
Automated route planning for milk-run transport logistics using model checking

Takashi KITAMURA
National Institute of Advanced Industrial Science and Technology (AIST)

Email: t.kitamura@aist.go.jp

Keishi OKAMOTO
Sendai National College of Technology

okamoto@sendai-nct.ac.jp

Abstract—We develop a specification framework for milk-
run transport logistics, applying model checking. The frame-
work adopts LTL (Linear Temporal Logic) as a specification
language for flexibly specifying complex delivery requirements
in the setting of milk-run logistics. The framework defines
the notion of “optimal truck routes” which satisfy given
delivery requirements in a route map, by applying the bounded
semantics of LTL. We develop an automated route planner
based on the framework using the NuSMV model checker
as an early implementation. We evaluate the feasibility of
the implementation design by analyzing its computational
complexity and showing experimental results.

Keywords-transport logistics, model checking, route planning

I. INTRODUCTION

Milk-run transport logistics, which refers to the means
of transportation where a single truck cycles around mul-
tiple suppliers to collect or deliver freights, is one of the
most efficient and popular approaches to improve logistic
operations. Recently, a variety of industries, e.g., food,
automobile manufacturing, military, as well as the dairy
industry, have adopted the milk-run approach to make their
logistics operations more efficient. However, compared with
the existing (non-efficient) logistics, using milk-run logistics
often tends to be complex, which is one of the main barriers
preventing wider prevalence of the approach in industry.

Focusing on the complexity, Satoh [1], [2] proposed a
novel and practical framework for such milk-run transport
logistics. The framework introduces a formal specification
language for the users (customers and suppliers) to specify
truck routes in milk-run logistics settings, and a mechanism
for selecting appropriate trucks according to the specified
truck routes. The framework is realized based on process
algebra; the specification language is designed based on CCS
(Calculus of Communicating System)[3], and the mecha-
nism for selecting appropriate trucks is realized by using
the notion of bisimulation relations.

Inspired by [1], [2] we develop a framework for au-
tomated route planning for such milk-run logistics. The
framework given delivery requirements and a route map
deals with optimal truck routes on the route map that satisfy
the given delivery requirements. We apply a model checking
approach to realize this framework. We adopt LTL (Linear
Temporal Logic) [4], [5] as a specification language for

Figure 1. An example of route map

flexibly specifying the delivery requirements in milk-run
logistics, which tend to be complex w.r.t. the location order
of truck routing. Finally, as an early implementation, we
develop an automated route planner for the framework using
the NuSMV model checker. And we evaluate the feasibility
of the implementation design by analyzing its computational
complexity and showing experimental results.

We end this section with an outline of the paper: the
next section explains the background of the framework we
develop, Section II briefly reviews LTL, Section III explains
the details of our framework, Section IV explains our
early implementation of the framework for automated route
planning using NuSMV, and the conclusion and discussion
of future work follow in the last section.

II. BACKGROUND

A. Example scenario

Consider a route map as weighted, undirected graph,
where the nodes express locations, the edges express routes,
and the weights on edges express the costs of a truck moving
on the route segment. Figure. 1 shows an example of such
a route map.

“Delivery requirements” are the conditions for delivery
regarding the truck routes; i.e., trucks have to satisfy these
conditions on their routes through route map. A main
characteristic of delivery requirements in milk-run logistics
typically appears in the complex order of locations which
trucks need to visit. This is a consequence of an important

2012 Third International Conference on Networking and Computing

978-0-7695-4893-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICNC.2012.44

240

feature of milk-run logistics: trucks are shared by multiple
users (i.e., suppliers and customers). Trucks collect freights
at one or more source points and deliver them to one or more
destination points on their way, visiting the source points
before the destination points. Typical delivery requirements
in milk-run logistics are exemplified as follows:

i) A truck visits location 𝑏 and then 𝑘, and after that
visits location 𝑎 or 𝑖 and then 𝑠.

ii) A truck visits location 𝑒 and then 𝑖, but between
them it should not go through 𝑓 and 𝑜.

iii) A truck visits location 𝑜 and then 𝑡 and 𝑝 and
then 𝑐, while visiting from 𝑜 to 𝑡 it should not
go through 𝑟.

Given such a route map and delivery requirements, we
discuss the truck routes on the route map that satisfy and
violate the given requirements. Further, we can discuss the
truck routes with the best efficiency, i.e., the truck routes
satisfying the requirements with the smallest cost, which we
call “optimal truck routes”.

Assume that a truck has sufficient carrying capacity, and it
starts at location 𝑎. Table. I shows three trucks routes on the
route map that satisfy and violate the delivery requirements
on different routes. Each truck route is represented as a
sequence of locations, where locations are connected by →.
The sequence of the locations is the order in which the trucks
visit the locations. The (natural) number attached to each
arrow expresses the cost for a truck moving from previous
to next location, and the number on each location expresses
the accumulated cost to reach the location on the truck route,
given the route map and sequence.

Observe that truck route (1) and (2) satisfy the above
delivery requirements (i) - (iii), and truck route (3) does
not. Also, we consider that truck route (1) is more efficient
than (2); (1) requires cost 39 on its route to satisfy the given
requirements while (2) requires 42. In fact, (1) is an optimal
truck route, which is a truck route on the route map that
satisfies the delivery requirements with the minimum cost.
Note that the cost of a truck route is the sum of the weights
on edges in its route, instead of the number of locations
which it goes through. Accordingly, though truck route (2)
visits less locations on its route than (1), (1) is considered
to be more efficient.

B. Requirements for the framework

With this example scenario, we clarify the main require-
ments of the framework for automated route planning for
milk-run logistics. We distinguish general requirements for
milk-run logistics and specific ones for our framework of
automated route planning. We share general requirements
for milk-run logistics in common from [1], [2] as follows:

∙ Trucks may be shared by multiple suppliers and cus-
tomers, so that they collect products at one or more
source points and deliver the products at one or more

destination points on their way. The trucks need to visit
the source points before they visit the destination points.
The framework therefore needs to specify the order in
which trucks call at various points.

∙ The routes taken by trucks may also affect product
quality. For example, foods should be transported by
the shortest route possible to keep their freshness, and
perishable foodstuffs should be picked up later than
preservable foodstuffs and taken to a food processor or
consumer.

∙ Pallets or boxes that contain multiple products are
considered as transport units in many current logistics
systems, rather than as individual products. These types
of containers may have multiple destinations and the
receivers may take only some of the products in the
container when it arrives at their point.

Besides the general requirements for milk-run logistics,
we assume the following specific ones for our framework:

∙ The framework, given a route map and delivery re-
quirements, provides a mechanism to find optimal truck
routes, which are truck routes satisfying the given
delivery requirements with the minimum cost. Also, the
framework provides a mechanism, given a cost, to find
a truck route with that cost, and additionally to check
if there exists a truck route which satisfies the given
requirements with that cost.

∙ To keep generality, route maps are regarded as weighted
undirected graphs, following the precedent of general
routing problems such as [6]. Weights are imposed on
the edges, expressing a notion of cost, interpreted as,
e.g., time, money, and emission of CO2, for trucks’
moving on the edges.

∙ Delivery requirements in milk-run logistics are complex
w.r.t. the order of locations which trucks visit. Also,
the requirements vary temporally, since users have
different requirements each week, each day, and or
hour, depending on their use. To address these aspects,
the framework should take a language-based approach
for specifying delivery requirements; i.e, it should pro-
vide a language with which users can flexibly specify
delivery requirements.

C. Basic approach

Our aim is to develop a framework for milk-run logistics
to satisfy the above requirements. We realize the framework
applying model-checking techniques. Our basic approach is
to specify delivery requirements with LTL and route maps
with Kripke models, and apply model checking algorithms
to find truck routes that best satisfy the requirements. That
is, we interpret automated route planning as the following
model checking problem:

route map ∣= Delivery requirements.

241

(1) 𝑎0 →4 𝑏4 →2 𝑒6 →2 𝑏8 →3 𝑑11 →2 ℎ13 →1 𝑖14 →2 𝑜16 →3 𝑛19 →2 𝑞21 →2 𝑡23 →3 𝑝26 →2 𝑙28 →1 𝑘29 →1 𝑙30 →1 𝑚31 →1

𝑗32 →1 𝑔33 →2 𝑑35 →2 𝑎37 →2 𝑐39

(2) 𝑎0 →4 𝑏4 →3 𝑑7 →2 ℎ9 →2 𝑜11 →3 𝑛14 →3 𝑚17 →1 𝑛18 →1 𝑞19 →2 𝑡21 →2 𝑝23 →3 𝑙25 →2 𝑘27 →1 𝑒28 →5 𝑏33 →4 𝑎37 →4

𝑐39 →3 𝑖42

(3) 𝑎0 →2 𝑑2 →2 ℎ4 →3 𝑜7 →3 ℎ10 →2 𝑑12 →2 𝑏14 →2 𝑒16 →3 𝑓19 →1 𝑚20 →1 𝑙21 →1 𝑘22 →1 𝑙23 →2 𝑝25 →2 𝑡27 →3 𝑞30 →2

𝑛32 →2 𝑔34 →2 𝑑36 →2 𝑐38

Table I
DIFFERENT TRUCK ROUTES (1) (2) AND (3) TO SATISFY/VIOLATE THE DELIVERY REQUIREMENTS

As the framework takes a language-based approach to
specify delivery requirements, we adopt LTL for the purpose.
LTL is a logical language that can specify complex temporal
properties by means of ordered events to happen. Hence, it
makes an appropriate basis for specifying complex and vari-
ous delivery requirements in milk-run logistics. For example,
delivery requirement (i) (ii) and (iii) can be specified with
LTL as;

i) F(𝑏 ∧ F(𝑘 ∧ F(𝑎 ∨ (𝑖 ∧ F𝑠))
ii) F(𝑒 ∧ ¬(𝑓 ∨ 𝑜)U𝑖)
iii) F(𝑜 ∧ (¬𝑟U𝑡) ∧ F(𝑝 ∧ F𝑐))

By applying the semantics of LTL, the framework preserves
formal accounts of the satisfaction or violation of truck
routes given complex delivery requirements. To realize the
framework for automated route planning, we apply bounded
semantics and bounded model checking (BMC) proposed by
[4], [5]. Due to this approach, the framework can impose
a cost bound into the analysis of a truck route satisfying
or violating delivery requirements. Consequently, the frame-
work can formally define “optimal truck routes”, which are
truck routes that satisfy the delivery requirements with the
minimum cost. Further, we implement the framework using
NuSMV, an off-the-shelf BMC model checker.

III. BOUNDED LTL MODEL CHECKING[4], [5], [7], [8]

Bounded semantics of LTL: Let 𝐴𝑃 be a set of atomic
propositions., ranged over by 𝑝, 𝑞, ⋅ ⋅ ⋅ . Then LTL formulas
over 𝐴𝑃 are defined recursively as follows: atomic proposi-
tions are LTL formulas; and if 𝜙1 and 𝜙2 are LTL formulas
so are 𝑋𝜙 (neXt), 𝜙1𝑈𝜙2 (𝜙1 Until 𝜙2), 𝜙1∨𝜙2 and ¬𝜙1. A
Kripke model 𝑀 over 𝐴𝑃 is a quadruple 𝑀 = (𝑆, 𝐼, 𝑇, 𝐿)
where 𝑆 is a finite set of states, 𝐼 ⊆ 𝑆 is a finite set of initial
states, 𝑇 ⊆ 𝑆×𝑆 is the transition relation and 𝐿 : 𝑆 → 2𝐴𝑃

is the labeling function.
The LTL semantics is defined by way of paths of a Kripke

model 𝑀 . Besides, in bounded semantics, paths with loop-
back and without loop-back are considered separately. Here,
we only review the case for paths without loop-back since
it is of the only situation necessary in our framework. A
path 𝜋 in 𝑀 is a sequence 𝜋 = (𝑠0, 𝑠1, ...) of states, given
in an order that respects the transition relation of 𝑀 . For
𝑖 < ∣𝜋∣, 𝜋(𝑖) denotes the 𝑖-th state 𝑠𝑖 in the sequence, and
𝜋𝑖 = (𝑠𝑖, 𝑠𝑖+1, ⋅ ⋅ ⋅) denotes the suffix of 𝜋 starting with state

𝜋 ∣=𝑖
𝑘 𝑝 if 𝑝 ∈ 𝐿(𝜋(𝑖))

𝜋 ∣=𝑖
𝑘 ¬𝑝 if 𝑝 ∕∈ 𝐿(𝜋(𝑖))

𝜋 ∣=𝑖
𝑘 𝜙1 ∧ 𝜙2 if 𝜋 ∣=𝑖

𝑘 𝜙1 and 𝜋 ∣=𝑖
𝑘 𝜙2

𝜋 ∣=𝑖
𝑘 𝜙1 ∨ 𝜙2 if 𝜋 ∣=𝑖

𝑘 𝜙1 or 𝜋 ∣=𝑖
𝑘 𝜙2

𝜋 ∣=𝑖
𝑘 X𝜙 if 𝑖 < 𝑘 and 𝜋1 ∣=𝑖+1

𝑘 𝜙
𝜋 ∣=𝑖

𝑘 F𝜙 if ∃𝑗, 𝑖 ≤ 𝑗 ≤ 𝑘.𝜋 ∣=𝑗
𝑘 𝜙

𝜋 ∣=𝑖
𝑘 G𝜙 is always false.

𝜋 ∣=𝑖
𝑘 𝜙1U𝜙2 if ∃𝑗.𝑖 ≤ 𝑗 ≤ 𝑘.𝜋 ∣=𝑗

𝑘 𝜙2 and
∀ℎ, 𝑖 ≤ ℎ < 𝑗.𝜋𝑖 ∣=ℎ

𝑘 𝜙1

𝜋 ∣=𝑖
𝑘 𝜙1R𝜙2 if ∃𝑗.𝑖 ≤ 𝑗 ≤ 𝑘.𝜋 ∣=𝑗

𝑘 𝜙1 and
∀ℎ, 𝑖 ≤ ℎ < 𝑗.𝜋𝑖 ∣=ℎ

𝑘 𝜙2

Table II
BOUNDED LTL SEMANTICS WITHOUT A LOOP

𝑠𝑖. For 𝑘 ≥ 0, let 𝜋 be a path without loop-back, and 𝜙 be
a LTL formula. Then 𝜋 satisfies 𝜙 with bound 𝑘 (written as
𝜋 ∣=𝑘 𝜙) iff 𝜋 ∣=0

𝑘 𝜙 where 𝜋 ∣=𝑖
𝑘 𝜙 is defined in Table. II.

It is defined that a Kripke model 𝑀 satisfies a LTL
formula 𝜙, written 𝑀 ∣= 𝜙, if 𝜋 ∣= 𝜙 for all paths 𝜋 of
𝑀 ; i.e., 𝑀 ∣= 𝜙 if ∀𝜋 ∈𝑀.𝜋 ∣= 𝜙.

Bounded model checking using SAT: One advantage of
BMC is that we can discuss the semantics taking the length
of paths into account. As an application, we can discuss
paths that satisfy/violate a LTL formula with the shortest
length. BMC problems are typically solved by reducing SAT
problems, therefore the complexity of BMC of this approach
is determined using the number of propositional variables to
appear in formula by SAT encoding [7], [8]. The translation
results in 𝑂(𝑘 ∗ ∣𝑙𝑜𝑔(𝑆)∣+ (𝑘 + 1)2 ∗ ∣𝜙∣) variables, where
𝑆 is the number of states in model 𝑀 , 𝑘 is the bound, and
∣𝜙∣ is the length of 𝜙.

IV. AN AUTOMATED ROUTE PLANNING FRAMEWORK

FOR MILK-RUN LOGISTICS

In this section we explain our framework for an automated
route planning framework for milk-run logistics.

A. Semantics of delivery requirements w.r.t. route maps

First, we formally define what it means for a truck
route in a route map to satisfy given delivery requirements,
by providing a formal semantics of delivery requirements
(specified by LTL) w.r.t. route maps. Though the semantics

242

is designed based on bounded LTL semantics w.r.t. Kripke
models, its significance is emphasized to accurately explain
the framework. Also, our early implementation for the
framework explained in later sections is developed based
on the formal foundation. We start by defining route maps:

Definition 1 (route map): A route map 𝑀 is a pair 𝑀 =
(𝐿,𝑅), where 𝐿 is a finite set of locations and 𝑅(⊆
(𝐿 × 𝐿) × 𝒩+) is a finite set of routes where 𝒩+ is
the set of positive integers, satisfying the conditions: (1) If
((𝑎, 𝑏), 𝑛) ∈ 𝑅 and ((𝑎, 𝑏), 𝑛′) ∈ 𝑅 then 𝑛 = 𝑛′, and (2) If
((𝑎, 𝑏), 𝑛) ∈ 𝑅 then ((𝑏, 𝑎), 𝑛) ∈ 𝑅. □

Like LTL semantics w.r.t. Kripke models, LTL semantics
w.r.t. route maps are given in two steps; i.e., first semantics
w.r.t. a path of a route map is given, then based on that,
semantics w.r.t. route maps is given. To this end, the notion
of truck routes, which we also call paths, on route maps is
defined.

Definition 2 (Paths of a route map): A path 𝜋 of a route
map ℳ is a sequence of pairs of a location and a natural
number; i.e., 𝜋 = ((𝑎1, 𝑘1), (𝑎2, 𝑘2), (𝑎3, 𝑘3), ⋅ ⋅ ⋅), where
the natural number expresses the accumulated cost to reach
the associated location, given in an order that aligns with the
route map 𝑀 . 𝜋(𝑘) denotes the location name paired with
cost 𝑘 in the path. Note that 𝜋(𝑘) may not be defined for all
costs 𝑘. Thus, we consider 𝜋(𝑘) as a partial function, which,
given a cost, returns a location name. 𝜋l(𝑖) and 𝜋k(𝑖) denote
the location and the accumulated cost at the 𝑖-th pair in
path 𝜋, respectively. For a brief notation, we may also write
a path as “𝜋l(1)

𝜋𝑘(1) →𝑛1 𝜋l(2)
𝜋k(2) →𝑛2 𝜋l(3)

𝜋k(3) ⋅ ⋅ ⋅ ”,
where 𝑛𝑖 = 𝜋k(𝑖+ 1)− 𝜋k(𝑖). □
The path representations in Table. I follow this definition
using the brief notion.

Next the semantics of delivery requirements w.r.t. paths of
a route map is defined. It is designed as a bounded semantics:
i.e., it introduces a natural number to express a cost bound,
and defines a path that satisfies delivery requirements taking
the cost bound into account.

Definition 3 (Bounded semantics w.r.t. paths of route maps):
Assume 𝑀 is a route map, 𝜋 a path of 𝑀 , and 𝜙 a LTL
formula. For 𝑘 ≥ 0, we define that 𝜋 satisfies 𝜙 with bound
𝑘, denoted by 𝜋 ∣=𝑘 𝜙, if 𝜋 ∣=0

𝑘 𝜙, where 𝜋 ∣=𝑖
𝑘 𝜙 is defined

as Table. II, except for the following:

∙ for 𝜋 ∣=𝑖
𝑘 𝑙 and 𝜋 ∣=𝑖

𝑘 ¬𝑙, 𝜋 ∣=𝑖
𝑘 if 𝜋(𝑖) = 𝑙 and 𝜋 ∣=𝑖

𝑘 ¬𝑙
if 𝜋(𝑖) ∕= 𝑙, respectively, and

∙ for 𝜋 ∣=𝑖
𝑘, 𝜋 ∣=𝑖

𝑘 G𝜙 if ∀𝑗, 𝑖 ≤ 𝑗 ≤ 𝑘.𝜋 ∣=𝑗
𝑘 𝜙. □

For the G operator, due to this leap from the original
bounded semantics of LTL w.r.t. Kripke models, we acquire
duality between G and F, i.e., ¬F𝜙 ≡ G¬𝜙, in the context
of the bounded semantics. We will use this property of the
semantics in our implementation explained in section IV.

Thus, the semantics of LTL w.r.t. route map 𝑀 is defined.
Since our interest is to find some truck-routes to satisfy the
given delivery requirements, we define that if any path of

the route map satisfies the delivery requirements, then the
satisfaction relation holds.

Definition 4 (Semantics w.r.t. a route map): Let 𝑀 be a
route map and 𝜙 a LTL formula. We write 𝑀 ∣=∃

𝑘 𝜙, if
𝜋 ∣=∃

𝑘 𝜙 for some paths 𝜋 of 𝑀 , □
The LTL semantics, in general, can be classified from the

existential and universal viewpoint; i.e., determining whether
an LTL formula 𝜙 is existentially/universally valid in a
given model is called existential/universal model checking
(EMC/UMC), respectively. For clarity, we use the notational
convention of quantifier symbols 𝑀 ∣=∃ 𝜙 and 𝑀 ∣=∀ 𝜙 to
denote them.

B. Examples of specification framework

In section II, we have shown several examples of delivery
requirement specification by LTL. Here we demonstrate the
satisfaction relation 𝜋 ∣=∃

𝑘 𝜙. As mentioned, 𝜋(1) satisfies
delivery requirements (i), (ii) and (iii). This exactly means
that the initial segment of the path, whose cost cumulatively
sums to 39, satisfies the delivery requirements. Here we
demonstrate that 𝜋(1) satisfies delivery requirement (iii),
showing that such a path satisfies (iii) with a cost bound
of 39, as follows:

𝜋1) ∣=39 F(𝑜 ∧ (¬𝑟U𝑡) ∧ F(𝑝 ∧ F𝑐))
if 𝜋1) ∣=16

39 𝑜
True

∧ 𝜋1) ∣=16
39 ¬𝑟U𝑡 ∧ F(𝑝 ∧ F𝑐)

if 𝜋1) ∣=16
39 ¬𝑟U𝑡 ∧ 𝜋1) ∣=16

39 F(𝑝 ∧ F𝑐)
if (∀𝑛.17 ≤ 𝑛 ≤ 22 ∧ 𝜋1) ∣=𝑛

39 ¬𝑟)
True

∧ 𝜋1) ∣=23
39 𝑡

True∧ 𝜋1) ∣=16
39 F(𝑝 ∧ F𝑐)

if 𝜋1) ∣=26
39 𝑝 ∧ F𝑐

if 𝜋1) ∣=26
39 𝑝

True
∧ 𝜋1) ∣=26

39 F𝑐

if 𝜋1) ∣=39
39 𝑐

True
if True

On the other hand, paths that have truck route (2) in its
initial segment do not satisfy delivery requirement (i) - (iii)
at the same time within cost bound 39; i.e., given such a
path 𝜋2) then 𝜋2) ∕∣=39 (i) ∧ (ii) ∧ (iii). This is because the
minimum cost of truck movement to satisfy the delivery
requirements is 42, and this exceeds the allowed cost, given
here as 39. That means 𝜋2) ∣=42 (i) ∧ (ii) ∧ (iii).

C. Optimal truck routes

Optimal truck routes, which are paths satisfying given
delivery requirements with the minimum cost, are defined
as:

Definition 5 (Optimal truck routes): A path 𝜋 of a route
map 𝑀 is optimal w.r.t. a given delivery requirement 𝜙 if
it satisfies the following conditions: (1) 𝜋 ∣=𝑖 𝜙 for some 𝑖,
and (2) if 𝜋′ ∣=𝑗 𝜙 for some 𝜋′ in 𝑀 and for some 𝑗 then
𝑖 ≤ 𝑗. □

Example 1 (Optimal truck routes): Take the example in
Section II. As already mentioned, there are several truck
routes of the route map that satisfy the given delivery
requirements such as (1) and (2). And among them truck
routes (1) is an optimal path in terms of Def. 5. □

243

Figure 2. How to encode weights of route map in NuSMV codes

V. IMPLEMENTING AN AUTOMATED ROUTE PLANNER

FOR THE MILK-RUN LOGISTICS FRAMEWORK USING

THE NUSMV MODEL CHECKER

This section explains our early implementation of an
automated route planning system for the milk-run logistics
framework developed in the previous sections. The system,
given a route map and delivery requirements (specified
by LTL), automatically finds an optimal truck route that
satisfies the requirements based on the framework. We
use the NuSMV model checker [9] [10] to realize such
a system. Several gaps to realize the system by NuSMV,
and techniques to bridge them are explained. Also we show
experimental results of the implementation as its evaluation.

A. Encoding route maps into NuSMV codes

In applying NuSMV to realize a system for the frame-
work, the route maps are encoded into NuSMV codes. In
encoding route maps to NuSMV codes, one gap we need to
bridge is how to encode the weights of edges in route maps
in NuSMV codes so that the model checking algorithm of
NuSMV can find optimal paths.

We realize this by introducing extra nodes, which we call
dummy nodes, to express the weights. Consider, for example,
a route (i.e., edge) connecting two locations with weight “3”.
Figure. 2 shows how the weight of each route in the route
map (on the left) is expressed in the NuSMV codes using
two dummy nodes of ef1 and ef2 (on the right). That is,
the weight of 𝑛 of a route in the route map is expressed by
preparing 𝑛− 1 dummy nodes between the two locations.

Also, it is important to notice that, due to this imple-
mentation design, the neXt operator (𝑋𝜙) is excluded from
the LTL language set, which is for specifying delivery
requirements, in this implementation.

B. Bridging gaps between UMC and EMC

The second gap lies between EMC, which our framework
assumes, and UMC, which NuSMV is based on [9], [10]. In
EMC, only one path of a model that satisfies a formula is
required to prove the satisfaction relation between the model
and the formula, which we may call the “witness”. In UMC
which NuSMV assumes, it is required that all the paths of a
model satisfy a given formula, for their satisfaction relation
to hold. That is, the existence of a path that fails to satisfy
the formula violates the satisfaction relation, which is a so-
called counter-example.

Here, an important observation for bridging the gap is
that due to the semantics design, which keeps duality in

the bounded semantics setting in Definition 4, finding a
witness in EMC corresponds to finding a counter-example
to the negation form of the formula in UMC. Accordingly,
to build an automated route planner for the framework using
NuSMV, it suffices to apply the negation form of the LTL
formula to NuSMV, and in this way a generated counter-
example is a witness and hence is a truck route that satisfies
the delivery requirements.

C. Finding an optimal path using NuSMV

A straightforward way to find an optimal truck route using
NuSMV, as defined in Def. 5 using NuSMV is to apply BMC
in the above-explained setting. This is because optimal paths
are defined as truck routes with the minimum weights in Def.
5 and BMC can find a counter-example with the shortest
length using the breadth-first nature of SAT search proce-
dures. In doing so, we use the “check ltlspec bmc onepb”
command, instead of the standard BMC process in NuSMV.
In addition, we give natural numbers 𝑘 to the command to
specify the length of counter-examples (hence the length of
truck route), and “X” for the option “l” to obtain paths with
“no loop-back”. These are required in order to find a truck
route without loop-back, as otherwise NuSMV would find
such truck routes that do not comply with Def. 5 due to its
several notions of paths with the shortest length.

D. Computational complexity of the implementation design

We analyze computational complexity of this implemen-
tation design for the framework. As mentioned in Section
III, the complexity of BMC using SAT is analyzed via
the number of propositional variables to appear by SAT
encoding, represented as 𝑂(𝑘 ∗ ∣𝑙𝑜𝑔(𝑆)∣ + (𝑘 + 1)2 ∗ ∣𝜙∣),
where 𝑆 is the number of states in model 𝑀 , 𝑘 is the
bound, and ∣𝜙∣ is the length of 𝜙. Since the implementation
encodes route maps into Kripke models, here we need to
analyze the number of states accompanied by the encoding.
In encoding, dummy locations to express the weights of a
route map as well as locations are encoded to the states of
Kripke model. Hence the number of states of a Kripke model
encoded from route map 𝑀 , which we consider as the size
of route map 𝑀 and denote as 𝑠𝑖𝑧𝑒(𝑀), is given as the
sum of the number of locations (𝑆) and dummy locations;
i.e., 𝑠𝑖𝑧𝑒(𝑀) = ∣𝐿𝑜𝑐∣ +∑{𝑛 − 1 ∣ ((𝑎, 𝑏), 𝑛) ∈ 𝑅}. That
is, the number of states in the Kripke models due to the
encoding increases in a linear manner, and hence the number
of propositional variables appearing in the formula encoded
is 𝑂(𝑘 ∗ ∣𝑙𝑜𝑔(𝑠𝑖𝑧𝑒(𝑀))∣+ (𝑘 + 1)2 ∗ ∣𝜙∣).
E. Experimental results

As an experiment to demonstrate the feasibility of the
implementation design, we show benchmark results based
on the analysis of computational complexity above. From
the complexity analysis, it is known that cost bounds (i.e.,
the length of paths) and the length of the LTL formula

244

The length of formula 𝜙 𝑙𝑒𝑛𝑔𝑡ℎ(𝜙)
cost bound 20 30 40 50 60 70

k=20 4s 3s 4s 3s 4s 4s
k=30 6s 14s 68s 66s 2m40s 2m39s
k=40 5s 16s 2m52s 21m49s 122m0s 277m58s
k=50 9s 72s 3m34s 5m22s 80m0s 136m23s
k=60 11s 47s 4m26s 6m38s 18m54s 128m18s

The experiments were conducted on a machine with an AMD Dual-Core
Opteron 2220 CPU @2.8GHz, 33GB of RAM and Debian Linux 5.0.10.

Table III
EXPERIMENTAL RESULTS FOR FINDING OPTIMAL TRUCK ROUTING.

are the main contributors to the computational cost. Hence
the experiment is designed based on interactions of these
two factors where the size of route map is fixed at 200.
Also, due to the advantageous property of the breadth-
first search in BMC, we can apply model checking for
each different cost bound on a different computing node in
parallel. Thus, for cost bounds, we show results obtained
by applying model checking with the exact cost bound
𝑘 instead of all the cost bounds from 1 to 𝑘. Table. III
shows the experimental results, where each result shows the
average execution times over five trials. We distinguish the
executions that result in finding a path with a gray-colored
cell. We can observe that the experimental results almost
conform to the complexity analysis; i.e., the computing cost
w.r.t. the length of the formula and cost bound 𝑘 increases
in an exponential manner. We can observe that the cost w.r.t.
the bound 𝑘 decreases after finding a counter-example; this
reflects the property of “phase transition”, which is a feature
of SAT problem [11], [12].

VI. RELATED WORK

As mentioned, this work is inspired by [1], [2] to provide
a formal framework for milk-run transport logistics which
reduces its complexity. But our work differs from those in its
purpose; i.e., the purpose of our work is to develop a formal
framework for automated route planning, while that of [1],
[2] is to develop a framework for a mechanism for truck
selection. This makes differences in the technologies used
in the frameworks. Our framework uses model checking,
while [1], [2] uses bisimulation checking. Also, this work
is the first to apply model checking technologies, originally
for automated verification, to automated route planning for
milk-run transport logistics.

Various shortest-path problems and their algorithms in
graph theory, such as “single-source shortest path prob-
lems” (and Dijkstra’s algorithm), “all-pairs shortest path
problems”, “travelling salesman problems”, “widest path
problems”, etc, share a common link with our framework
in finding optimal paths provided weighted graphs. Note
that these graph algorithms are designed to solve their
own specific and fixed problems; e.g., Dijkstra’s algorithm

is designed specifically for a “single-source shortest path
problem”. But this work proposes a general framework; i.e.,
it provides a way to flexibly specify various problems as
“delivery requirements” by LTL, and a mechanism to solve
these problems by automatically finding shortest paths for
the given problems in a unified way.

VII. CONCLUSION AND FUTURE WORK

Conclusion: This paper has developed an automated
route planning framework for milk-run transport logistics,
which given a route map and delivery requirements finds
optimal truck routes that satisfy requirements with the
lowest cost. The framework is realized by applying model-
checking techniques. It uses LTL as a specification language
for specifying delivery requirements in milk-run logistics,
which are complex w.r.t. the order of locations which trucks
should visit. We have discussed the framework formally,
including the notion of “optimal truck routes”, by applying
bounded semantics. Further based on the formal foundation
we implemented the framework by applying the NuSMV
model checker. As the milk-run logistics is used in various
ways in various industries, we have shown the computational
complexity and experimental results as the feasibility of the
implementation.

Future work: This paper focuses on developing the
framework and on demonstrating its feasibility, by imple-
menting the system for the framework in a simple manner
as an early trial; i.e., we leave the aspect of efficiency and
correctness of the system design and implementation to our
future papers. Another important research direction is to
develop a Domain Specific Language (DSL) for specifying
delivery requirements in milk-run logistics. In this paper,
LTL is used for that purpose in order to show the appli-
cability of model checking to a route planning problem in
milk-run logistics. However more suitable languages can be
designed to more effectively express delivery requirements
in milk-run logistics in practice.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Makoto Takeyama
in the National Institute of Advanced Industrial Science and
Technology (AIST) for his time and insightful suggestions
throughout this research.

REFERENCES

[1] I. Satoh, “A specification framework for earth-friendly lo-
gistics,” in Proc. of FORTE, vol. E91-A, no. 11. Oxford
University Press, 2008, pp. 251–266.

[2] I.Satoh, “A formal approach for milk-run transport logistics,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol.
E91-A, no. 11, pp. 3261–3268, 2008.

[3] R. Milner, Communication and concurrency, ser. PHI Series
in computer science. Prentice Hall, 1989.

245

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Sym-
bolic model checking without BDDs,” in Proc. of TACAS.
Springer-Verlag, 1999, pp. 193–207.

[5] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu,
“Bounded model checking,” Advances in Computers, vol. 58,
pp. 118–149, 2003.

[6] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[7] E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman,
“Completeness and complexity of bounded model checking,”
in Proc. of VMCAI, 2004, pp. 85–96.

[8] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman,
“Computational challenges in bounded model checking,”
STTT, vol. 7, no. 2, pp. 174–183, 2005.

[9] “Nusmv: a new symbolic model checker,” available from
http://nusmv.fbk.eu/.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV
Version 2: An OpenSource Tool for Symbolic Model Check-
ing,” in Proc. of CAV, ser. LNCS, vol. 2404. Springer, 2002.

[11] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the
really hard problems are,” in Proc. of IJCAI. Morgan
Kaufmann Publishers Inc., 1991, pp. 331–337.

[12] D. Mitchell, B. Selman, and H. Levesque, “Hard and easy
distributions of SAT problems,” in Proc. of AAAI. AAAI
Press, 1992, pp. 459–465.

246

