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ABSTRACT
In our previous work [17], we proposed a model-based combi-
natorial testing method, called FOT. It provides a technique
to design test-models for combinatorial testing based on ex-
tended logic trees. In this paper, we introduce pair-wise
testing (and by extension, n-wise testing, where n = 1,2,..
) to FOT, by developing a technique to construct a test-
suite of n-wise strategies from the test models in FOT. We
take a “transformation approach” to realize this technique.
To construct test suites, this approach first transforms test-
models in FOT, represented as extended logic trees, to those
in the formats which the existing n-wise testing tools (such
as PICT [9], ACTS [30], CIT-BACH [31], etc.) accept to
input, and then applies transformed test-models to any of
these tools. In this transformation approach, an algorithm,
called “flattening algorithm”, plays a key role. We prove the
correctness of the algorithm, and implement the algorithm
to automate such test-suite constructions, providing a tool
called FOT-nw (FOT with n-wise). Further, to show the ef-
fectiveness of the technique, we conduct a case study, where
we apply FOT-nw to design test models and automatically
construct test suites of n-wise strategies for an embedded
system of stationary services for real-use in industry.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering—Testing and De-
bugging

General Terms
Algorithm, Design, Performance
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1. INTRODUCTION
N-wise testing [19, 21] is a combinatorial technique for

software testing. It is a testing strategy, or coverage crite-
ria, for constructing a test-suite using combinatorial tech-
niques, i.e., given a test model1, which consists of a list of
parameters with a set of its values and often with constraints
(a.k.a., forbidden rules; expressed usually as a propositional
formula), it stipulates that all combinations of values of n pa-
rameters should be covered at least once by test cases. The
rationality of the technique is proved by empirical studies
[19, 21], which show that most faults are caused by interac-
tions among six or fewer parameters. A number of tools for
n-wise testing has been developed so far, including PICT
[9], ACTS [30], CIT-BACH [31] and AETG [5, 6]. These
tools automatically construct a test-suite (a collection of test
cases) of the n-wise testing for a given test model.

Adopting n-wise testing in real-world developments is one
of the most important and difficult tasks in designing high-
quality, i.e., correct, test-models. It is an important task,
since the correctness of test-suites depends on the correct-
ness of the test model. The correctness of a test-model can
be measured by how much it satisfies the MECE (Mutually
Exclusive and Collectively Exhaustive) principle. An omis-
sion in a test-model causes a lack of test-cases, which may
outflow faults. A redundancy in a test-model causes dupli-
cate of test-cases, which may increase the costs for testing.
On the other hand, designing a correct test-model is a diffi-
cult task because the task is about a design, which requires
iterative design decisions according to the creativity and ex-
perience of the testers. Hence, the qualities of tests often
cannot be stabilized depending on testers, as different testers
come up with different (qualities of) test models. Similar
problems have been pointed out in [3, 12]. Despite the ef-
fectiveness of n-wise testing, the difficulty of the technique
to design correct test-models creates a significant barrier to
preventing wider adoption of the technique in real-world de-

1This is called the “Input Parameter Model (IPM)” in [12]
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Figure 1: A test model for API function “activateTask” of OSEK-OS

velopments.
Toward this problem, in [17] we propose a model-based

combinatorial testing method, called FOT (Feature Oriented
Testing). Aiming to assists testers to design correct test-
models, this method provides a design method to systemati-
cally design test-models using extended logical trees, named
T(mex, req) . Figure 1 shows a simplified test model for an

API function “activateTask(taskID)”2 with T(mex, req) , with
its graphical representation. Test models by T(mex, req) are
basically designed as and-xor logic trees. The basic struc-
tures of the test models form trees as a result of the analysis
of the recursive partitioning, which repeatedly breaks down
the test object (here, the input domain of “activateTask”) by
various aspects of test-concerns with two kinds of partion-
ing notions (and, and xor -partitions). Also, the logic trees of
T(mex, req) are extended with two kinds of constraints “mutex
(shortly, mex)” and “requires (shortly, req)” called cross-tree
constraints (CTCs), which specify detailed possible and/or
forbidden relations between any aspects in the tree. (The ac-
count of the test-model represented by a tree of T(mex, req) is
given in the next section.) Such a tree in T(mex, req) is consid-
ered as a test-model, by regarding each xor -node in the test
model as a parameter and its children as the values of the
parameter. Hence test-cases can be constructed from such
a test model, using combination techniques. For example,
24 test cases are constructed from the test model in Fig-
ure 1 for the full coverage. Logic trees are a mental model,
often used for analysis techniques. They assist us to system-
atically reason about an analysis object in a top-down and
recursive manner; i.e., the analysis process proceeds in a top-
down manner by recursively partitioning the analysis target
into sub-notions, called recursive partitioning. FOT aims
to provide a design method which assists us to systemati-
cally design test-models. Hence, the quality of test-models
is enhanced.

In this paper, we develop a technique to apply n-wise test-
ing in the model-based combination testing method, FOT.
That is, we develop a technique to construct a test-suite
for the n-wise testing from the test model represented by
T(mex, req) in FOT. To do so, we take a transformation ap-
proach. In this approach, test cases for the n-wise strategy

2This is one of API functions in OSEK-OS (a standard real-
time operating systems for automotive systems) [23] that
control the task scheduler in a operating system; the func-
tion transfers the status of a specified task with parameter
“taskID” from “suspend” to “ready” state.

are constructed, by first transforming a test-model repre-
sented as a tree of T(mex, req) to that represented in the for-
mat of the existing pair-wise tools such as PICT, ACTS, and
CIT-BACH acceptable to input, and then feeding the trans-
formed test-model to any of the these tools. To realize this
approach, we develop a so-called flattening algorithm. This
algorithm transforms test-models in the form of T(mex, req) in
FOT, to a “flattened tree”, preserving the semantics equiv-
alence of the trees. The flattened trees are a special kind
of trees of T(mex, req) , whose height is 3-levels and the root
node is an and-node and all the nodes in the second level
are xor nodes. Figure 2 shows an example of a flattened tree
of the tree obtained by applying the flattening algorithm to
the tree in Figure 1. Test-models represented as flattened
trees are regarded as the input format of the existing pair-
wise tools. For example, 24 test cases are constructed with
full coverage, and 12 test cases are generated for the pair-
wise testing using PICT as shown in Table 1. We prove
the correctness of the algorithm, and implement the algo-
rithm to automate such test-suite constructions, providing
a tool called FOT-nw (FOT with n-wise). Further, to show
the effectiveness of the technique, we conduct a case study,
where we apply FOT-nw to design test models and automat-
ically construct test suites of n-wise strategies for a system
of station services, which is in real-use in industry.

The remainder of this paper is organized as follows. Sec-
tion 2 recalls basic notions of T(mex, req) and explains how to
design test models using T(mex, req) . In Section 3, we de-
velop a technique to construct n-wise test cases from test
models represented by T(mex, req) . The core of the technique
is the flattening algorithm, therefore, most of this section
is devoted to the algorithm. Section 4 presents the proof
for correctness (sound and completeness) of the algorithm.
In section 5, we show the experimental results. Section 6
discusses related works and ection 7 concludes this paper.

2. A LANGUAGE FOR TEST-MODEL DE-
SIGN: T(mex, req)

This section briefly reviews T(mex, req) . First, we explain
an example of test-model design by T(mex, req) , which is also
used as a running example in this paper. Then, we recall
the definition of T(mex, req) , defined with formal syntax and
semantics. Readers are encouraged to refer to [17] for the
details.

2.1 An example of test models by T(mex, req)
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Figure 2: A flattened tree of the test-model in Figure 1

No. 1 2 3 4 5 6 7 8 9 10 11 12

Preemptive Y Y Y Y Y Y N N N N N N
Execution level T T T T T T T T T T T T

TaskID V V V V V V V V V V V V
Status S S R W A A S R R W W A
Priority L E L H L E H H E L E H

Y: yes, N: no, T: task, V: valid, S: suspend, R: run, A: ready, W: wait, E: equiv, H: high, L: low

Table 1: A test suite for pair-wise testing constructed from the test model in Figure 2

We design a test model for “activateTask(taskID)”, a API
function in OSEK-OS (A standard for real-time operating
systems for automotive systems) [23]. This API function
is one of the functions in OSEK-OS that controls the task
schedule in OSEK-OS, which transfers the status of a speci-
fied task with the parameter “taskID” from the “suspend” to
“ready” state. Figure 1 shows a simplified test-model for the
function. The test-model is designed by T(mex, req) , which is
an extension of and-xor logic trees. Specifically, T(mex, req) is
used to design test models by recursively partitioning the
test object (i.e., in this example, the input domain of “acti-
vateTask”) with various test-relevant aspects in a top-down
manner.

We design the test model in Figure 1 by first partion-
ing the input domain of “activateTask(taskID)” into two as-
pects of the “subject (task)”, which is the task that calls the
function, and the “object (task)”, which is the task specified
by the parameter “taskID” of the function as the object of
the function call. Next, these two aspects are further ana-
lyzed for partitions separately. The analysis for the aspect
of “subject ’ is made by the aspect of the “Execution Level”.
Then the aspect of the “Execution Level” is partitioned into
two aspects of the “(Normal) Task” and the “Interruption
Service Routines (ISR)”. Further, the aspect of the“ISR”
is partitioned into “ISR1” and “ISR2”, to distinguish the
two types of ISRs. The aspect of “Task” is next analyzed
by a single aspect, i.e., “Preemptive” in order to consider
the two cases where the API function works in “Preemptive
(Yes)” or “Preemptive(No)”. The test aspect of the “object”
is analyzed in a similar manner. It is partitioned into three
aspects: “taskID”, “status” and “priority”, each of which is
analyzed into cases of two, four, and three test-relevant as-
pects, respectively. In such a way, the basic analysis with
T(mex, req) proceeds by recursive partitioning, which forms a
tree structure as a test model.

In addition to such an analysis of partitions, each parti-
tion is distinguished by “and” or “xor” according to the two
types of partitions. If an aspect is partitioned into aspects

with orthogonal notions then it is distinguished by an and-
partition. For example, the partitions of the test aspect of
the “object (task)” with three aspects of “taskID”, “status”
and “priority” are assigned as an and-partition, since these
three notions are orthogonal to each other. If an aspect is
partitioned into aspects with alternative notions, then it is
distinguished as an xor -partition. For example, the parti-
tions of the test aspect of the “execution level” by the two
aspects is distinguished as an xor -partition, since these no-
tions are alternative to each other. All the other partitions
must be also distinguished by these two types of the parti-
tions in the same way. In such a way , the basic structure
of a test model with T(mex, req) forms an and-xor logic tree.
Also, this tree forms the basic structure of a test model for
combinatorial testing, by regarding each xor -node in the test
model as a parameter and its children as the values of the
parameter.

Furthermore, two kinds of constraints mex and req called
cross-tree constraints are provided in T(mex, req) . A mex (“mu-
tually exclusive”) constraint, which is an undirected binary
relation over nodes in a logic tree, specifies forbidding com-
binations of the two test-aspects (i.e., the two nodes) in
constructing test cases. Let’s consider the mex constraint
between “invalid” and “priority”. The constraint specifies
avoiding combinations of these two test aspects of “invalid”
and “priority” in constructing each test case. This expresses
a fact induced by specifications in [23], which stipulates that
it makes sense to consider the aspect of “status” and “pri-
ority”, only when calling the “activateTask(TaskID)” with
some “valid” ID number for “taskID”. A requires constraint
(say,“a req b”), which is a directed binary relation over nodes
in a logic tree, specifying that test-aspect a is considered
only when test-aspect b is considered.

Take the req constraint from “priority” to “Preemptive”,
for example. This expresses a fact induced by specifications
in [23], which stipulates that the combination of “priority”
and “Preemptive” is allowed in constructing each test case,
only when “preemptive” is considered (i.e., the OS works
with the preemptive mode). The notion of the cross-tree
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constraints is not quite new in fact, as a similar device is
equipped with the modern tools for pair-wise testing includ-
ing PICT, and ACTS, etc., as constraints. FOT equips the
device in an integrated way with the graphical representa-
tions of the logic trees.

2.2 Syntax and Semantics of T(mex, req)

One characteristic of FOT is that it is formally founded.
T(mex, req) is defined as a language, with which testers de-
sign test models, with formal syntax and semantics. This
subsection briefly reviews the definition of T(mex, req) .

Definition: [T(mex, req) ] A language T(mex, req) is a set of
trees with several extensions, whose elements are expressed

as a tuple (N, r, ↑,@,mex↔ ,
req→), such that

• (N, r, ↑) is a rooted tree [29], where N is a set of nodes,
r is the root, and ↑ is the parent-child relation such
that node f is the parent of g if and only if ↑ (g) = f ,

• @ is a mapping from N to {and, xor, leaf},

• mex↔ is a symmetric binary relation on N ,

• req→ is a binary relation on N .

We may call an element of T(mex, req) a test model of T(mex, req) .
We may call it a test tree of T(mex, req) , to avoid confusion
with the notion of a model of a test tree, given in the Defi-
nition Models of T(mex, req) .
T(mex, req) is a set of trees [29] extended with several no-

tions. First, we consider T(mex, req) a set of and-xor logic
trees. In order to express this, we adopt a node-based de-
sign; i.e., all the nodes of trees except for leaf nodes are
labelled with an“and” or “xor”. The function @ : N →
{and, xor, leaf}, which labels each node with “and”, “xor”,
or “leaf ”, is equipped for this purpose. We call a node an
“and-node“, “xor-node”, or“leaf-node” if it is associated by @
with “and”, “xor”, or “leaf”, respectively. Note that, due to
the design, “and ” and “xor”-edges shall not be mixed among
the edges out-going from a node. The two kinds of CTCs,
“mutex” and “requires” are expressed by the binary relations

“
mex↔ ” and “

req→” on N .
A test tree t ∈ T(mex, req) expresses a set of test cases.

That is, the semantics of t is defined as a set of test cases.
Its definition is as follows:

Definition: [Models of T(mex, req) ] A model M of a test

tree t = (N, r, ↑,@,mex↔ ,
req→) ∈ T(mex, req) is a subset of nodes

N that satisfy the following conditions:

1. The root node is in the model: r ∈M ,

2. If a node is in the model, its parent is in the model
too: (f ∈M)⇒ (↑ (f) ∈M),

3. If an and-node is in the model, all its children are in
the model too:(

(f ∈M) ∧ (@(f) = and)
)
⇒

(
∀g.(↑ (g) = f)⇒ (g ∈

M)
)

,

4. If an xor-node is in the model, exactly one of its chil-

dren is in the model too;
(

(f ∈M)∧(@(f) = xor)
)
⇒(

∃!g.(↑ (g) = f) ∧ (g ∈M)
)

,

5. If f
req→ g and f is in the model, g is in it too:

(
(f

req→

g) ∧ (f ∈M)
)
⇒ (g ∈M),

6. If f
mex↔ g, f and g are not both in the model: (f

mex↔
g)⇒

(
(f 6∈M) ∨ (g 6∈M)

)
.

We write M |= t if and only if M is a model of t.
The definitions of a test case and the test-suite of a test

tree t ∈ T(mex, req) are given by means of models of t.
Definition: [test case and test-suite] Let t = (N, r, ↑

,@,
mex↔ ,

req→) ∈ T(mex, req) , then

• a test case of t is M ∩L for some M such that M |= t,

• the test-suite of t, denoted as JtK, is the set of all the
test cases of t; i.e., JtK = {M ∩ L |M |= t},

where L = {f ∈ N | @(f) = leaf}.

3. CONSTRUCTING TEST CASES FOR N-
WISE TESTING FROM THE TEST MOD-
ELS OF T(mex, req)

Exhaustive testing of computer software is intractable,
but empirical studies of software failures suggest that test-
ing can in some cases be effectively exhaustive. Data re-
ported in [19] showed that software failures in a variety of
domains were caused by combinations of relatively few con-
ditions. That observation paved a new way for software
testing called pairwise (or n-wise in general) testing. In par-
ticular, n-wise testing is a combinatorial method of software
testing that, for each n-tuple of input parameters, tests all
possible discrete combinations of those parameters. Using
carefully chosen test vectors, this can be done much faster
than an exhaustive search of all combinations of all parame-
ters, by “parallelizing” the tests of parameter pairs. Readers
are encouraged to refer to [10, 19] for details of an n-wise
testing method.

In this section, we introduce n-wise testing to FOT. That
is, we develop a technique to construct a test-suite of n-wise
testing from the test models in FOT. We take a “transforma-
tion approach” to realize this. To construct test suites, this
approach first transforms test-models in FOT, represented as
extended logic trees, to those in the formats which the exist-
ing n-wise testing tools (such as PICT [9], ACTS [30], etc)
accept to input, and then applies transformed test-models
to any of these tools.

To realize this transformation approach, we propose an al-
gorithm, called“flattening algorithm”. This algorithm trans-
forms test-models in the form of T(mex, req) in FOT, to a“flat-
tened tree” (or, flat trees), preserving the semantics equiv-
alence of the trees. Flattened trees are a special kind of
trees of T(mex, req) , whose height is tree-level, and the root
node is an and node and the all the nodes in the second
level are xor nodes. Figure 2 shows an example of a flat-
tened tree of the tree of T(mex, req) in Figure 1 by applying
the flattening algorithm. The format of test models of the
existing n-wise tools consists of a list of parameters with a
set of its values and often with constraints (a.k.a., forbidden
rules; expressed usually as a propositional formula). The
flat trees can be interpreted as the format of test models of
the existing n-wise tools, by regarding the xor -nodes at the
second level of a flat tree as parameters, their children as
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values, and cross-tree constraints as constraints. Hence it is
possible to construct test-cases for n-wise testing by feeding
test-models represented by flat trees to the existing tools for
n-wise testing. For example, the pairwise (2-wise) test suite,
which can be constructed from the test model in Figure 1,
is given in Table 1, which contains only 12 test cases.

In the following, we explain the details of the flattening
algorithm. We start with some essential definitions that we
will use in the rest of this paper.

Definition: [and-sequence] Given a test tree T = (F, r,

E,@,
mex↔ ,

req→), a pair of nodes (a, b) is called and-sequence
if b is a child of a (i.e., ↑ (b) = a) and @(a) = @(b) = “and”.

Definition: [xor-sequence] Given a test tree T = (F, r,

E,@,
mex↔ ,

req↔ , a pair of nodes (a, b) is called xor-sequence if
b is a child of a (i.e., ↑ (b) = a) and @(a) = @(b) = “xor”.

Definition: [Flattened Tree] A flattened tree is a tree
of T(mex, req) that satisfies the following conditions: (1) Its
height is three; (2) the root node is an “and” node, i.e.,
@(r) = “and”; and (3) the children of the root are “xor”
nodes or leaves, i.e., ∀x · (r, x) ∈ E : @(x) = “xor” or
@(x) = “leaf”.

Our procedure of generating test cases from test trees
is described in Algorithm 1. The algorithm has the fol-
lowing main steps. First, the function Flattening-Xor-
Sequence is called in order to transform the input test tree
of T(mex, req) to a tree which does not have any xor-sequences.
Second, the function Flattening-And-Sequence is invoked
to transform it to a test tree which has no and-sequences.
Third, after line 3, the tree T that does not contain any xor-
sequences and and-sequences, we apply the function Lift-
Tree to transform T to a flattened tree T1. Fourth, the func-
tion transformFlattenedTreetoPICTInput is applied to
T1 to extract and represent its leaves as the input format of
the PICT system. The algorithms Flatten-Xor-Sequence,
Flatten-And-Sequence , Lift-Tree are given in the Ap-
pendix. The PICT system is invoked to generate the set
temp of all n-wise input parameters. Finally, the function
decodeToTestCaseofFOT is called to transform the re-
sult temp back to the test cases of the FOT.

Algorithm 1: Algorithm of test cases Generation

Data: A general test tree T = (F, r, E,@,
mex↔ ,

req→)

Result: A set of test cases, testcases

begin
T ← Flatten-And-Sequence(T );
T ← Flatten-Xor-Sequence(T );
T1 ← Lift-Tree(T );
inputform-for-n-wise ←
transformFlattenedTreetoPICTInput(T1);
temp ← callToPICT(inputform-for-n-wise);
testcases ← decodeToTestCaseofFOT(temp);
return testcases;

end

Example
To illustrate how the algorithms work, we show an exam-
ple of a test tree in Figure 1. This tree analyzes the input
domain of activateTask [17] function in the OSEK-OS auto-

motive operating system. The tree in Figure 3 is the result of
applying function Flatten-And-Sequence to the test tree
of T(mex, req) in Figure 1. Let’s consider and-sequence (acti-
vateTask, Subject) in Figure 1. We have: if “activateTask”
is in the model then Subject is in the model too; if “Subject”
is in the model then “Execution level” is also in the model.
Thus, if “activateTask” is in the model then all of “Execu-
tion level”, “Subject”’ are in the model too. Besides, there

is no constraint (e.g.,
req→and

mex↔ ), which contains “Subject”.
That means we can remove “Subject” and let the parent of
“Execution level”be“activateTask”without changing the set
of constructed test cases.

The result of applying function Flatten-Xor-Sequence
to the test tree (without and-sequence) of T(mex, req) in Figure
3 is given in Figure 4. In Figure 3, we have an xor-sequence
(“execution level”, “ISR”). We have: if “execution level” is
in the model then one of {“task ’, “ISR”} is in the model; if
“ISR” is in the model then one of {“ISR1”, “ISR2” } is in
the model. Thus, if “execution level” is in the model then
one of {“task”, “ISR1, “ISR2”} is in the model. Further,

the constraint “ISR
mex↔ priority” means “ISR”, “priority” can

not be in the model simultaneously. This constraint cor-
responds with the two constraints “ISR1

mex↔ priority” and
ISR2

mex↔ priority. That means we can remove ISR and set
the parent of “ISR1”; “ISR2” is “execution level”. Because
“ISR” is removed, we also remove constraint ISR

mex↔ priority
and add the corresponding constraints ISR1

mex↔ priority and
ISR2

mex↔ priority.
Finally, we perform lifting the tree by the function Lift-

Tree and the flattened tree in Figure 2 is obtained. Because
the level of the tree in Figure 4 is 4, we need to lift “preemp-
tive” to be the child of the root “activateTask”. To ensure
the test suite does not change after lifting, we need to (1)

add the constraints yes
req→Task and no

req→Task to ensure if
“yes” or “no” is in the model then “task” is already in the
model; (2) add one more special node, i.e., “¬ yes/no” and

add a constraint (“task”
mex↔“¬ yes/no”) to ensure if “task” is

not in the model then “yes”, “no” are also not in the model
(or “¬ yes/no” is in the model).

4. PROVING THE CORRECTNESS
We have the following theorem as a criteria for the sound-

ness and completeness of the flattening algorithm:

Theorem: Let T = (F, r, E,@,
mex↔ ,

req→) be a general test-
tree of T(mex, req) . Let L be set of leaves of T, and T1 =

(F1, r1, E1,@1,
mex↔ 1,

req→1) be the flattened tree obtained af-
ter performing algorithms Flatten-Xor-Sequence, Flatten-
And-Sequence , Lift-Tree. The following properties hold:

1. If t1 is a test case of T1 then t = t1 ∩ L is a test case
of T , i.e., ∀t1 ∈ Tc(T1)∃t ∈ Tc(T ) · t = t1 ∩ L.

2. If t is a test case of T then there exists a test case
t1 of T1 such that t1 ∩ L = t, i.e., ∀t ∈ Tc(T )∃t1 ∈
Tc(T1) · t1 ∩ L = t.

Let M, M1 be sets of all the models of T, T1 respectively.
Due to construction of algorithms Flatten-Xor-Sequence,
Flatten-And-Sequence , Lift-Tree., there exists a bijec-
tion:

φ : M → M1

satisfying the following conditions:
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Figure 3: A test tree for “activateTask” after flattening and-sequences
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Figure 4: A test tree for “activateTask” after flattening xor-sequences and and-sequences

1. ∀M ∈ M and ∀x ∈ F ∩ F1:

x ∈M → x ∈ φ(M)
x 6∈M → x 6∈ φ(M)

2. ∀M1 ∈ M1 and ∀x ∈ F ∩ F1:

x ∈M1 → x ∈ φ−1(M1)
x 6∈M1 → x 6∈ φ−1(M1)

We also use the following two properties during the proof:

• L ⊆ L1 (because all leaves of T are also leaves of T1)

• L ⊆ F ∩ F1 (because L ⊆ F , L ⊆ L1 ⊆ F1)

Proof t = t1 ∩ L
Let t1 be a test case of T1, there exists a model M1 of T1

such that t1 = M1 ∩ L1. Let t = φ−1(M1) ∩ L, t will be a
test case of T . We will show t = t1 ∩ L.

We first show t ⊆ t1 ∩ L:
If x ∈ t then x ∈ φ−1(M1) ∩ L. Thus, x ∈ φ−1(M1) and
x ∈ F∩F1. From Condition 1 of φ, we have x ∈ φ(φ−1(M1)),
or x ∈M1. Therefore, x ∈M1 ∩ L1 ∩ L, or x ∈ t1 ∩ L.

Thus, t ⊆ t1 ∩ L.
We now need to prove t1 ∩ L ⊆ t:

If x ∈ t1 ∩ L then x ∈ F ∩ F1 and x ∈M1. From Condition
2 of φ, we have x ∈ φ−1(M1). Thus, x ∈ φ−1(M1) ∩L(= t).

Thus, t1 ∩ L ⊆ t.

Proof t1 ∩ L = t

Let t be a test case of T. Then, there exists M ∈ M such
that t = M ∩ L. Let t1 = φ(M) ∩ L1, t1 will be a test case
of T1. We will show t1 ∩ L = t.

We first show t1 ∩ L ⊆ t:
If x ∈ t1 ∩ L then x ∈ φ(M) ∩ L1 ∩ L. Thus, x ∈ φ(M) ∈
M1, x ∈ F ∩ F1. From Condition 2 of φ, we have x ∈
φ−1(φ(M)) = M . Thus, x ∈M ∩ L(= t).

Thus, t1 ∩ L ⊆ t.
We now need to prove t ⊆ t1 ∩ L:

If x ∈ t then x ∈M ∩L. Thus, x ∈ F ∩F1 and x ∈M. From
Condition 1 of φ we have x ∈ φ(M); from x ∈ L we have:
x ∈ L1( because L ⊆ L1). Thus, x ∈ φ(M)∩L1∩L = t1∩L.

Thus t ⊆ t1 ∩ L.
The theorem means that there is a correspondence (map)

between the test suite of T and that of T1. Therefore, in
order to compute the test suite of a test tree T , we apply the
flattening algorithm to transform T to the flattened tree T1.
Next, we apply the PICT algorithm to generate n-wise test
cases for T1. Finally, from the test suite of T1, we compute
the corresponding test suite of the original tree T .

Complexity analysis:.
The complexities of algorithms Flatten-Xor-Sequence,

Flatten-And-Sequence, Lift-Tree are O(|N |4). In Algo-
rithm 1, we need one more step call to the PICT system
(to find n-wise test suite). In case n is equal to the number
of parameters, PICT has to find all the test cases. Thus,
the complexity of this step must be exponential time. As
a result, the complexity of the whole proposed procedure
is exponential time. However, in practic, we often find a
pairwise (2-wise) test suite, and in this case, the complexity
becomes polynomial time.

5. EXPERIMENTS
We have implemented the proposed n-wise testing for test
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tree algorithms in a tool called FOT-nw. The package is
implemented by Java.

We applied the tool FOT-nw to generate test cases for
a real IC-card system developed by our industrial partner,
OMRON company. The experimental results show that, n-
wise algorithms can help reduce the number of test cases.
Table 2 shows the details of the experiments. Spec code col-
umn list 18 input test models given by OMRON company.
Tree Nodes and CTC columns show the size of the input
test model (number of nodes and number of constraints in
the test tree). The SAT (FOT) column shows the number of
all test cases using FOT. The 2-wise (3-wise, 4-wise, 5-wise,
6-wise) column shows the number of 2-wise (3-wise, 4-wise,
5-wise, 6-wise) test cases using FOT-nw. The experiments
show that the number of test-case generated by n-wise al-
gorithms are much smaller than the number of all test-case
for test trees.

6. S
The CTM (Classification Tree Method)[14, 15, 18] is a

similar technique to FOT, in the sense that it is a model-
based approach to combinatorial testing technique. CTMcannot
construct n-wise test-suite automatically. Besides, handling
test-case generation of n-wise testing in the presence of com-
plex constraints is not a subtle problem in CTM. As iden-
tified by [26], many of the current research directions on
n-wise testing examine the specialised problem of handling
constraints [4, 7, 8, 13, 22, 26]. In FOT, the algorithm is
realized using the flattening algorithm; i.e., a hierarchically-
structured test-model is converted to a test model in the
format of the existing tools, such as PICT [9], via a flatten-
ing algorithm, and test-cases are constructed automatically
feeding converted test-models to these tools.

Secondly, this work is related to the work by Oster et al.
[24, 25], where [24, 25] also proposed a flattening algorithm
used to construct pair-wise products for efficiently testing
a software product line (SPL) by applying the technique of
pair-wise testing. Oster’s flattening algorithm is used in a
similar way as ours; their flattening algorithm transforms a
feature model, which is represented as an extended logic-tree
to express a SPL to a flat feature model (which is extended
logic trees with the height of 3-levels) to obtain a product
line, which covers all pair-wise features (which are compo-
nents of systems) of the product line. But differences be-
tween Oster’s and our flattening algorithms are several-fold.

First, according to the different purposes of using ex-
tended logic trees (i.e., feature models aim to model SPLs,
while our test models aim to model hierarchically structured
test models for general and traditional pair-wise testing tech-
niques extending the pair-wise tools, the extended logic trees
which Oster’s and our algorithms deal with are different.
Extended logic-trees to represent feature models of SPLs in
Oster’s work [24, 25] consist of 4 operators (mandatory, op-
tional, alternative, or). On the other hand, test models in
our work consist of 2 kinds of and and xor -partitions to
form logic trees, as an natural extension of test-models of
traditional pair-wise algorithms and tools with hierarchical
structures. Accordingly, this difference makes our flatten-
ing algorithm different from Oster’s at a detailed level; that
is, the logic trees are different; hence, their algorithm also
naturally become different.

Also, our work is devoted to and contributes to developing
a technique for constructing test cases for n-wise testing from

tree-based test models, which also contributes to the related
technique of CTM as discussed previously. In this paper,
we not only show the general technique of how to construct
test cases for n-wise testing from tree-based test models us-
ing the flattening algorithm, but also prove the correctness
of the algorithm, develop a tool (FOT-nw) by implementing
the algorithm, and conduct a case study where we apply the
technique and tool to an embedded system for stationary
services which is in real use in industry, showing its experi-
mental data derived from the case study.

Logic trees are a mental model, often used for an analysis
technique. They assist us in systematically reasoning about
an analysis object in a top-down and recursive manner; i.e.,
the analysis process proceeds in a top-down manner by re-
cursively partitioning the analysis target into sub-notions,
called recursive partitioning. The analysis technique using
logic trees has been widely applied to various analysis tech-
niques in various fields, such as FTA (Fault Tree Analysis)
[11] in reliability engineering, Goal Modelling [28] in require-
ments engineering, Attack trees [20] in security engineering,
Feature models [16] in software product line engineering, and
Decision trees [27] in operations research, etc. FOT aims to
provide a design technique which assists in systematically
designing test-models and hence, enhancing the quality of
test-models, using the nice nature of the analysis technique
using logic trees. To our best knowledge, this work is the
first to apply analysis technique based logic trees to a design
technique to assist in the systematic design of a test-model
for combinatorial testing.

7. CONCLUSION
In this paper, we equipped a device to automatically con-

struct test-cases for n-wise testing to FOTby developing a
technique to construct test-cases for n-wise testing from a
test model represented as an extended logic tree of T(mex, req) .
We adopted a“transformation approach”to realize this tech-
nique. This approach constructs test suites, by first trans-
forming test-models represented as T(mex, req) in FOTto those
in the formats which general n-wise testing tools (such as
PICT [9], ACTS [30], CIT-BACH [31], etc) accept to input,
and then feeding the transformed test-models to any of these
tools. For this transformation approach, we develop an al-
gorithm, called the “flattening algorithm”. The algorithm
plays the main role in our the approach. Comprehensive
studies have been done on this technique in this work, by
proposing the algorithm in order to evaluate this approach.
Since correctness is the main concern of this technique used
as a testing method, we proved the correctness of the algo-
rithm. We also we implemented the algorithm to automate
such test-suite constructions as a tool called FOT-nw. Fur-
ther, to demonstrate the effectiveness of the technique, we
conducted a case study, where we applied FOT-nw to design
test models and automatically construct test suites of n-wise
testing for an embedded system of stationary services, which
is in a real-use in industry, thus showing experimental results
derived from the case study.

There are several directions for further development on
this testing method of FOT. First, we are currently ex-
tending FOT with several more cross-tree constraints, to
enrich the expressiveness of the test-model represented by
T(mex, req) . A second important direction is the introduc-
tion of the notion of priority to FOT to construct priori-
tized test suites. Software testing in practice often needs to
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Specification Number of test cases by
Spec code Tree Nodes CTCs SAT (FOT) 2-wise 3-wise 4-wise 5-wise 6-wise
Spec. 1 111 21 out of memory 90 559 3000 - -
Spec. 2 146 10 out of memory 61 233 761 - -
Spec. 3 158 7 out of memory 957 - - - -
Spec. 4 92 18 out of memory 13 35 93 243 587
Spec. 5 75 5 out of memory 26 109 416 1400 4153

Spec. 6 56 0 147456 14 44 129 335 812
Spec. 7 52 7 21504 36 119 338 826 -
Spec. 8 70 20 10752 15 51 128 327 735
Spec. 9 45 2 4608 13 40 99 246 514
Spec. 10 41 0 3072 10 25 59 130 272

Spec. 11 57 7 2304 24 68 154 327 641
Spec. 12 38 3 768 12 32 67 152 277
Spec. 13 35 5 704 15 45 103 215 368
Spec. 14 30 0 288 18 48 105 172 288
Spec. 15 24 0 96 12 35 62 96 96
Spec. 16 26 3 84 12 31 54 84 84
Spec. 17 22 0 64 16 36 64 64 64
Spec. 18 57 0 36 25 36 36 36 36

Table 2: Experiments of test case generation

deal with limited resources, quick deadlines, requirements
changes, etc., and hence, it is helpful to construct test-suites
where test-cases are sorted in a prioritized order. Some of
the recent research on n-wise testing investigates such a pri-
ority aspect [4]. We are developing a technique that inte-
grates weighting factors to express priorities into tree-based
test models (represented by logic trees) of FOT, and auto-
matically constructs prioritized test suites from such priori-
tized test models. We are also considering to integrate FOT-
nw with model-based testing methods for state-transition
based specifications such as [1, 2].
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APPENDIX

Algorithm 2: Flatten-And-Sequence(T)

Data: A general test tree T = (F, r, E,@,MEX,REQ)

Result: A test tree without and-sequences

begin
if (T has no and-sequences) then

return T
else

for a ∈ F ∧@(a) = “and” do
while ∃b ∈ F · (a, b) ∈ E ∧@(b) = “and” do

for x ∈ F do
//change b to a in all constraints
if (b, x) ∈ REQ ∧ (b 6= x) then

REQ← REQ \ {(b, x)};
REQ← REQ ∪ {(a, x)};

if (x, b) ∈ REQ ∧ (b 6= x) then
REQ← REQ \ {(x, b)};
REQ← REQ ∪ {(x, a)};

if (b, x) ∈MEX ∧ (b 6= x) then
MEX ←MEX \ {(x, b)};
MEX ←MEX ∪ {(x, a)};

if (b, b) ∈ REQ then
REQ← REQ \ {(b, b)};
REQ← REQ ∪ {(a, a)};

if (b, b) ∈MEX then
MEX ←MEX \ {(b, b)};
MEX ←MEX ∪ {(a, a)};

// remove b and set parent of b’s
children is a
E ← E \ {(a, b)};
for (c is a child of b) do

E ← E \ {(b, c)};
E ← E ∪ {(a, c)};

F ← F \ {b};

return T ;

end
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Algorithm 3: Flatten-Xor-Sequence(T)

Data: A general test tree T = (F, r, E,@,MEX,REQ)

Result: A test tree without xor-sequences

begin
if (T has no xor-sequences) then

return T
else

for a ∈ F ∧@(a) = “xor” do
while ∃b ∈ F · (a, b) ∈ E ∧@(b) = “xor” do

for x ∈ F do
// change constraints contain b to
constraints of other nodes
if (b, x) ∈ REQ ∧ (b 6= x) then

REQ← REQ \ {(b, x)};
for (c is a child of b) do

REQ← REQ ∪ {(c, x)};

if (x, b) ∈ REQ ∧ (b 6= x) then
REQ← REQ \ {(x, b)};
REQ← REQ ∪ {(x, a)};
for (b′ is child of a) ∧(b′ 6= b) do

MEX ← ∪{(b′, x)};

if (b, x) ∈MEX ∧ (b 6= x) then
MEX ←MEX \ {(b, x)};
for (c is a child of b) do

MEX ←MEX ∪ {(c, x)};

if (b, b) ∈ REQ then
REQ← REQ \ {(b, b)};
for (c is a child of b) do

REQ← REQ ∪ {(c, c)};

if (b, b) ∈MEX then
MEX ←MEX \ {(b, b)};
for (c is a child of b) do

MEX ←MEX ∪ {(c, c)};

// remove b and set parent of b’s
children is a
E ← E \ {(a, b)};
for (c is a child of b) do

E ← E \ {(b, c)};
E ← E ∪ {(a, c)};

F ← F \ {b};

return T ;

end

Algorithm 4: Lift-Tree(T)

Data: A test tree without and-sequence and xor-
sequence T = (F, r, E,@,MEX,REQ)

Result: A flattened tree

begin
if @(r) = “xor” then

//add a new node and change @(r) to “and”
F ← F ∪ {r1};
@(r1)← “xor”;
@(r)← “and”;
for x ∈ F do

if (r, x) ∈ E then
E ← E \ {(r, x)};
E ← E ∪ {r1, x};

E ← E ∪ {(r, r1)};

while (the height of T is greater than or equal to
3, i.e., ‖T‖ ≥ 3) do

for a, b, c ∈ F do
if (r, a) ∈ E ∧ (a, b) ∈ E ∧ (b, c) ∈ E then

while ∃x ∈ F · (x, c) ∈ REQ do
//change c to b in all constraints
REQ← REQ \ {(x, c)};
REQ← REQ ∪ {(x, b)};

while ∃x ∈ F · (c, x) ∈ REQ do
REQ← REQ \ {(c, x)};
REQ← REQ ∪ {(b, x)};

while ∃x ∈ F · (c, x) ∈MEX do
MEX ←MEX \ {(c, x)};
MEX ←MEX ∪ {(b, x)};

if (c has children d1, .., dn) then
//create a dummy node and add
new edge
newNode ← Node(¬(d1..dn));
F ← F ∪ {newNode};
E ← E ∪ {(c, newNode)};
//remove edge (b, c) and lift node c
E ← E \ {(b, c)};
E ← E ∪ {(r, c)};
//update constraints
REQ← REQ ∪ {(di, b) | i = 1 · ·n};
MEX ←MEX ∪ {(newNode, b)};

if c is a leaf then
//Create two dummy nodes and add
new edges
newNode1 ← Node(¬(c));
newNode2 ← Node(c0);
F ← F ∪ {newNode1, newNode2};
@(newNode2)← “xor”;
E ← E ∪
{(newNode2, c), (newNode2, newNode1)};
//remove edge (b, c) and lift new
subtree newNode2
E ← E \ {(b, c)};
E ← E ∪ {(r, newNode2)};
//update constraints
REQ← REQ ∪ {(c, b)};
MEX ←MEX ∪ {(newNode1, b)};

return T ;

end
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