB , NB) matrix, t
AB and ΓAB are an

(NA, NB) matrix, and t
BA and ΓBA are an (NB, NA)

matrix. In the case of a finite number of impurities, we
solve eq. (2.51) numerically and obtain T matrix using
eq. (2.50). The above equations are essentially same as
those in the absence of a magnetic field, and the magnetic
field appears mainly through the change in the diagonal
Green’s function from g0 to g̃0 = cosh[2f(α, x0)].
We write the summation of Tij as

TS =

(
TAA TAB

TBA TBB

)
, (2.54)

where TAA, TAB , TBA, and TBB are (2, 2) matrices
given by

TAA=

(
TAAKK TAAKK′

TAAK′K TAAK′K′

)
, etc. (2.55)

rKK =
−iA

2γ

(
e−2f0TAAKK−e

2f0TBBKK+iT
AB
KK+iT

BA
KK

)
,

rK′K′ =
−iA

2γ

(
e2f0TAAK′K′−e

−2f0TBBK′K′

−iTABK′K′−iT
BA
K′K′

)
,

rK′K =
−iA

2γ

(
TAAK′K+T

BB
K′K+ie

2f0TABK′K−ie
−2f0TBAK′K

)
,

rKK′ =
−iA

2γ

(
TKK

′

AA +T
KK′

BB −ie
−2f0TABKK′+ie

2f0TBAKK′
)
,

(2.56)

and the transmission coefficients are given by

tKK = 1 +
−iA

2γ

(
e−2f0TAAKK+e

2f0TBBKK+iT
AB
KK−iT

BA
KK

)
,

tK′K′ = 1 +
−iA

2γ

(
e2f0TAAK′K′+e

−2f0TBBK′K′

−iTABK′K′+iT
BA
K′K′

)
,

tK′K =
−iA

2γ

(
TAAK′K−T

BB
K′K+ie

2f0TABK′K+ie
−2f0TBAK′K

)
,

tKK′ =
−iA

2γ

(
TAAKK′−T

BB
KK′−ie

−2f0TABKK′−ie
2f0TBAKK′

)
.

(2.57)

Similar expressions are obtained for r′KK , etc. and t
′
KK ,

etc. for waves incident from the right hand side.

§3. Examples

In the following, the center-of-mass of impurities is
always chosen at r0=0 and θH=0, i.e, a top of CN’s, for
simplicity. The conductance for arbitrarily values of θH
is obtained by replacing the strength of magnetic H
by H cos θH because of the scaling shown above.

3.1 Impurities at same sublattices
We first consider the case where NA impurities are

introduced at A sites within the distance much smaller
than L. In this case, only the diagonal Green’s function
g±0 (r, r

′) appears in the perturbation series for the T ma-
trix. Because g±0 (r, r

′) does not vary with the distance
so much, it can be replaced by g±0 (r0, r0), where r0 is
the center-of-mass of impurities. As a result T matrices
are given by TAB=TBA=TBB=0 and

TAA = V AS + V
A
S G

AA
00 T

AA, (3.1)

with

V AS =
∑
j

2ũjaja
+
j , (3.2)

where GAA00 is diagonal Green’s function at the center-of-
mass of impurities. This result shows that the effective
potential for localized impurities is given by the sum of
their potentials.
We write a position of impurity at an A site as rAj =

naja+nbjb, where a and b are primitive lattice transla-
tion vectors shown in Fig. 1 and naj and nbj are integers.
For this lattice point, φAj is given by

field

g̃0 = g̃
AA
jj = g̃

BB
jj = cosh[2f(α, x0)], (2.47)

ζ =
1

1 + (2iũg̃0)−1
, (2.48)

ũ =
u

2γL
. (2.49)

An examination of perturbation series with respect to
the impurity potential reveals that the T matrix can be
written as

TAAij =
1

AL

γL

ig̃0
ζ2aia

+
j t
AA
ij ,

TBBij =
1

AL

γL

ig̃0
ζ2bib

+
j t
BB
ij ,

TABij =
1

AL

γL

ig̃0
ζ2aib

+
j t
AB
ij ,

TBAij =
1

AL

γL

ig̃0
ζ2bia

+
j t
BA
ij . (2.50)

As a result the equations for the T matrix can formally
be written as

(1− ζ + ζg̃−10 Γ
AA)tAA = 1− ζg̃−10 Γ

ABtBA,



486 Masatsura Igami, Takeshi Nakanishi and Tsuneya Ando (Vol. 70,

This shows that the conductance is given by G ≈ e2/πh̄
independent of the field in the case of a strong scatterer
|ũ|�1. In the case of A3 impurities N1 = N2 = N3 = 1
[see Fig. 2 (b)], we have N=3, M=3, and P=0. In the
absence of a magnetic field, a perfect reflection occurs
and the conductance becomes zero in the limit of strong
scatterers. In high magnetic fields, the conductance is
again quantized into e2/πh̄.

3.2 Pair of impurities: AB

We next consider two neighboring impurities at an A
site rA and at a B site rB . In this case, the T matrix
satisfies

tAA = 1− ζg̃−10 Γ
ABtBA,

tBB = 1− ζg̃−10 Γ
BAtAB ,

tAB = −ζg̃−10 Γ
ABtBB ,

tBA = −ζg̃−10 Γ
BAtAA. (3.8)

This leads to

tAA = tBB =
1

1 + (ΓABζg̃−10 )
2
,

tAB = −tBA = −
ΓABζg̃−10

1 + (ΓABζg̃−10 )
2
, (3.9)

where use has been made of ΓBA = −ΓAB .
In a weak-field regime f0 = α � 1, we have g̃0 ∼ 1

and |gAB | ∼ (L/a). In the case of strong scatterers,
therefore, the conductance is approximately given by an

ideal value 2e2/πh̄ with small corrections,

G =
2e2

πh̄

[
1−

1

(ΓAB)2
(
1 + sin2 φAB + 4f20

)]
, (3.10)

where φAB = (φA−φB)/2. The deviation from the ideal
conductance increases with the the field but its magni-
tude is quite small because (ΓAB)2 ∼ (L/a)2 � 1.
In the strong-field regime f0 � 1, the diagonal

Green’s function becomes extremely large, i.e., g̃0 =
cosh[2f0] � exp[2f0] � 1. When the condition
ΓABζg̃−10 ≈Γ

AB g̃−10 �1 is satisfied, we have t
AA=tBB�1

and tAB=−tBA�−ΓAB g̃−10 . This means that we can ig-
nore effects of off-diagonal Green’s function in the strong-
field limit. The conductance is given by

G � 8e−4f0(ΓAB)2, (3.11)

which is exponentially small.

for the conductance

G =
e2

πh̄

(
1 +

1− (3ũ2M)2

(1− 3ũ2M)2 + (2Nũg̃0)2

)
. (3.6)

The conductance is independent of the parameter P .
This shows that the conductance is always quantized

into the conductance quantum e2/πh̄ (a half of the ideal
conductance) and independent ofN andM in the strong-
field limit g̃ →∞. Its origin is intuitively understood by
the distribution of Landau wave functions along the cir-
cumference direction. In fact, the Landau wave function
at the K ′ point is mainly localized in the A site at a top
of CN’s. When impurities exist in the A site at the top of
CN’s, a scattering probability for an in-coming channel
K ′ increases due to the multiple scattering among the
A sites and consequently the in-coming wave is reflected
back into the same valley, i.e., rK′K′ = 1. At the K
point, the situation is completely opposite and the Lan-
dau wave function for the A site has no amplitude at the
top of CN’s. This leads to a complete transmission for
the wave at the K point. Therefore the conductance is
quantized into the conductance quantum in the strong-
field limit. For impurities at B sites, the same conduc-
tance is obtained except that the roles of the K and K ′

points are interchanged.

with

N = N1 +N2 +N3,

M = N1N2 +N2N3 +N3N1,

P = N1 +N2 ω +N3 ω
−1, (3.5)

where ω=exp(2πi/3). When N1=N2=N3, P vanishes
and inter-valley transmission and reflection become ab-
sent. From eq. (3.4) we obtain an analytical expression

φAj = (K
′ −K) · (naja+ nbjb) + η

=
2π

3
(naj + nbj) + η (mod 2π). (3.3)

It is obvious from eq. (3.3) that φAj takes only three in-
dependent values η, η + 2π/3 or η + 4π/3.
If there are N1 impurities with φ

A
1 =η, N2 impurities

with φA2 =η+2π/3, and N3 impurities with φ
A
3 =η+4π/3,

TAA is given by

TAA =
2γ

iA

iũ

1− 3Mũ2 + 2iNũg̃0

×

(
N+3iMũe2f0 eiηP

e−iηP ∗ N+3iMũe−2f0

)
, (3.4)

Fig. 2. Schematic illustration of impurities in an armchair nan-
otube. The open and closed circles denote A and B lattice points,
respectively. (a) A, (b) A3, (c) AB, and (d) A3B.

For a single impurity with N1 = 1 and N2 = N3 = 0,
in particular, we have

G =
e2

πh̄

(
1 +

1

1 + (2ũg̃0)2

)
. (3.7)

3.3 Impurities: ANABNB
Consider the general case NA impurities at the A site

andNB impurities at the B site, whereNA>0 andNB>0.
In the absence of a magnetic field, the conductance is
quantized into zero, one, and two times of the conduc-
tance quantum e2/πh̄ depending on the difference in the
number of impurities at A and B sublattices (ΔNAB) in
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There exists a magnetic field range where g̃0 � 1 with
g̃0 � |g̃AB | and g̃0 � |g̃BA|, because |g̃AB | ∼ |g̃BA| ∼
(L/a) � 1. In such intermediate field range, scattering
is determined by ΔNAB remaining impurities at A or B
sublattices. Therefore the conductance is given by an
expression similar to eq. (3.6) for impurities only at A
or B sublattice points. This shows that the conductance
is nearly quantized into e2/πh̄ for sufficiently strong im-
purities with |ũg̃0| � 1. For ΔNAB = 2 such as AB3
impurities to be discussed in the next section, for exam-
ple, the conductance nearly vanishes in the absence of a
magnetic field, increases and takes the value e2/πh̄ in the
intermediate field range, and then decreases and vanishes
in the limit of a strong magnetic field. For ΔNAB = 1
such as A43B42, on the other hand, the conductance stays
at ∼ e2/πh̄ for a wide range of the magnetic field and
vanishes in the high-field limit.

§4. Numerical Calculations

The local site energy V at an impurity in a tight-
binding model and the potential strength ũ in the
effective-mass theory are connected to each other by fol-
lowing relations.

u =

√
3

2
a2V, γ =

√
3

2
γ0a, ũ =

1

2

a

L

V

γ0
, (4.1)

where γ0 is a nearest-neighbor hopping integral and a is
the lattice constant. For examples, we have V/γ0 = 100,
10, 1, and 0.1 for ũ = 1, 0.1, 0.01, and 0.001, respectively,
when L/a = 50. In this section, we shall consider the
case θH=0 and ε = 0 again.
Figure 3 shows calculated conductance as a function

of a magnetic field in the presence of a single impurity
at an A site in armchair nanotubes for several ũ, where
we set L/

√
3a=30. Solid and dashed lines show results

obtained by an effective-mass theory and in a tight bind-
ing model, respectively, which show good agreement in
all range of the magnetic field. In the case of a weak
impurity potential ũ<1, the conductance decreases with
the increase of the field and approaches the conductance
quantum e2/πh̄ in the strong-field limit. In the case of a
strong impurity potential ũ�1, the conductance is quan-
tized into e2/πh̄ independent of the field. These results
are in agreement with those obtained in CN with a single
lattice-vacancy.28)

Figure 4 shows calculated transmission and reflection
probabilities in the presence of a single impurity po-
tential at an A site in armchair nanotubes for ũ=1.0.
In the weak-field regime, both intra- and inter-valley
processes occur and this leads to scattering wave with
typical

√
3×
√
3 periodicity around the impurity. In

the high magnetic field, inter-valley scattering is sup-
pressed and intra-valley transmission for in-coming chan-
nel K and reflection for K ′ have an equal amplitude, i.e.,
|tKK |=|rK′K′ |=1. Because of the peculiar wave func-
tions in a high magnetic field, we have |tK′K′ |=|rKK |=1,
if an impurity is situated at B site instead of A or when
θH=π.
Figure 5 shows calculated conductance in the presence

the case of strong scatterers and L/a � 1. This can be
understood in terms of a pair-wise elimination by mul-
tiple scattering between A and B impurities as has been
shown previously.27) The situation does not change as
long as the diagonal Green’s function g̃0 is not so much
different from unity. Corrections due to the magnetic
field can be calculated and in the case ΔNAB = 0, for
example, the correction is given by

ΔG � −
e2

πh̄
C
( a
L

)2
f20 , (3.12)

where and C is a positive constant roughly proportional
to O(NA +NB).
In the strong-field where the diagonal Green’s func-

tion becomes much larger than the off-diagonal term, we
have

tAA ≈ (1− ζ + ζg̃−1ΓAA)−1, tAB ≈ 0,

tBB ≈ (1− ζ + ζg̃−1ΓBB)−1, tBA ≈ 0. (3.13)

Since tAA and tBB are same as those for impurities at
same sites, reflection and transmission coefficients are
solved analytically and become

rKK = rK′K′ ≈ 1,

rK′K = rKK′ ≈ 0,

tKK = tK′K′ = tK′K = tKK′ ≈ 0. (3.14)

These results indicate that the conductance vanishes al-
ways in the strong-field limit independent of ΔNAB .
This can intuitively be understood again by the buildup
of the wave function at the top side of the cylindrical
nanotube in high magnetic fields. In fact, the incident
wave at the K ′ is scattered strongly by the potential at
A sites and that at the K points by the potential at B
sites.

Fig. 3. Calculated conductance as a function of a magnetic field
at ε=0 in the presence of a single impurity potential at an A
site in armchair nanotubes for several ũ. L/

√
3a=30 and θH=0.

Solid and dashed lines are results obtained by the effective-mass
theory and in a tight-binding model, respectively.
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reflection coefficients gradually increase, reach maximum
around (L/2πl)2 ∼ 1.7, and then decrease with the field.
In strong-field, the conductance vanishes and the reflec-
tion occurs within the same valley.

eq. (3.6). The conductance decreases with impurity po-
tential and vanishes in the limit ũ�1 in the absence of a
magnetic field. The field dependence is opposite between
the case ũ<1/3 and ũ>1/3 and disappears when ũ=1/3.
In the strong-field limit, the conductance is quantized
into e2/πh̄ independent of ũ. The vanishing conductance
in the limit ũ → ∞ corresponds to the case of an A3
lattice-vacancy.
Figure 6 shows calculated conductance in the pres-

ence of an AB pair impurity in armchair nanotubes with
L/
√
3a=30. In the effective-mass theory we have to in-

troduce a cutoff nc, which is determined by the con-
dition that the corresponding wave length 2π/kc with
kc = 2πnc/L should be comparable to the lattice con-
stant a. Therefore we have roughly nc ∼ L/a. In actual
calculations the cutoff is chosen as nc = 26. Because
of the singularity of the off-diagonal Green’s function,
the conductance is almost equal to G = 2e2/πh̄ in the
absence of a magnetic field. It decreases monotonically
with the field and vanishes in the strong-field limit. Fur-
thermore it does not depend on the strength of the im-
purity potential except near ũ=±ΓAB corresponding to
a resonance.27)

Calculated transmission and reflection probabilities in
the presence of an AB pair impurity in armchair nan-
otubes for ũ=1.0 are shown in Fig. 7. In the absence
of a magnetic field, the back scattering within the same
valley rKK and rK′K′ and the transmission between dif-
ferent valleys tKK′ and tK′K are absent because of a
mirror symmetry of impurities about a plane containing
the axis.18) Inter-valley components in transmission and

of A3 impurities in armchair nanotubes. In this case, the
conductance is obtained by putting N=3 and M=3 in

Fig. 5. Calculated conductance as a function of a magnetic field
at ε=0 in the presence of A3 impurities in armchair nanotubes
for several ũ. L/

√
3a=30 and θH=0. Solid and dashed lines

are results obtained by the effective-mass theory and in a tight-
binding model, respectively.

Fig. 6. Calculated conductance as a function of a magnetic field
at ε = 0 in the presence of an AB pair impurity locates along
a circumference direction in armchair nanotubes for several ũ.
L/
√
3a = 30, θH = 0 and nc = 26. Solid and dashed lines

are results obtained by the effective-mass theory and in a tight-
binding model, respectively.

Fig. 4. Calculated transmission and reflection probabilities (dot-
ted lines) and conductance (solid line) as a function of a magnetic
field in the presence of a single impurity potential at an A site
in armchair nanotubes for ũ=1.0.
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§5. Summary and Discussion

In this paper, we have studied effects of short-range
impurities on transport of CN based on an effective-mass
theory in the presence of a magnetic field perpendicular
to the axis. The results are summarized as follows:

remains at e2/πh̄ until (L/2πl)2=2∼ 3 and vanishes in
the strong-field limit. The conductance shows a sharp
resonance around ũ � 0.01 and the resonance position is
quite sensitive to various parameters including nc. This
is the origin of a large deviation between the results in
a tight-binding model and an effective-mass theory for
ũ=0.01.

Figure 8 shows calculated conductance in the pres-
ence of AB3 impurities in armchair nanotubes, where
L/
√
3a=30 and nc = 26. In the case of a weak impurity

potential ũ<1, the conductance decreases with the in-
crease field and approaches zero in the strong-field
limit. In the case of a strong impurity potential ũ>1, we
can neglect scattering from impurity at a B site because
of the singularity of the off-diagonal Green’s function in
the weak-field limit. Consequently multiple scattering
among A sites becomes dominant and the transmission
probability of in-coming channel K increases with the
field until (L/2πl)2∼2. The conductance takes nearly a
quantized values e2/πh̄ in the intermediate field region.
In the strong-field limit, we cannot ignore an impurity
at a B site. Therefore, both in-coming channels K and
K ′ are strongly scattered and the conductance vanishes.
Figure 9 shows calculated conductance for A43B42 im-

purities localized within a circle with a radius w/a�6.0
and a center at an atomic site. We have L/

√
3a=30

and nc = 26. In the case of weak potential ũ=0.01, the
conductance decreases with the increase of the field and
vanishes in the strong-field limit as in the case of sim-
pler examples. In the case of a strong impurity ũ≥1, on
the other hand, the effective scattering from the A43B42
impurities is reduced to that of a single impurity at an
A site because ΔNAB = 1. Further, the conductance

theof

Fig. 9. Calculated conductance as a function of a magnetic field
at ε = in the presence of circular site-center A43B42 impurities
in armchair nanotubes for several ũ. L/

√
3a = 30, θH = 0 and

nc = 26. Solid and dashed lines are results obtained by the
effective-mass theory and in a tight-binding model, respectively.

0

Fig. 7. Calculated transmission and reflection probabilities (dot-
ted lines) and conductance (solid line) as a function of a mag-
netic field in the presence of an AB pair impurity locates along
a circumference direction in armchair nanotubes for ũ=1.0.

Fig. 8. Calculated conductance as a function of a magnetic field
at ε = in the presence of A3B impurities in armchair nanotubes
for several ũ. L/

√
3a = 30, θH = 0 and nc = 26. Solid and

dashed lines are results obtained by the effective-mass theory
and in a tight-binding model, respectively.

0
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Green’s functions describing propagation between
same and different sublattices have different magnetic-
field and distance dependence. The former is safely re-
placed by the local density of states at the center-of-mass
of impurities r0 and depends only on the field compo-
nent in the direction of the r0, i.e, H cos θH . On the
other hand, the latter does not depend on the field and
takes an extremely large value when impurities are local-
ized within a distance of a few times of the lattice con-
stant. As a result both T and S matrices are a function of
H cos θH , leading to the conclusion that the conductance
is also a function of H cos θH . This is the origin of the
conductance scaling we found in the previous numerical
study.28)

The conductance exhibits characteristic field variation
depending critically on the number of impurities. This is
closely related to relative importance of diagonal and off-
diagonal Green’s functions at the center-of-mass of im-
purities. In the weak-field regime, where the off-diagonal
Green’s function is much larger than the diagonal term,
the conductance strongly depends on the strength of po-
tential and difference ΔNAB in the number of impurities
at A and B sublattices. In the limit of strong scatter-
ers, i.e., ũ≥1, the conductance is almost equal to ideal
2e2/πh̄ in the absence of the field and vanishes mono-
tonically with the field when |ΔNAB |=0. In the case
|ΔNAB |=1, the conductance is reduced to a half of the
ideal value and does not depend on the field in inter-
mediate fields. In the case |ΔNAB |≥2, the conductance
vanishes in the absence of a field but increases up to a
half of the ideal value in intermediate fields.
In the strong-field limit, Landau wave functions for

A and B sites are localized in a spatial region different
from each other, i.e., around a bottom and a top of CN.
Therefore, an overlap integral of envelope functions for
the A and B site becomes smaller, and we can ignore
contribution of the off-diagonal Green’s functions and
treat A and B sublattices separately. Consequently the
conductance is quantized into e2/πh̄ if impurities exist
in only A or B sites. In other cases, the conductance
always becomes zero independent of ΔNAB .
There have been some experimental efforts to synthe-

size CN with hetero atoms like boron and nitrogen. Elec-
tronic and geometric structures of B-doped multiwalled-
CN’s were studied with STS measurements and the for-
mation of a nanodomain of BC3 islands was suggested.

41)

In this system, a doped boron will act as a local impurity
in the host CN.
Effects of a single B and N atom on transport in

a (10,10)-armchair nanotube were studied using an ab
initio pseudopotential method within a Landauer for-
malism.42) It was shown that doped B and N produce
a quasi-bound impurity state at 0.70 eV below and 0.53
eV above the Fermi energy, respectively, and the con-
ductance is given by ∼ e2/πh̄ at the corresponding en-
ergy. The origin of this conductance is essentially same
as that of a single impurity case which we have already
discussed in ref. 27. In this case, the strength of the im-
purity potential is estimated as V ∼ −1.5 and 2.2 eV
for B and N, respectively, using eq. (2.77) of ref. 27 and
eq. (4.1). This impurity strength is of the same order

as that of the nearest-neighbor hopping integral γ0. For
a multi-wall nanotube with L/a=300, for example, we
have ũ=1/600 in the case V=γ0 and the magnetic field
corresponding to (L/2πl)2=1 and 5 is given by 4.9 and
24.7 T, respectively.
Another intriguing way to introduce local impurities

is fluorination of the sp2 carbon.43, 44) Electronic and
geometric structures of a fluorinated graphene sheet
are being studied using an ab initio pseudopotential
method.45) A doped fluorine makes a covalent bond with
an sp2 carbon and the charge density distribution shows
a typical

√
3 ×
√
3 structure near the Fermi level. This

means that the doped fluorine acts as a local defect in
π-electron network of a graphene sheet.
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