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Abstract
The factorization method, which allows us to recon-
struct the motion of the camera and shape of the ob-
ject simultaneously from multiple images, provides high
stability in numerical computations and satisfactory re-
sults. To apply this method to real-time processing,
the recursive factorization method has been proposed.
However, factorization method based on the affine pro-
jection has a limitation in reconstruction accuracy, and
to achieve accurate reconstruction, the motion should
be restricted. To overcome this problem, we present a
recursive factorization method for the paraperspective
model based on the perspective projection. The present
method is far superior to other ones, in that it not only
achieves accurate Euclidean reconstruction in a short
time but also provides high stability in numerical com-
putations. Moreover, the method produces stable recon-
struction in almost all cases even if some images con-
tain errors because all images are treated as uniformly
as possible.

1 Introduction
Recovering both motion and shape simultaneously
from multiple images is an important and essential
task in the field of computer vision. The factorization
method based on the affine projection [7, 5] is an excel-
lent method which provides high stability in numerical
computations and relatively high quality of reconstruc-
tion. The method has been expanded recursively [4, 2]
for application to real-time processing. However, fac-
torization method on the affine projection has a limi-
tation in reconstruction accuracy because the camera
model is approximated linearly, and to achieve accurate
reconstruction, the motion should be restricted.

To attain this, the factorization method based on
the perspective projection has been presented[1, 6, 8],
which requires estimation of the parameter called pro-
jective depth because the measurement matrix contains
the projective depth. Christy and Horaud[1] computed
the projective depth iteratively via iterative estimation
of Euclidean shape. This method (referred to as the CH
method throughout this paper) is equivalent to itera-
tive estimation of the image coordinates by the para-
perspective projection from those by the perspective
projection. This method achieves accurate reconstruc-
tion of motion and shape, but is useful only calibrated
camera because Euclidean shapes are required in it-
erative computations. Strum and Triggs[6] computed

the projective depth in advance via epipolar geometry
without performing iterative computation. However,
the projective depth estimated via epipolar geometry
is sensitive to measurement errors for feature points.
Ueshiba and Tomita[8] estimated the measurement ma-
trix containing projective depths as its elements using
an evaluation function that treats all images as uni-
formly as possible. In this method, however, conver-
gence of the iterative computation to estimate the mea-
surement matrix containing projective depths takes a
long time.

On the other hand, McLauchlan et al.[3] presented
a recursive method for estimating motion and shape
other than by factorization, through both affine projec-
tion and perspective projection using a variable state-
dimension filter. However, reconstruction is very sen-
sitive to the latest images.

In this paper, we present a recursive factorization
method for the paraperspective model based on the
perspective projection for the calibrated camera. The
presented method allows fast and accurate Euclidean
reconstruction. To realize accurate reconstruction, the
CH method, which estimates the image coordinates of
the paraperspective projection from the image coordi-
nates of the perspective projection, is used. To reduce
the processing time, recursive factorization based on
the affine projection[2], which extracts motion infor-
mation by using principal component analysis (PCA),
is applied. The extraction of motion information by
PCA treats all images as uniformly as possible and so
the method gives stable reconstruction even if some
images contain errors. Although reconstruction may
be less than stable than by the batch process factor-
ization method[7, 5], the reduction of processing time
more than compensates for this stability.

Note that we use a calibrated camera throughout
this paper. In this camera, an orthogonal relationship
is established between the optical axis and the image
plane, the intersection of them is the origin of the image
coordinates and the aspect ratio is 1.

2 Factorization method for the para-
perspective projection

This section outlines the factorization method for the
paraperspective projection by Poelman and Kanade[5].

Let l be the focal length, Cf = (if , jf )T be an or-
thonormal basis of the f-th image plane, kf be a unit
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vector along the camera’s optical axis for the f-th im-
age plane, tf be a position vector of the camera center
for the f-th image plane, sp be a position vector of
the p-th feature point in the world coordinates, and
Cf = (if , jf , kf )T be the camera coordinate system of
the f-th image plane (f = 1, . . . , F ; p = 1, . . . , P ).

Generally, the direction of the paraperspective pro-
jection is parallel to the direction passing through the
center-of-mass of the object and the center of the cam-
era. In this paper, we set the direction of the paraper-
spective projection as parallel to the direction passing
through s∗, which is a specific feature point, and the
center of the camera to apply the CH method.

Let xpara
fp be the image coordinates of the p-th fea-

ture point on the f-th image by the paraperspective
projection. We use the relative coordinates from the
specific feature point to simplify the relationship be-
tween the world coordinates of the feature points and
the image coordinates of them. To treat the rel-
ative cooridnate simply, we define the quantities as
s∗

p = sp−s∗, t∗f = tf −s∗, x∗para
fp = xpara

fp −xpara
f∗ where

s∗
p and t∗f are the relative world coordinates of sp and

tf from the specific feature point s∗, and x∗para
fp are

the relative image coordinates of xpara
fp from the image

coordinates of the specific feature point xpara
f∗ .

By using these quantities, the relationship between
the world coordinates of the feature points and the im-
age coordinates of them are given by

x∗para
fp = λ−1

f∗ (l Cf − xpara
f∗ kT

f )s
∗
p , λf∗ = −kT

f t∗f (1)

where λf∗ is the depth of the specific feature point s∗
of the f-th image.

By rearranging the equation (1) through f and p,
we obtain the relationship

W ∗ = MS∗ (2)

where,
W ∗

f = (x∗para
f1 , . . . , x∗para

fP ), W ∗ = (W ∗
1

T, . . . , W ∗
F

T)T,
Mf = λ−1

f∗ (l Cf − xpara
f∗ kf

T), M = (MT
1 , . . . , MT

F )T,
S∗ = (s∗

1, . . . , s
∗
P ). W ∗, M and S∗ are called measure-

ment matrix, motion matrix and shape matrix.
By decomposing W ∗ as MS∗, we can reconstruct

both the motion and shape. The factorization method
performs the decomposition as described below.

First, W ∗ is temporarily decomposed as

W ∗
(2F×P )

= M̂
(2F×3)

Ŝ∗
(3×P )

= (M̂T
1 , . . . , M̂T

F )Ŝ∗ . (3)

Generally, the singular value decomposition (SVD)
is used for this temporal decomposition because SVD
can estimate the least-square estimation of the rank 3
measurement matrix from the rank 4 or higher mea-
surement matrix due to measurement errors and linear
approximate errors of the model. At this point, the
motion and shape have been affine reconstructed.

Second, computing a non-singular matrix A which
satisfies M = M̂A, S∗ = A−1Ŝ∗ to achieve Euclidean
reconstruction.

The constraints to compute A are represented as

M̂fQM̂T
f = MfMT

f = λ−2
f∗ (l

2 I2 + xpara
f∗ xpara

f∗
T) (4)

where Q = AAT. The constraints are called metric
constraints. The metric constraints (4) are the linear
homogeneous equation for six independent components
out of 3 × 3 positive symmetric matrix Q, and Q is
determined uniquely by removing a given multiple of
freedom from three or more different images[5].

After computing Q, the general solution of A is de-
rived as A = LTU(∀U ∈ O(3)) where LLT is the
Cholesky decomposition of Q. Since U corresponds to
the freedom for selecting the world coordinate system,
there are substantially two sets of different solutions,
which are mirror-symmetric to each other, depending
on the positive/negative characteristic of det U .

After these steps, the extrinsic parameters Cf , t∗f
and λf∗ are reconstructed from the motion matrix
Mf = (mf , nf)T as shown below:

λf∗ =


det

(
l2 I2 + xpara

f∗ xpara
f∗

T
)

det(MfMT
f )




1/4

, (5)

Cf = Ã−1
f M̃f , t∗f = −(λf∗/l)CT

f (x
para
f∗

T, l)T(6)

where Af = λ−1
f∗ (l I2,−xpara

f∗ ) = (αf , βf )T,

M̃f = (MT
f , mf × nf)T and Ãf = (AT

f , αf × βf )T.

3 Christy-Horaud method
This section outlines the CH method [1] which can es-
timate the image coordinates of the paraperspective
projection from those of the perspective projection in
the framework of the factorization method.

Let xper
fp be the image coordinate of the p-th fea-

ture point of the f-th image by the perspective pro-
jection. We use the relative coordinates from the
specific feature point as same reason as paraperspec-
tive projection. Therefore, we define the quantities as
x∗per

fp = xper
fp −xper

f∗ where x∗per
fp are the relative image

coordinates of xper
fp from the image coordinates of the

specific feature point xper
f∗ . By using these quantities,

the relationship between the world coordinates of the
feature points and the image coordinates of them are
give by

x∗per
fp = λ−1

fp (l Cf −xper
f∗ kT

f )s
∗
p , λfp = λf∗ +kT

f s∗
p (7)

where λfp is called projective depth [8]. Because there
holds xpara

f∗ = xper
f∗ , the relationship between the image

coordinates of the paraperspective projection and those
of the perspective projection are given by

x∗para
fp = µ∗

fpx
∗per
fp , µ∗

fp = 1 + λ−1
f∗ kT

f s∗
p (8)

where µ∗
fp is a relative projective depth of the p-th

feature point of the f-th image with respect to the
specific feature point ∗.



Now, we define the measurement matrix containing
projective depths as

W ∗ =




µ∗
11x

∗
11 . . . µ∗

1P x∗
1P

...
. . .

...
µ∗

F1x
∗
F1 . . . µ∗

FP x∗
FP


 (9)

where x∗
fp = xfp − xf∗ are observed quantities.

The algorithm for the CH method is as shown below.
(1) Let µ∗

fp = 1 and perform Euclidean reconstruc-
tion with the factorization method as shown in
section 2. Name one reconstruction of the mo-
tion and shape as M (+), S∗(+) and its mirrored
reconstruction of the motion and the shape as
M (−), S∗(−) respectively. Update µ

∗(±)
fp by equa-

tion (8) for each solution (hereafter, the same sym-
bols are used in the same manner).

(2) Update the measurement matrix W ∗.
(3) Perform Euclidean reconstruction with the factor-

ization method as shown in section 2.
(4) Update M (±), S∗(±) by choosing the consistent so-

lution from a pair of Euclidean reconstructions.

(5) Update µ
∗(±)
fp by equation (8) for each solution.

(6) If µ
∗(±)
fp does not converge, return to (2).

(7) Select the solution which most closely matches the
observed image coordinates out of M (+), S∗(+) and
M (−), S∗(−).

4 Recursive factorization method
based on the perspective projection

This section first describes the main processes in the
presented method and then the algorithm for the
method.
4.1 Fixing the world coordinates
Since reconstruction of the motion and shape involves
the freedom of selecting the world coordinate system,
the same motion and shape may be differently repre-
sented when different world coordinate systems are se-
lected. Therefore, when considering the recursive fac-
torization method, the world coordinate system must
be fixed. For the present method, the world coordinate
system is fixed by estimating the orthogonal matrix
that connects two shape matrices.

Let S
(G)
ref , S

(G)
ob be the shape matrix on the refer-

ence world coordinate system and that on an observed
world coordinate system respectively (symbol (G) de-
notes that the center of mass of the feature points
which comprise the shape matrix has been translated to
the origin). The least-square estimation of the orthogo-
nal matrix E which transforms the shape matrix on the
observed world coordinate system into the shape ma-
trix on the reference world coordinate system, that is,
the orthogonal matrix E which satisfies S

(G)
ref = ES

(G)
ob ,

is represented as E = UV T where UDV T is the SVD of
S

(G)
ref S

(G)
ob

T. This result can be given straightforwardly
by using Lagrange multiplier method.

4.2 Occlusion process
If any feature point is occluded, only the world coordi-
nates consisting of feature points actually observed are
updated using the measurement matrix containing only
feature points actually observed. The occluded feature
point, if any, is not updated for the world coordinates.

4.3 Addition of the new feature point
When a new feature point is observed in two or more
images with four or more points of which the world
coordinates are known, then its world coordinates are
determined.

We assume that the new feature point is ob-
served through the image set F = {f1, . . . , fJ}. Let
X∗

〈F〉,new = (µ∗
f1,newx∗T

f1,new, . . . , µ∗
fJ ,newx∗T

fJ ,new)
T be

the arranged image coordinates of the new feature
point containing the relative projective depth and let
W ∗

〈F〉, M〈F〉 and S∗
〈F〉 be the measurement matrix, the

motion matrix and the shape matrix of the observed
feature points through F respectively, the transforma-
tion from the image coordinates into the world coor-
dinates is represented as T〈F〉 = [MT

〈F〉M〈F〉]−1MT
〈F〉.

Therefore, we can estimate the world coordinates of
the new feature point by the following process:
(1) Let µ∗

fj ,new = 1.

(2) Update s∗
new by s∗

new = T〈F〉X∗
〈F〉,new.

(3) Update µ∗
fj ,new by µ∗

fj,new = 1 + λ−1
fj∗k

T
fj

s∗
new.

(4) If µ∗
fj ,new does not converge, return to (2).

4.4 Extraction of motion information
Each row of the measurement matrix represents the
projection of the shape matrix along each row of the
motion matrix. Therefore, the reliability of the recon-
struction of the shape observed in some direction may
be given as the covariance matrix of each row of the
motion matrix. Thus, by compressing motion informa-
tion while maintaining the covariance matrix by ap-
plying PCA to the motion matrix, we can compress
the measurement matrix with no loss of reliability of
reconstruction of the shape.

Let FΛE be the SVD of M , Λ represents the princi-
pal component (PC) of M and each row of E represents
the PC vector of M according to the PCA. Therefore,
each row of M = ΛE and each row of M have the
same covariance matrix. Thus, we can consider that
the motion information contained in 3×3 matrix M is
identical to that in 2F ×3 matrix M , that is, M is the
extraction of the motion information contained in M .
We call M a PC motion matrix. Here, in relation to
the PC motion matrix, the measurement matrix (called
a PC measurement matrix) and metric constraints are
represented as W∗ = MS∗ and MMT = Λ2.

4.5 Algorithm
(1) Perform Euclidean reconstruction using the CH

method with k(≥ 3) images and compute the PC
motion matrix as shown in section 4.4. The world
coordinate system describing the reconstruction is
defined as the reference world coordinate system.

(2) Perform the f(> k + 1)-th recursive measurement
matrix W ∗

[f] , which consists of the f − 1-st PC



measurement matrix W∗
[f−1] and the f-th mea-

surement matrix containing the projective depths,
from the feature points observed in the f-th image
(each image coordinate of the recursive measure-
ment matrix is the relative coordinate from the
specific feature point).

(3) Perform Euclidean reconstruction using the CH
method and compute the motion matrix M[f] and
the shape matrix S∗

[f] in the reference world co-
ordinate system as shown in section 4.1. In this
case, the f-th motion matrix Mf is the last two
rows of M[f] . Note that only W ∗

f is updated in
iterative computation on CH method and W∗

[f−1]

is not updated.
(4) Any occlusion is processed and new feature points

are added as shown in section 4.2 and 4.3. At
this point, reconstruction of the motion and shape
using the f-th image is completed.

(5) Motion information is extracted as shown in sec-
tion 4.4.

5 Experiment
We use synthetic data to evaluate the presented
method with the recursive factorization method based
on the affine projection[2].
5.1 Data generation
Ninety-two feature points are generated on the sur-
face of an opaque sphere of 150mm radius (the left
side of Fig. 1). The focal length of the camera is
84mm converted to its 35mm camera equivalent. Each
pixel is a square of side 8µm. We generate 121 im-
ages of which the camera coordinate matrix is set to
CT

f = Ry(πf/60). The depth of the center of the
sphere changes monotonously from 1200mm to 800mm.
The size of each image is 640×480 pixels and the im-
age coordinates of the center of the sphere change from
(80, 80) to (10, 10) monotonously (the center and the
right side of Fig. 1). The image coordinates are sam-
pled by sub-pixel order. We take 10 images for the
initial estimation. We add new feature points when
the new feature points are observed through 10 succes-
sive images. In the CH method, µ∗

fp has regarded to
converged when its the change is less than 10−4. In
this case, the number of iterations is four or five times.
5.2 Error measurement
We evaluate the reconstruction error of the motion
and shape of the presented method (PERRFM) with
the recursive factorization method based on the affine
projection[2] (PARARFM). Figure 2 compares the
shapes reconstructed by the presented method and
those by the recursive factorization method based on
the affine projection[2].

Figure 3 shows the shape reconstruction error. The
upper side shows when the sphere is transarent, that is,
all feature points are observed through all images and
the lower side shows when the sphere is opaque, that
is, the occlusion process and addition of new feature
points are considered. We also show the shape recon-
struction error of the batch factorization method based
on the affine projection [5] (PARA) and the batch CH

method (PER) for all feature points observed through
all images. The shape reconstruction error is given by

||S(G)true − S(G)estimated|| · ||S(G)true||−1 × 100(%).

Figure 4 shows the motion reconstruction error of if .
The upper side shows transarent sphere and the low-
er side shows opaque sphere. We also show the shape
reconstruction error of the batch factorization method
based on the affine projection [5] and the batch CH
method for all feature points observed through all im-
ages. The reconstruction errors of jf and kf are not
shown because they behave in the same way as if . The
motion reconstruction error is measured as the angle
between the true direction and estimated direction.

As Fig. 3 and Fig. 4 show, the reliability of the mo-
tion and shape reconstruction by this method is far su-
perior to that by the batch factorization method based
on the affine projection [5] and to that by the recursive
factorization method based on the affine projection [2].
Accurate reconstruction can be achieved even if occlu-
sions exist and new feature points are added.

When we add the Gaussian noise of which covariance
is two pixels, the reconstruction error for opaque shere
increases only 0.3%.
5.3 Computational time
The presented method takes about one second to pro-
cess the data given in section 5.1. However, the com-
putation time required for update depended largely on
the number of observed feature points at each moment
instead of the total number of feature points. There-
fore, in comparing the computation time of the present-
ed method with that of other methods, we assume that
all feature points are observed in each image. We used
Pentium II 450MHz PC for computation. The num-
ber of images used was fixed at 121, while the number
of feature points was increased from 20 to 100. Un-
der such conditions, computation times were measured.
The processing time for selecting and tracking features
points was not included in the computation times. The
computation time for the batch factorization method
is the sum of computation times required for individ-
ual batch processing of each image. Figure 5 shows
that the presented method has a reasonable computa-
tional time. Although the computational time of the
presented method is longer than that of the recursive
factorization method based on the affine projection [2]
due to the use of the CH method, the high accuracy
of reconstruction of the presented method more than
compensated for the longer computational time.

6 Conclusion
In this paper, We present the factorization method
for paraperspective based on the perspective projec-
tion, which estimates the motion of the camera and the
shape of the object every time an image is taken. The
presented method achieves high-accuracy Euclidean re-
construction compare with the factorization methods
based on the affine projection and achieve high-speed
processing compare with the batch factorization meth-
ods. The presented method also provides higher stabil-
ity in numerical computation and might give a stable
reconstruction in almost all cases.
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Figure 1: Feature points (left), 1st frame (center),
121st frame (right)

Figure 2: Reconstruction shape by the presented
method (upper) and the recursive factorization method
based on the affine projection (lower). The left im-
ages are viewed from the pole and the right images are
viewed from the equator respectively.
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Figure 3: Shape reconstruction error of transparent
sphere(upper) and opaque sphere(lower).
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Figure 4: Motion reconstruction error of transparent
sphere(upper) and opaque sphere(lower).
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Figure 5: Computational time




