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CARBON NANOTUBES AS A PERFECT CONDUCTOR
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Effects of impurity scattering in carbon nanotubes (CN’s) are studied in a k-p
scheme and in a tight-binding model. The result obtained in a k-p scheme is
shown to be essentially valid, including the complete absence of back scattering
for scatterers with range larger than the lattice constant, unless the strength of
the potential becomes comparable to the band width.

1 Introduction

Carbon nanotubes! are new kinds of quantum wires topologically different
from conventional wires fabricated at semiconductor heterostructures. Further,
electronic states in the vicinity of the Fermi level are quite different from those
of free electrons. The purpose of this paper is to study effects of impurity
scattering in CN’s and to demonstrate the absence of back scattering in CN’s
except for scatterers with a potential range smaller than the lattice constant,
suggesting that CN’s can have an extremely high conductivity.

2 Effective-Mass Approximation

In a two-dimensional graphite, a unit cell contains two carbon atoms denoted
as A and B and two bands having approximately a linear dispersion cross the
Fermi level at K and K’ points of the first Brillouin Zone. Therefore, electronic
states in the vicinity of the Fermi level are described by a four-component
envelope function F(r). In the absence of an impurity, it satisfies the equation
the same as Weyl’s equation for neutrinos:?

0 kp—ik, O 0 F,{;
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0 0 kp—ik, O FE

(2.1)

where v is a band parameter, Ff and Fé{ are the envelope functions at A
and B site related to the K point, Fffl and Fé{l are those for the K’ point,
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the z axis is chosen in the circumference or chiral vector L, and y in the axis
direction.

In the presence of an impurity, the effective potential is written as®
ua(r) 0 e’y (r) 0
. 0 up(r) 0 —w eyl (r)
H = e_i"u;l(r)* 0 ua(r) 0 (2:2)
0 —wetulg (r)* 0 up(r)

where 7 is the chiral angle and w = exp(27i/3). When the potential range is
much shorter than the circumference L =|L|, we have

ua(r) = uad(r—ro), uy(r)=ul8(r—ro),

2.3
up(r) = ugd(r—ro), up(r) = ugdé(r—ro), (2.3)
with ro being the impurity position and
V3a? V3a? K — K.
Uy = 3 ZuA(RA)’ uy = 5 HK'-K) RAuA(RA),
fa Ra (2.4)
V/3a? V3a? (K —K). '
up = —5 ZUB(RB)’ wy = Tzez(K K)Reyp (Rp),
R.B 1‘-B

where v/3a?/2 is the area of a unit cell, ua(R4) and up(Rpg) are the impurity
potential at site R4 and Rp, respectively, and K and K’ are the wave vector
at the K and K’ points.

In the vicinity of € =0, we have two right-going channels K+ and K’+, and
two left-going channels K— and K’—. The matrix elements are calculated as®

1
Vkik+ = Vkieki4 = '2-(:|:UA +ug), 25)
2.5

L, :
-1_- /
Vikiry = Vigipgy = §(q:uAe“7 —wT e M),

When the impurity potential has a range larger than the lattice constant, we
have ug =up and v/, and uz become much smaller and can be neglected be-
cause of the phase factor iK' =K)Ry4 an( ¢!(K'-K)Rs  This means that inter-
valley scattering between K and K’ points can be neglected for such impurities
as in the conventional k-p approximation. Further, the above shows that the
back scattering probability within each valley vanishes in the lowest Born ap-
proximation. It has been proved mathematically that all back-scattering terms
in the Born series vanish identically.® This has been ascribed to a spinor-type
property of the wave function under a rotation in the wave vector space.*
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Fig. 1 (Left) Calculated effective strength of the potential for an anisotropic Gaussian
impurity (¢=2) at a B site.

Fig. 2 (Right) Calculated transmission and reflection coefficients versus the potential
range at ¢ = 0 for an anisotropic scatterer ¢ = 2 and ¢ = 0. The maximum potential is
chosen as 0.01yo and L=>50v/3a. Results of the tight binding model and the effective-mass
approximation overlap each other completely.

3 Tight-Binding Model

We consider armchair nanotubes which are known to be always metallic. We
shall calculate transmission t,,, and reflection coefficient r,,,, where m and
n denote in-coming and out-going channels, respectively, numerically using a
recursive Green’s function technique® as in a previous work.®

As a model of a scatterer, we consider an anisotropic Gaussian potential
with its center at a B site and its range d which is much shorter than the
circumference length L. The potential is given by

f(d/a,c)u ox [_ (z cos@+ysinf)? 3 (—z sin 0+ycos 0)?

V)= med? (cd)? d? ’

(3.1)

where f(d/a,c) is determined by the normalization condition:

a2
> Ty ory)=u (2)

i=A,B R;

where RY is the impurity position.
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4 Numerical Results

Figure 1 gives an example of calculated effective potential ua, up, v/, and
up as a function of d/a for ¢ =2 and § =0. When the range is sufficiently
small, up and ug stay close to 2u because the potential is localized only at the
impurity B site. With the increase of d the potential becomes nonzero even
at neighboring A sites and u4 and v/, start to increase and at the same time
both up and up decrease. The diagonal elements u4 and up rapidly approach
u and the off-diagonal elements u/; and w3 vanish more slowly.

Figure 2 shows the calculated transmission and reflection coefficients. The
back scattering probability decreases rapidly with d/a and becomes exponen-
tially small for d/a>>1. The same is true of the intervalley scattering although
the dependence is slightly weaker because of the slower decrease of v/, and u)
shown in Fig. 1. The difference from the result of the Born approximation plot-
ted with dotted lines is negligible unless the strength of the potential becomes
comparable to the band width.

5 Summary and Conclusion

In summary, we have studied the transmission and reflection coefficient of a
CN with a scatterer. With the increase of the range of scatterers, the back
scattering between states with +k and —k vanishes identically for the bands
crossing the Fermi level in the absence of a magnetic field. This leads to
an extremely large conductivity or mean free path. The absence of the back
scattering disappears in magnetic fields,® which is likely to give rise to a huge
positive magnetoresistance.
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