
Combinatorial Testing for
Tree-Structured Test Models with Constraints

Takashi Kitamura∗, Akihisa Yamada∗†, Goro Hatayama‡, Cyrille Artho∗, Eun-Hye Choi∗,
Ngoc Thi Bich Do§, Yutaka Oiwa∗, Shinya Sakuragi‡

∗ National Institute of Advanced Industrial Science and Technology (AIST), Japan,
Email: {t.kitamura, c.artho, e.choi, y.oiwa}@aist.go.jp

† University of Innsbruck, Austria, Email: akihisa.yamada@uibk.ac.at
‡ Omron Social Solutions Co., Ltd., Japan, Email: {goro hatayama, shinya sakuragi}@oss.omron.co.jp

§ Posts & Telecommunications Institute of Technology, Vietnam, Email: ngocdtb@ptit.edu.vn

Abstract—In this paper, we develop a combinatorial testing
technique for tree-structured test models. First, we generalize
our previous test models for combinatorial testing based on
and-xor trees with constraints limited to a syntactic subset of
propositional logic, to allow for constraints in full propositional
logic. We prove that the generalized test models are strictly more
expressive than the limited ones. Then we develop an algorithm
for combinatorial testing for the generalized models, and show its
correctness and computational complexity. We apply a tool based
on our algorithm to an actual ticket gate system that is used by
several large transportation companies in Japan. Experimental
results show that our technique outperforms existing techniques.

I. Introduction

Combinatorial testing (CT) is expected to reduce the cost
and improve the quality of software testing [16]. Given a test
model consisting of a list of parameter-values and constraints
on them, a CT technique called t-way testing requires that all
combinations of values of t parameters be tested at least once.
Test generation for t-way testing is an active research subject.
Consequently, various algorithms and tools with different
strengths have been proposed so far, e. g., aetg [7], acts [23],
[22], casa [10], pict [8], cit-bach [19], and calot [21].

The Classification Tree Method (ctm) [12], [17], [5], [14],
[15] is a structured technique for test modeling in CT. The
method uses classification trees and propositional logic con-
straints to describe test models. The effectiveness of CT in
practice heavily depends on the quality of test modeling, while
it is a difficult task requiring creativity and experience of
testers [11], [1]. ctm is expected to be an effective technique
to the important task, and is a key technique in CT [15].

Algorithms that generate t-way tests for such tree-structured
models deserve further investigation. Tool cte-xl [14] gen-
erates 2- or 3-way tests for ctm. In that work [14], the
mechanism of test generation is explained for a simple tree
without constraints; however, our interest is in mechanisms
for general trees with constraints. Inspired by Oster et al. [20],
we [9] took a transformation approach. This approach trans-
forms tree-structured test models to non-structured ones and
feeds them to standard CT tools such as the aforementioned

This work was done when the 2nd and 6th authors were in AIST.

ones [7], [8], [10], [19], [22], [21]. This approach has a clear
advantage: We can leverage recent and future advances in
standard CT tools. However, the technique [9] inherits the
limitation from previous transformation approaches [20]; they
confine the constraints to a syntactic subset of propositional
logic.

The goal of this paper is to provide a transformation
technique for tree-structured test models with constraints in
full propositional logic, which we call Tprop. To this aim, we
provide the following contributions:

1) We first examine a direction of translating test models of
Tprop to one which [9] can handle (called Tmr). Unfor-
tunately, we conclude this direction is not feasible; we
prove that Tprop is strictly more expressive than Tmr.

2) Motivated by this fact, we develop a transformation
algorithm dedicated to Tprop. We prove the correctness of
our algorithm, showing that the semantics of test models
are preserved, and the t-way coverage is ensured.

3) We further analyze the runtime complexity of our algo-
rithm. We show that our algorithm achieves complexity
O(|N | · |φ|), significantly improving O(|N |4) stated by
earlier work [9], where |N| is the number of nodes and
|φ| is the length of the constraints in a test model.

4) We implement the algorithm and conduct experiments in
an industrial setting showing our technique outperforms
the test generation tool for ctm [14].

This paper is organized as follows. Section II gives an
overview of the proposed technique. Section III defines Tprop.
Section IV investigates the expressiveness of Tmr and Tprop. In
Section V, we explain the transformation algorithm dedicated
to Tprop. Section VI shows experimental results of our tech-
nique in comparison with cte-xl. Section VII discusses related
work, and Section VIII concludes.

II. Transformation Approach
In this section, we overview the transformation approach

for tree-structured test models. Fig. 1 shows a calot test
model of charging IC cards in a ticket gate system for
railway stations. The test model consists of two parts: an and-
xor tree describing parameter-values, and propositional-logic
constraints on them.

age

senior child A B C

charge with

without

credit card card vendor

payment
schedule

recurring one-time VISA JCB

charge amount payment method

by credit
card (CC)

by cash

1KJPY 5KJPY 2KJPY

valid invalid adult

Charge IC card

CONSTAINTS:
 ￢ (with ∧ child) ∧ (by_CC ⇒ with) ∧ (with ⇒ (A ∨ B))

card attribute

credit card
company

with

Fig. 1. A test model for an IC Card charge function.

1 # List of parameters and values
2 card vendor: A, B, C
3 credit card: with, without
4 age: senior, adult, child
5 payment method: by CC, by cash
6 charge amount: valid, invalid
7 payment schedule: recurring , one-time, -
8 credit card company: VISA, JCB, -
9 valid: 1KJPY, 2KJPY, 5KJPY, -

10

11 # CONSTRAINTS
12 IF [payment method] = "credit card"
13 THEN [credit card] = "with";
14 (NOT ([age] = "child" AND [credit card] = "with"));
15 IF [credit card] = "with"
16 THEN ([card vendor] = "A" OR [card vendor] = "B");
17 IF [credit card company] = "-"
18 THEN (NOT [credit card] = "with")
19 ELSE [credit card] = "with";
20 ...

Fig. 3. PICT code for Fig. 2

The and-xor tree describes the basic structure of the test
model by decompositional analysis of the input domain. In
Fig. 1, the input domain is first decomposed into two or-
thogonal test aspects: card attribute and charge with. Fur-
ther analysis decomposes the former into three aspects: the
card vendor, the availability of a credit card function, and
the age of the card holder. An arced edge denotes an xor-
composition, while its absence represents an and-composition.
Such trees specify test models by regarding each xor-node as a
parameter (classification in ctm) and its children as the values
(classes) of the parameter.

The propositional logic constraints describe dependency
among parameter-values in a test model. The constraints in
Fig. 1 express the following:

1) ¬(with ∧ child): A child cannot have a card with
credit card functionality.

2) by CC ⇒ with: To pay by credit, the card must have
credit card functionality.

3) with ⇒ (A ∨ B): credit card functionality is available
only when the IC card vendor is A or B, but not C.

Our transformation approach, using flattening algorithm,
transforms the tree-structured test model of Fig. 1 to the
flat test model of Fig. 2. Note that several extra nodes are
introduced and constraints are manipulated, in order to keep
the semantic equivalence.

The flattened tree is converted to a standard format of CT,
e. g., the pict code in Fig. 3. Correspondence between Fig. 2
and the pict code is straightforward: Each xor-node at the
second level of the tree is a parameter in the pict model, and
children of an xor-node are values of the parameter. Table I
shows 2-way test suite for this model generated by pict.

III. Syntax and Semantics of Tprop

The test modeling language Tprop, which is a general form
of tree-structured test models including classification trees,
describes and-xor trees and constraints using full propositional
logic. The syntax of Tprop is defined as follows:

Definition 1 (Tprop). The language Tprop is the set of tuples
(N, r, ↓,@, φ) s. t.
• (N, r, ↓) is a rooted tree, where N is the set of nodes, r

is the root node, and ↓ assigns each node a the set of its
children ↓a;

• @ assigns each node a its node type @a ∈

{and, xor, leaf};
• @a = leaf if and only if ↓a = ∅;
• φ describes constraints as a propositional formula given

by the following BNF: φ ::= true | false | a(∈ N) | ¬φ |
φ ∧ φ | φ ∨ φ | φ⇒ φ

We call a ∈ N an and-node, xor-node, or leaf-node if it is
associated by @ with and, xor, or leaf, respectively. We denote
the parent of a by ↑a, if a is not the root node r. We call an
element of Tprop a test tree/model (of Tprop).

The semantics of a test tree in Tprop is defined as a set of
test cases. By defining a notion of a configuration of Tprop, we
can derive test cases from it.

Definition 2 (Configuration). A (valid) configuration of a test
tree s = (N, r, ↓,@, φ) is a subset C ⊆ N of nodes that satisfies
the following conditions:

1) The root node is in C: r ∈ C.
2) If a non-root node is in C, then so is its parent: a ∈

C ∧ a , r ⇒ ↑a ∈ C.
3) If an and-node is in C, then so are all of its children:(

a ∈ C ∧@a = and
)
⇒

(
∀b ∈ ↓a. b ∈ C

)
.

4) If an xor-node is in C, exactly one of its children is in
C:

(
a ∈ C ∧@a = xor

)
⇒

(
∃!b ∈ ↓a. b ∈ C

)
.

5) C satisfies the constraint φ, i. e., C |= φ.
We denote the set of all configurations of s by C(s).

2

￢ (with ∧ child) ∧ (by_CC ⇒ with) ∧ (with ⇒ (A ∨ B)) ∧ (—1 ⇔ ￢ valid) ∧ (—2 ⇔ ￢ with) ∧ (—3 ⇔ ￢ with)

age

senior

adult

charge
amount

A

B

payment
method

credit cashwith without

credit
card

card
vendor

invalidvalid

1KJPY

5KJPY

2KJPY

valid

—1

JCB

credit card
company

—2

one-time

recurring

—3

payment
schedule

VISA

child

Charge IC card

Fig. 2. The flattened tree for charge IC card.

TABLE I
A pair-wise test suite obtained from the test model in Fig. 1.

No. vendor credit card age payment method charge amount credit card company payment schedule valid
1 B with senior by CC invalid JCB one-time -
2 A with adult by cash valid VISA recurring 1KJPY
3 C without child by cash valid - - 3KJPY
4 B with senior by cash valid VISA one-time 3KJPY...

...
...

...
...

...
...

...
...

The definition of test cases assumes the basic setting of CT.
Let P be a set of parameters (classifications) where each p ∈ P
is associated with a set Vp of values (classes) of p, then a test
case is a value assignment γ to P, i. e., γ(p) ∈ Vp for every
p ∈ P. For a test tree s ∈ Tprop, we interpret each xor-node p
of s as a parameter (p ∈ P) and its children as the values of
the parameter. Some parameters may be absent in a test case,
since some xor-nodes may so in a configuration. To express
this, we add a special value ⊥ to Vp for such a parameter p,
representing “−” in Table I.

Definition 3 (Test cases for Tprop). Let s = (N, r, ↓,@, φ) be a
test tree, and C a configuration of s. The test case tcC of C is
the mapping on P = {p ∈ N | @p = xor} defined as follows:

tcC(p) =

{
v s. t. v ∈ ↓p ∩C if p ∈ C
⊥ if p < C

Note that tcC(p) is uniquely defined due to condition 4 of
Definition 2. The set of all the test cases of s is called the test
suite of s and denoted by ~s�; i. e., ~s� = {tcC | C ∈ C(s)}.

Example 1. There are 165 configurations that satisfy the
test tree in Fig. 1 according to Definition 2. The highlighted
nodes in Fig. 1 constitute such a configuration, say C. By
Definition 3, this configuration induces the following test case
tcC , which corresponds to the first test case in Table I:

tcC =

card vendor 7→ B,
credit card 7→ with
age 7→ senior,
payment method 7→ by CC,
charge amount 7→ invalid
credit card company 7→ JCB,
payment schedule 7→ one-time
valid 7→ ⊥

Definition 4 (t-tuples and t-way test suite). Let s be a test
model and t a positive integer. A t-tuple (of values) is a value
assignment on t parameters, i. e., a mapping τ : π → N such
that π is a set of t xor-nodes and τ(p) ∈ ↓p∪ {⊥}. A t-tuple is

possible if it appears in ~s� and forbidden otherwise. A t-way
test suite of s is a set of test cases that covers all possible
t-tuples of s at least once.

IV. Expressiveness of Tmr and Tprop

The aim of this paper is to develop a transformation
technique for test generation for Tprop models. There are two
plausible options for it. Option (a) is to convert a Tprop model
to an “equivalent” Tmr model and then apply the previous
technique in [9] (i. e., using the flattening algorithm for Tmr).
Option (b) is to develop a new flattening algorithm dedicated
to Tprop. This section shows that approaches with option (a) is
infeasible or disadvantageous.

A. Correspondence and Expressiveness

First, we provide the notion of expressiveness of test mod-
eling languages. We define it referring to a similar notion
provided in [13]1; however here, we consider it based on
correspondence of test suites up to renaming.

Definition 5 (Correspondence). Let Γ and Γ′ be sets of test
cases on parameters P and P′, respectively. We say that Γ

corresponds to Γ′, denoted by Γ ' Γ′, if and only if there exist
bijections par : P → P′ and valp : Vp → Vpar(p) for all p ∈ P
that induce a bijection map : Γ → Γ′ which is defined as
follows: map(γ) = γ′ s. t. γ′(par(p)) = valp(γ(p)).

Example 2. Consider the test models s and s′ ∈ Tprop in Fig.
4. By Definition 3, ~s� = {γ1, γ2, γ3} and ~s′� = {γ′1, γ

′
2, γ
′
3},

where

γ1 = {a 7→ foo, b 7→ 1} γ′1 = {x 7→ 2, y 7→ α}

γ2 = {a 7→ foo, b 7→ 2} γ′2 = {x 7→ 2, y 7→ β}

γ3 = {a 7→ bar, b 7→ 3} γ′3 = {x 7→ 1, y 7→ ⊥}

1In [13], it is defined based on correspondence of configurations without
renaming.

3

Fig. 4. A small example for ~s� '
~s′�.

Fig. 5. A test model that cannot
be expressed in Tmr .

Then ~s� ' ~s′�. That is, we can find bijections par and val
that induce a bijection map defined in Definition 5, as follows:

par(p) =

{
x (if p = a)
y (if p = b)

vala(v) =

{
2 (if v = foo)
1 (if v = bar) valb(v) =

α (if v = 1)
β (if v = 2)
⊥ (if v = 3)

One may think that correspondence should be checked
regarding the t-way tests for all t (≤ the number of parameters).
However, this is not needed, as the next theorem states:

Theorem 1. Suppose that ~s� ' ~s′� is derived by a bijection
map, and Γ a t-way test suite of s. Γ′ = {map(γ) | γ ∈ Γ} is a
t-way test suite of s′.

Proof. We show that any possible t-tuple τ′ of s′ is covered
by Γ′. Take any possible t-tuple τ′ of s′. Let τ be the t-tuple
of s which corresponds to τ′, i. e., map(τ) = τ′ (here, map
is naturally extended for t-tuples). First, we show that τ is
possible in s. Since τ′ is possible, it appears in some test case
δ′ ∈ ~s′�. By assumption, we have a corresponding test case
δ ∈ ~s� s. t. map(δ) = δ′. Because δ ∈ ~s�, all tuples in δ are
possible including the corresponding t-tuple τ of s. Next, we
show that τ′ is covered by Γ′. Since Γ covers all t-tuples, there
must exist a test case γ ∈ Γ that covers τ. It is obvious that
map(γ) covers τ′, and hence τ′ is covered by Γ′. �

Definition 6 (Expressiveness). Let T and T ′ be languages.
We say T is at least as expressive as T ′, denoted by T & T ′,
if for any s′ ∈ T ′ there exists s ∈ T s. t. ~s� ' ~s′�. We say
T is (strictly) more expressive than T ′, denoted by T > T ′, if
T & T ′ and T T ′; and T is as expressive as T ′, denoted by
T ' T ′, if T & T ′ and T . T ′.

Proposition 1. The relations ., ' and < are transitive.

B. Tprop is more expressive than Tmr, i. e., Tmr < Tprop

Here, we compare the expressiveness of Tmr and Tprop. We
first revisit Tmr [9].

Definition 7 (Tmr). The language Tmr is the subset of Tprop

consisting of tuples of form s = (N, r, ↓,@, φmr), where φmr is
a conjunction of formulas of form “¬(a ∧ b)” or “a ⇒ b”
with a, b ∈ N. We call a constraint of the former or latter
form a

mex
←→- or

req
−→-constraint, and write “a

mex
←→ b” or “a

req
−→ b”,

respectively.

Here we provide three lemmas, whose proofs are found in
Appendix. The first lemma tells that an and-node coincides
with all its children in a configuration.

Lemma 1. Let s = (N, r, ↓,@, φ) be an and-xor tree and C be
a configuration of s. For any n ∈ N and n′ ∈ ↓n s. t. @n = and,
n ∈ C if and only if n′ ∈ C.

The next lemma states that nodes that do not occur in any
configuration can be removed from a test tree.

Lemma 2. Let t1 = (N, r, ↓,@, φmr) ∈ Tmr, and N′ ⊂ N be the
set of nodes which never appear in C(t1). Let t2 ∈ Tmr be the
tree obtained from t1 by removing all nodes in N′ and all

req
−→-

and
mex
←→-constraints which involve nodes in N′, i. e., a

mex
←→ b

and a
req
−→ b for some a ∈ N′ or b ∈ N′. Then C(t1) = C(t2).

The following lemma ensures that any subtree that does
not contain xor-nodes can be reduced to a single node by
manipulation of constraints.

Lemma 3. Let t1 ∈ Tmr, and t′1 be a subtree of t1 that does
not contain xor-nodes. We denote the root node of t′1 by n
and the set of nodes of t′1 by N′. Then ~t1� = ~t2�, where t2
is obtained by sequentially applying to t1 the following:

1) For each
req
−→-constraint a

req
−→ b in t1, replace it with n

req
−→ b

if a ∈ N′ \ {n} and by a
req
−→ n if b ∈ N′ \ {n}.

2) For each
mex
←→-constraint a

mex
←→ b in t1, replace it with n

mex
←→

b if a ∈ N′ \ {n} and by a
mex
←→ n if b ∈ N′ \ {n}.

3) Remove all the nodes in N′ \ {n} from t1.

The following theorem shows that the transformation tech-
nique developed for Tmr [9] is not applicable to Tprop in
general. The proof exemplifies a test model in Tprop and shows
that it cannot be expressed in Tmr.

Theorem 2. Tprop is more expressive than Tmr, i. e., Tmr <
Tprop.

Proof. It is easy to show that Tmr . Tprop, since a
mex
←→ b and

a
req
−→ b are merely ¬(a ∧ b) and a ⇒ b respectively. In the

following, we show Tprop Tmr by giving a tree s ∈ Tprop

which cannot be expressed in Tmr.
Take the tree in Fig. 5 as s. There are the following seven

test cases in ~s�:

γ1 = { a 7→ a1, b 7→ b1, c 7→ c1 }

γ2 = { a 7→ a1, b 7→ b1, c 7→ c2 }

γ3 = { a 7→ a1, b 7→ b2, c 7→ c1 }

γ4 = { a 7→ a1, b 7→ b2, c 7→ c2 }

γ5 = { a 7→ a2, b 7→ b1, c 7→ c1 }

γ6 = { a 7→ a2, b 7→ b1, c 7→ c2 }

γ7 = { a 7→ a2, b 7→ b2, c 7→ c1 }

Assume that there exists a tree s′ ∈ Tmr such that ~s� ' ~s′�
is derived by bijections par and val. Let us write par(p) = p′,
val(v) = v′, and map(γ) = γ′. Note that b′1 cannot be an
ancestor of a′, since in that case Definitions 2 and 3 impose
“γ′(b′) , b′1 ⇒ γ′(a′) = ⊥ for every γ′ ∈ ~s′�”, which
contradicts either the test case γ3 or γ7. Similarly, b′2 cannot be

4

a

r

b

a1 a2 b1 b2x y
… …

c

c2 z
…

c1

Fig. 6. Required tree structure for test models that correspond to Fig. 5.

an ancestor of a′. Thus, we know a′ , LCA(a′, b′) , b′, where
LCA(a′, b′) expresses the least common ancestor of a′ and b′.
Analogously, b′ , LCA(b′, c′) , c′ and c′ , LCA(c′, a′) , a′.
Moreover, the xor-nodes in s′ are exactly a′, b′, and c′, since
there can be only these three parameters in test cases of s′.
This also entails that a′i , b′i , and c′i are not ⊥.

Since γ′1, γ
′
5 ∈ ~s′� with γ′1(a′) = a′1 and γ′5(a′) = a′2, it

follows that a′1, a
′
2 ∈ ↓a

′ in s′. Analogously, b′1, b
′
2 ∈ ↓b

′ and
c′1, c

′
2 ∈ ↓c

′.
We conclude that the structure of s′ is as shown in Fig. 6,

where black subtrees contain only and- or leaf-nodes. Dashed
nodes x, y, and z must not appear in any test case, as ~s′�
contains only a′1, a

′
2, b
′
1, b
′
2, c
′
1, and c′2. Thus, we consider the

tree in Fig. 5 instead of Fig. 6, as ensured by Lemma 2 and
Lemma 3.

If s′ has no constraint, then ~s′� contains eight test cases.
On the other hand, ~s� has seven test cases; thus ~s� ; ~s′�.
If s′ includes at least one constraint, then the size of ~s′� is
either 8 or at most 6. Why? Let α be the number of removed
test cases by adding one constraint to s′. In the case for u

req
−→ v,

α =

0 if v ∈ Y ∨ u = v
2 if v ∈ X ∧ u ∈ X ∧ ↑u , ↑v
4 if v ∈ X ∧ u ∈ Y
8 if v ∈ X ∧ u ∈ X ∧ ↑u = ↑v ∧ u , v

where X = {a′1, a
′
2, b
′
1, b
′
2, c
′
1, c
′
2} and Y = {r, a′, b′, c′}. For a

mex
←→-constraint, α is either 2, 4, or 8. Note that by adding

mex
←→-

and/or
req
−→-constraints, the number of test cases cannot increase.

Hence the size of ~s′� cannot be 7, and ~s� ; ~s′�. �

Theorem 2 shows the impossibility of translation of a
Tprop model to an equivalent Tmr model based on the de-
fined notion of “equivalence” in Definition 6, and hence the
infeasibility of option (a). Here, one may think of another
elaborated technique for such a translation, that may enable
the transformation approach of option (a). The technique is to
introduce extra “dummy” nodes to realize translation of Tprop

to Tmr preserving equivalence. That is, additional nodes are
introduced in test models of Tmr to realize such a translation
of Tprop to Tmr models, and these nodes are also taken into
account also for the generation of t-way combinatorial test
suites, but finally are filtered out in the resulting test suite.

However, in this paper we do not tackle this approach,
at least as the first attempt to achieve our goal. It is since
we guess this approach with such an elaboration for sticking
to option (a) is less advantageous than option (b). The first
reason for this is that additional “dummy” nodes introduced

Algorithm 1: remove-and-seq(N, r, ↓,@, φ; a)
Input: A tree s = (N, r, ↓,@, φ) in Tprop and a target a ∈ N
Output: A tree s in Tprop, without and-sequences below a

1 foreach b ∈ ↓a do
2 (N, r, ↓,@, φ)← remove-and-seq(N, r, ↓,@, φ; b)
3 if @a = @b = and then
4 φ← φ|b→a
5 ↓a← ↓a \ {b} ∪ ↓b; N ← N \ {b}

6 return (N, r, ↓,@, φ)

for translation in option (a) become “dummy” parameters and
values in standard test models processed for generation of
t-way combinatorial test suites. These extra elements may
cause undesirable side effects of generation of larger sized
test suites than necessary as well as higher computation costs
for test generation. Contrarily, the technique of option (b),
that develops a flattening algorithm for Tprop, can do without
such an elaboration, and thus can avoid such side effects. The
second reason is that, as we will show in Section V-D, the
flattening algorithm for Tprop developed in option (b) achieves
complexity O(|N |·|φ|), which is lower than that of the algorithm
for Tmr [9] analyzed as O(|N |2 · |φ|).

V. Flattening Algorithm for Tprop

Motivated by the result in the previous section, we develop
a flattening algorithm for Tprop that inputs a test tree in Tprop

and then transforms it into an equivalent flat one in T f
prop. We

also show its correctness proof and complexity analysis.

A. Outline of the flattening algorithm

First we define the flat test trees as follows:

Definition 8 (T f
prop). Language T f

prop is a subclass of Tprop

s. t. (1) the root node is an and-node, (2) all the nodes in the
second level are xor-nodes, and (3) all the nodes in the third
level are leaf-nodes.

The height of a tree in T f
prop is always two; hence we call

such trees ‘flat’. Flat test trees have the same structure as test
models in existing combinatorial testing tools, such as pict
[8], acts [23], [22], cit-bach [19], aetg [7], and calot [21].
Thus, tests can be generated by feeding a flattened test model
to these tools.

Next, we show that every test tree in Tprop can be trans-
formed to a flat one. In other words, we prove the following:

Theorem 3. Tprop . T f
prop.

The proof of this theorem is to demonstrate the correct-
ness of the transformation, achieved by algorithm flatten
we develop. The algorithm applies three sub-algorithms,
remove-and-seq, remove-xor-seq, and lift in this order, but the
order of the first two can be swapped.

Note that we only consider test trees whose root node is an
and-node here; test trees whose root node is an xor-node can
be handled simply by inserting an and-node above the root [9].

5

bb cc

aa

dd ee

rr

cc

aa

rr

dd ee
𝜙|𝑏→𝑎𝜙

Fig. 7. remove-and-seq.

bb cc

aa

dd ee

rr

𝜙

b′b′ cc

aa

dd ee

bb

rr

𝜙

Fig. 8. remove-xor-seq.

Algorithm 2: remove-xor-seq(N, r, ↓,@, φ; a)
Input: A tree s = (N, r, ↓,@, φ) in Tprop and a ∈ N
Output: A tree s′ in Tprop, without xor-sequences below a

1 foreach b ∈ ↓a do
2 (N, r, ↓,@, φ)← remove-xor-seq(N, r, ↓,@, φ; b)
3 if @a = @b = xor then
4 N ← N ∪ {b′} where b′ is a fresh node
5 @b′ ← and; ↓b′ ← {b}; ↓a← ↓a \ {b} ∪ {b′}

6 return (N, r, ↓,@, φ)

Algorithm remove-and-seq (see Algorithm 1 and Fig. 7),
removes all and-sequences below a given target node a in
a tree s. When consecutive and-nodes a and b are found,
it deletes the second and-node b. Then, all the occurrences
of the second and-node b in φ are replaced by its parent a.
By recursively visiting all the nodes of the input tree starting
from the root, remove-and-seq(N, r, ↓,@; r) removes all and-
sequences from the input tree (N, r, ↓,@).

Algorithm remove-xor-seq (see Algorithm 2 and Fig. 8) re-
moves xor-sequences in a given tree, but it does so differently
from remove-and-seq. When it finds a consecutive xor-nodes
a and b, a fresh and-node b′ is inserted in between. This ap-
proach differs from others [20], [9], which remove the second
xor-node in an xor-sequence. As the correspondence between
two test suites requires a bijection between their parameters,
deleting xor-nodes (i. e., parameters) is not appropriate in this
setting. It is not obvious if a t-way test suite is preserved, even
when the number of parameters has changed. On the other
hand, our algorithm is shown to preserve this equivalence (see
Theorem 1 and Theorem 4).

Algorithm lift is applied after the previous two algorithms; it
requires that the input tree be free of and- and xor-sequences
(i. e., trees where and-nodes and xor-nodes appear alternately).
If there exists an xor-and-xor-sequence of nodes a, b, and c,
then the second xor-node c is ‘lifted’ to a direct child of the
root node r. However, this operation causes c to always appear

Algorithm 3: lift(s).
1 function lift(s)

Input: A tree s = (N, r, ↓,@, φ) in Tprop without and- and
xor- sequences

Output: A tree s′ in T f
prop

2 O← ∅; H ← ∅; ψ← true // global variables
3 foreach a ∈ ↓r do lift-sub(N, r, ↓,@, φ; a)
4 ↓r ← ↓r ∪ O
5 return (N ∪ H, r, ↓,@, φ ∧ ψ)

6 subfunction lift-sub(N, r, ↓,@, φ; a)
7 foreach b ∈ ↓a do
8 foreach c ∈ ↓b do
9 (N, r, ↓,@, φ)← lift-sub(N, r, ↓,@, φ; c)

10 H ← H ∪ {b̃} where b̃ is a fresh node
11 @b̃← leaf; ↓c← ↓c ∪ {b̃}; O← O ∪ {c}
12 ψ← ψ ∧ (b⇔ ¬b̃); φ← φ|c→b

13 ↓b← ∅; @b← leaf

bb ff

aa

dd ee

cc

bb ff

aa

dd ee

cc

 b b

𝜙 𝜙|𝑐→𝑏 ∧ (b ⇔ ¬ b)

rr rr

Fig. 9. The main process of lift(s).

in a configuration, which should not be the case if its parent
b is not in the configuration. Thus, every occurrence of c in
constraint φ is replaced by b, which is equivalent according to
Lemma 1. Furthermore, in order to express the case where b
is not in the configuration, an extra leaf node b̃ is added as a
child of c (see Fig. 9). The new option b̃ should be chosen if
and only if b is not in the configuration, which is ensured by
adding constraint b⇔ ¬b̃ as a conjunction to constraint φ.

Algorithm 3 uses the sub-algorithm lift-sub, which takes a
tree s and an xor-node a, indicating the target of “lifting”.
It recursively applies itself to grandchildren of a, which are
again xor-nodes due to the pre-condition. We prepare three
global variables O, H, and φ, in order to store “lifted” xor-
nodes (e. g. c in Fig. 8), newly-created leaf-nodes (e. g. b̃), and
formulas added in the procedure (e. g. b⇔ ¬b̃), respectively.

B. Correctness proof

The correctness of our new algorithm is stated formally as
follows:

Theorem 4. For s ∈ Tprop, ~s� ' ~flatten(s)�.

The theorem is proved by showing the correctness of the
three sub-algorithms remove-and-seq, remove-xor-seq, and lift.
Here we present a correctness proof only for the lift algorithm.
Correctness proofs of the other two, which are not as obvious
as one may expect, can be found in Appendix.

6

Lemma 4. For s ∈ Tprop without and- and xor-sequences,
~s� ' ~lift(s)�.

Proof. The process of algorithm lift is an iteration of lifting
each xor-node at the third level to the first level (see lines 7–
15 in Algorithm 3). We prove that every time the procedure is
applied, the set of test cases remains unchanged. Suppose that
the procedure is applied to an xor-and-xor sequence of nodes
a, b, and c in a tree t1 ∈ Tprop (left part of Fig. 9), yielding a
tree t2 (right part of Fig. 9).

Let us split the set of configurations for t1 into the following
two subsets: The set of configurations (1) without b: {C ∈
C(t1) | b < C} and (2) with b: {C ∈ C(t1) | b ∈ C}. We
split t2 analogously: The set of configurations (3) without b:
{C ∈ C(t2) | b < C} and (4) with b: {C ∈ C(t2) | b ∈ C}. Based
on this case analysis, the following can be induced:

(i) (2) and (4) are equivalent. ∵ In both sets (2) and (4),
b is included in the configurations. This means that c
is included in both sets of configurations as well. The
only difference that may arise in such a situation is that
b̃ may be included in the configurations in (4), but not in
the configurations in (2). However, this difference never
occurs, due to the added constraint b⇔ ¬b̃.

(ii) The set of configurations obtained by adding c and b̃ to
each configuration in (1) is equivalent to (3). ∵ Since b is
not included in any of these configurations, we can safely
remove the sub-trees below b in both t1 and t2. Then, the
only difference that may arise between such trees is that
a child di of c may appear in a configuration C in (3) but
not in (1). However, due to the added constraint b⇔ ¬b̃,
b̃ ∈ C. Hence, di cannot appear in C due to Definition 2.
On the other hand, c and b̃ are always included in the
configurations.

Test cases are preserved in both (i) and (ii). For (i), the sets
of configurations in t1 and t2 are equivalent, and the differences
in the tree structures between t1 and t2 do not affect test cases
(since they do not affect the relationship between xor-nodes
and their children). For (ii), the only difference between the
sets of configurations (2) and (4) is that b̃ is included in (4)
but not in (2).

Since c is not in (2), tcC(c) = ⊥ for every C in (2). Hence,
we conclude the claim by considering in Definition 3 the
identity par and the following valp:

valp(x) =

{
b̃ if p = c and x = ⊥

x otherwise �

C. Complexity analysis

In this section, we analyze the runtime complexity of our
new flattening algorithm. We state the main result first.

Theorem 5. The computational complexity of flatten(s) is
O(|N | · |φ|) for s = (N, r, ↓,@, φ).

The proof is done by showing the complexity of the three
sub-algorithms. Here we only show the complexity analysis
for lift, which is the most interesting part. The other two can
be analyzed in a straightforward manner.

Lemma 5. The complexity of lift(N, r, ↓,@, φ) is O(|N| · |φ|).

Proof. Let T (s) denote the complexity of lift(s) and T ′(s, a)
that of lift-sub(s; a).

First, we show that T ′(s, a) is O(|N′| · |φ|) by induction on
N′, where N′ denotes the set of the nodes below a.

The algorithm lift-sub iteratively applies the operations of
lines 11–14 to all grandchildren c1, . . . , ck of the given node
a. The worst-case complexity of line 14 is O(|φ|), while lines
11–13 can be done in constant time. Accordingly, line 14
dominates the complexity of this procedure. We obtain the
following, where each Ni is the set of the nodes below ci:

T ′(s, a) = T ′(s, c1) + O(|φ|) + · · · + T ′(s, ck) + O(|φ|)
= T ′(s, c1) + · · · + T ′(s, ck) + t · O(|φ|)

By applying the induction hypothesis to each T (s, ci), we
proceed as follows:

= O(|N1| · |φ|) + · · · + O(|Nk | · |φ|) + t · O(|φ|)
= (O(|N1|) + · · · + O(|Nk |)) · O(|φ|) + t · O(|φ|)
= O(|N1| + · · · + |Nk | + t) · O(|φ|)

Finally, lift calls lift-sub for all children a1, . . . , ak of the
root node r. Thus, the complexity of lift is as follows, where
Ni denotes the set of nodes below ai:

T (s) = T ′(s, a1) + · · · + T ′(s, ak)
= O(|N1|) · O(|φ|) + · · · + O(|Nk |) · O(|φ|)
= O(|N1| + · · · + |Nk |) · O(|φ|)

Since N1 ∪ · · · ∪ Nk = N \ {r, a1, . . . , ak}, we conclude T (s) =

O(|N | · |φ|). �

The complexities of the other two sub-algorithms are proved
in a similar manner. In summary, we have
• the complexity of remove-and-seq: O(|N | · |φ|),
• the complexity of remove-xor-seq: O(|N |), and
• the complexity of lift: O(|N | · |φ|).

Here we assume set operations that add or remove one element
are computable in constant time.

Note that remove-and-seq and remove-xor-seq keep the
number of nodes within O(|N |) and the length of constraints
within O(|φ|) for input tree s = (N, r, ↓,@, φ). This is required
to guarantee the complexity of the entire procedure.

D. Complexity analysis in comparison

The computational complexity of the new algorithm, con-
cluded as O(|N | · |φ|), is significantly lower than that of our
previous work [9] as stated O(|N |4). There are two reasons for
this. One reason is that our new algorithm has a clear recursive
structure that allows an accurate complexity analysis. After
a similar refinement, the complexity of the algorithm in [9]
would be O(|N |2 · |φ|).

The other reason is an improvement of the algorithm
remove-xor-seq. Fig. 10 illustrates the basic process of the
remove-xor-seq counterpart in [9] (using notations of the
current paper). We can observe that it collapses xor-sequences,

7

𝜙 ∧ (𝑥 → 𝑏1) ∧ … ∧ (𝑥 → 𝑏𝑛)

b c

a

b1 bn

r

𝜙 ∧ (𝑥 → 𝑏)

c

a

r

REQ

REQ

rem-or-seq.

b2
…

b1 bnb2
…

REQ

𝑛

Fig. 10. remove-xor-seq(s) in [9].

but this comes at the cost of making the size of constraints
larger by the order of the size of input test trees. More
specifically, this results in an output test tree with constraints
φ′ whose size is O(|N | · |φ|).2 Trees output by remove-xor-
seq is passed to the downward sub-algorithm lift(N, ↓,@, φ′),
whose complexity is O(|N| · |φ′|). Hence, we have O(|N | · |φ′|) =

O(|N | · (|N | · |φ|)) = O(|N|2 · |φ|). On the other hand, the current
version of remove-xor-seq of the flattening algorithm for Tprop

keeps the length of constraints within O(|φ|) as well as the
number of nodes within O(|N|) for input tree s = (N, r, ↓,@, φ).

VI. Experimental Results

We have implemented the flattening algorithm (in C++) in
our tool calot, which is then combined with pict (ver. 3.3)
and acts (ver. 2.9). Experiments compare calot with Classi-
fication Tree Editor (cte-xl, ver. 3.5) [12], [17], [14], a test
generator for ctm and the only competitor that can process
tree-structured test models as far as we know (see Section
VII).

As a benchmark set, we described test models in calot and
in ctm for 18 API functions of an actual ticket gate system.
Experiments were performed on a machine with Intel Core
i7-4650U CPU 1.70G Hz with 8 GB Memory and Windows 7.

Table II shows the results of our experiments for 2-way and
3-way testing. Columns 2 and 3 show the sizes of the input
models in Tprop, in terms of the number of nodes and the size
of constraints (|N | and |φ|). Columns 4 and 5 show the sizes of
the flattened models, measured by the size of the model and the
constraints (|M| and |φ′|). For example, test model 1 written
in Tprop contains 120 nodes and the size of the constraints
is 50. It is flattened to a model |M| = 25320425261101 with
constraints of size |φ′| = 90; here xy represents that the model
has y parameters with x values. The right part compares calot
with pict, calot with acts, and cte-xl, in terms of number of
generated test cases and execution times (in seconds). For the
numbers of test cases, the smallest ones are highlighted for
each test model.

Execution time for calot includes the time for flattening and
that for test generation by either pict or acts, although the time
for flattening was less then 0.03 seconds for all models. For

2Here, note that we cannot have the following derivation, since the derived
logical formula is not a legitimate constraint of Tmr:

φ ∧ ((x
req
−→ b1) ∧ (x

req
−→ b2) ∧ · · · ∧ (x

req
−→ bn))

⇐⇒ φ ∧ (x
req
−→ (b1 ∧ b2 ∧ · · · ∧ bn))

cte-xl, since it only has a GUI, we measured the execution
time with a stopwatch. Timeout is set to 3,600 seconds.

The results show that calot outperforms cte-xl w. r. t. the
number of generated test cases, with one interesting exception
of No. 3 for 2-way testing. In some test models, the difference
is considerable; e. g. in test model 4 for 3-way testing, the
number of test cases calot generates is six times smaller than
what cte-xl yields. Regarding execution time, although the
results for cte-xl are inaccurate, calot excels over cte-xl by
an order of magnitude in quite few examples. Again there is
one exception (No. 2 for 2-way testing), but in this case cte-xl
generates three times as many test cases as calot does.

In addition, it is worth noting that cte-xl does not support
t-way testing with t ≥ 4, while calot supports any t that the
back-end engine admits. Moreover, little implementation effort
enables further extensions in calot for other coverage criteria,
e. g., see [8].

VII. RelatedWork

Test generation for t-way testing is an active research
subject in CT. Consequently, various algorithms and tools
with different strengths have been proposed so far, e. g.,
aetg [7], acts [18], [23], casa [10], pict [8], cascade [24], cit-
bach [19], and calot [21]. For example, the algorithm in [22]
can efficiently handle test models with complex constraints.
The algorithm in [21] specializes in minimizing the t-way test
suite within an allowed time. Our transformation approach can
enjoy such various strengths of different algorithms. Note also
that all of these algorithms and tools, except for cte-xl, cannot
directly handle tree-structured test models.
cte-xl [14] is the only technique, except for calot, that can

process tree-structured test models for t-way testing. Their test
models and our Tprop are essentially equivalent; cte-xl uses so-
called classification trees, while calot uses and-xor trees. The
major difference appears in the algorithms for test generation.
Although the algorithm in cte-xl has not been revealed in
detail, from a partial explanation in [14], we can observe that
it directly constructs test cases from a tree-based test model.
Thus, unlike calot, cte-xl cannot benefit from the various
algorithms and tools for standard t-way test case generation.
Superiority of the calot approach is demonstrated through
experiments in Section VI.

We have previously developed a restricted transformation
algorithm for tree-structured test models with constraints [9].
The contribution of this paper over that work [9] is threefold.
(1) We develop a transformation algorithm for tree-structured
test models with constraints written in full propositional logic
(called Tprop), motivated by the fact that the permitted con-
straints in previous work [9] (called Tmr) are limited to a syn-
tactic subset of propositional logic. The proof of Tmr < Tprop in
Theorem 2 indicates that previous algorithms cannot be used
for our goal. (2) We refine our complexity analysis. In [9], we
stated that the complexity of the previous algorithm is O(|N |4).
This paper shows that of the new algorithm to be O(|N |·|φ|). (3)
Our case study is another important contribution. By relaxing

8

TABLE II
Test case generation using calot and cte-xl for the train ticket gate system.

2-way tests 3-way tests
Tprop Flattened model Calot/pict Calot/acts CTE Calot/pict Calot/acts CTE
|N | |φ| |M| |φ′ | size time size time size time size time size time size time

1 120 50 25320425261101 90 time out 95 91.8 time out time out time out time out
2 153 26 22432071 66 66 34.8 63 16.0 199 8.0 237 40.2 226 155.6 810 1103.4
3 167 22 2163791141161331 34 964 979.8 958 5.9 893 128.7 9693 1125.6 8646 33.7 time out
4 97 40 22037 50 13 0.3 13 3.2 51 <1.0 35 0.4 35 6.6 217 274.2
5 78 12 212364251 22 26 0.3 22 2.5 25 <1.0 107 0.6 102 2.9 115 23.9
6 57 0 2133241 2 14 0.3 14 1.8 15 <1.0 47 0.3 47 1.9 48 2.1
7 109 20 21031342 44 37 0.7 36 7.5 80 <1.0 119 1.3 119 48.4 341 78.1
8 83 52 21739 70 15 0.3 17 3.9 65 <1.0 48 0.5 46 10.5 246 54.2
9 48 6 21033 8 14 0.3 13 2.0 13 <1.0 41 0.3 39 2.1 36 <1.0

10 42 0 21031 0 9 0.3 10 1.0 9 <1.0 24 0.3 26 1.2 24 <1.0
11 62 18 2123461 26 20 0.3 20 3.1 34 <1.0 66 0.4 66 5.4 150 20.3
12 41 10 2932 12 9 0.3 9 2.0 11 <1.0 24 0.3 26 2.1 28 <1.0
13 38 12 273251 14 15 0.3 15 2.4 15 <1.0 44 0.3 45 3.2 50 <1.0
14 31 0 2535 8 18 0.3 18 2.3 18 <1.0 43 0.3 49 2.6 45 <1.0
15 25 0 2434 6 12 0.3 12 2.2 12 <1.0 30 0.3 36 2.5 36 <1.0
16 33 12 2634 18 12 0.3 12 2.3 14 <1.0 31 0.3 27 2.7 38 <1.0
17 23 0 2381 0 16 0.3 16 1.0 16 <1.0 32 0.3 32 1.1 34 <1.0
18 58 0 31561 30 30 14.1 30 12.6 error 36 22.3 36 143.8 error

limitations on constraints, we are now able to compare the
transformation approach with cte-xl.

Our work is inspired by Oster et al. [20], who applied
CT to Software Product Lines (SPLs). An SPL is expressed
as a feature model, an and-or tree with constraints. Their
flattening algorithm transforms a feature model to a flat one,
(a feature model whose height is two) and a set of products is
obtained as a t-way test suite for the SPL. The class of feature
models in [20] restricts the constraints to the same syntactic
subset as Tmr. Also, we can observe that a similar technique
to our flattening algorithm is used in [3] for the setting
of SPL testing. Compared to these work, our contribution
reveals several important facts of the proposed technique such
as expressiveness, correctness, and complexity analysis. We
expect that our contributions can be also used to advance their
approach for SPL.

VIII. Conclusions and FutureWork
This paper presented a transformation approach to gener-

ating t-way tests for tree-structured test models with propo-
sitional logic constraints. Practicality of our technique was
evaluated by experiments in an industrial setting; they demon-
strated superiority of our technique over the state-of-the-
art tool cte-xl. Also, the paper contains several theoretical
contributions. We proved Tmr < Tprop; to our knowledge, there
is no published proof for this non-trivial result. We also proved
the correctness and complexity of the algorithm.

Prioritized t-way testing extends t-way testing with the pri-
ority notion to express importance of different test aspects [2],
[6], [15]. For tree-structured test models, cte-xl has already
introduced priorities [14]. For future work, we plan to connect
the notion of priority for standard t-way testing and that
for tree-structured testing via our transformation approach.
We will also investigate the relation between tree-structured
test modeling and combinatorial testing with shielding pa-
rameters [4]. Shielded parameters may not appear in some

test cases, depending on whether some other parameters have
specified values. This feature may open up new ways to model
hierarchical dependencies in tree-structured test models, but it
has so far not been extensively analyzed.

Acknowledgment

We are grateful to the anonymous reviewers of the paper
for their constructive and careful comments. The first author
would like to thank Hitoshi Ohsaki for his support and
insightful comments at an early stage of this work. This work
is in part supported by JST A-STEP grant AS2524001H.

References

[1] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial
testing of ACTS: A case study. In Proc. of ICST’12, pages 591–600.
IEEE, 2012.

[2] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Inform. Software Tech.,
48(10):960–970, 2006.

[3] A. Calvagna, A. Gargantini, and P. Vavassori. Combinatorial testing for
feature models using citlab. In Proc. of ICST 2013 Workshops, pages
338–347, 2013.

[4] B. Chen, J. Yan, and J. Zhang. Combinatorial testing with shielding
parameters. In Proc. of APSEC’10, pages 280–289, 2010.

[5] T. Y. Chen, P.-L. Poon, and T. H. Tse. An integrated classification-
tree methodology for test case generation. Int. J. Softw. Eng. Know.,
10(6):647–679, 2000.

[6] E. Choi, T. Kitamura, C. Artho, and Y. Oiwa. Design of prioritized
N-wise testing. In Proc. of ICTSS’14, LNCS 8763, pages 186–191.
Springer, 2014.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatiorial design. IEEE
Trans. Software Eng., 23(7):437–444, 1997.

[8] J. Czerwonka. Pairwise testing in real world: Practical extensions to test
case scenarios. In Proc. of PNSQC’06, 2006.

[9] N. T. B. Do, T. Kitamura, N. V. Tang, G. Hatayama, S. Sakuragi, and
H. Ohsaki. Constructing test cases for N-wise testing from tree-based
test models. In Proc. of SoICT’13, pages 275–284. ACM, 2013.

[10] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical
Softw. Eng., 16(1):61–102, 2011.

9

[11] M. Grindal and J. Offutt. Input parameter modeling for combination
strategies. In in Proc. of IASTED’07 on Software Engineering, pages
255–260. ACTA Press, 2007.

[12] M. Grochtmann. Test case design using classification trees. In Proc. of
STAR 1994, 1994.

[13] P. Heymans, P. Schobbens, J. Trigaux, Y. Bontemps, R. Matulevicius,
and A. Classen. Evaluating formal properties of feature diagram
languages. Proc. of IET Software, 2(3):281–302, 2008.

[14] P. M. Kruse and M. Luniak. Automated test case generation using
Classification Trees. Software Quality Professional, pages 4–12, 2010.

[15] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to Combinatorial
Testing. CRC press, 2013.

[16] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng.,
30(6):418–421, 2004.

[17] E. Lehmann and J. Wegener. Test case design by means of the CTE
XL. In Proc. of EuroSTAR, 2000.

[18] Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for
pairwise testing. In Proc. of HASE’98, pages 254–261. IEEE, 1998.

[19] T. Nanba, T. Tsuchiya, and T. Kikuno. Using satisfiability solving for
pairwise testing in the presence of constraints. IEICE Transactions,
95-A(9):1501–1505, 2012.

[20] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise
testing of software product lines. In Proc. of SPLC’10, LNCS 6287,
pages 196–210. Springer, 2010.

[21] A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa, and A. Biere.
Optimization of combinatorial testing by incremental SAT solving. In
Proc. of ICST’15, pages 1–10. IEEE, 2015.

[22] L. Yu, Y. Lei, M. N. Borazjany, R. Kacker, and D. R. Kuhn. An efficient
algorithm for constraint handling in combinatorial test generation. In
Proc. of ICST’13, pages 242–251. IEEE, 2013.

[23] L. Yu, Y. Lei, R. Kacker, and D. R. Kuhn. ACTS: A combinatorial test
generation tool. In Proc. of ICST’13, pages 370–375. IEEE, 2013.

[24] Y. Zhao, Z. Zhang, J. Yan, and J. Zhang. Cascade: A test generation
tool for combinatorial testing. In Proc. of ICST 2013 Workshops, pages
267–270, 2013.

Appendix

A. Omitted proofs

Proof of Lemma 1. The proof is straightforward from the con-
dition (3) in Definition 2. �

Proof of Lemma 2. Let t′1 be the tree obtained by adding a
mex
←→-constraint r

mex
←→ n for each n ∈ N′ where r is the root

node. Let t′′1 be the tree obtained by removing all
mex
←→- and

req
−→-constraints that involve any nodes in N′ except for the

mex
←→-

constraints added in t′1. We prove the following:
1) C(t1) = C(t′1). Since n ∈ N′ is a node which never appears

in any configuration of t1 and the root node is always in
a configuration of t1, adding such constraints makes no
difference between C(t1) and C(t′1).

2) C(t′1) = C(t′′1). We consider the following three forms of
the constraint:

a) a
req
−→ b with a ∈ N′ and b is any node in t′1: Since

a ∈ N′, this constraint does not affect b. Further, since
a
mex
←→ r, a still does not appear in any configuration

after removing a
req
−→ b.

b) a
req
−→ b with a is any node in t′1 and b ∈ N′: Since

b ∈ N′, a ∈ N′. Hence, the case follows case a).
c) a

mex
←→ b with a ∈ N′ or b ∈ N′ and both are not r:

Analogous to a).
3) C(t′′1) = C(t2). By removing all the nodes in N′ and

all the
mex
←→-constraints between the root node and nodes

in N′ from t′′1 , we obtain t2. The removal makes no

difference between C(t′′1) and C(t2), since nodes in N′

are not referred to by any other constraints in t′′1 . �

Proof of Lemma 3. We show that these procedures do not
change the test suite. For 1) and 2), the claim follows
Lemma 1. For 3), it is because (i) the subtree contains no
xor-nodes and hence any nodes in N′ \ {n} do not appear in
the test suite according to Definition 3, and (ii) no constraint
involves any node in N′ \ {n} after applying 1) and 2). �

Lemma 6. Let s = (N, r, ↓,@, φ) ∈ Tprop and t =

remove-and-seq(N, r, ↓,@, φ; r). Then, ~s� = ~t� and thus
~s� ' ~t�.

Proof. Algorithm 1 applies to every and-sequence in s the
following two steps: 1) substituting the second and-node of
the and-sequence in φ by its parent (line 4), and 2) deleting
the second and-node from the tree (line 5). We show that each
of these steps preserves the test suite of an input tree.

1) This step yields s′ = (N, r, ↓,@, φ′) where φ′ = φ|b→a. To
prove ~s� ⊆ ~s′�, suppose tcC ∈ ~s�. Due to Lemma 1,
we have C |= φ|b→a and thus C ∈ C(s′). Hence by
definition, tcC ∈ ~s′�. Analogously we have ~s� ⊇ ~s′�,
concluding ~s� = ~s′�.

2) This step yields s′′ = (N \ {b}, r, ↓′,@, φ′) where

↓′(x) =

{
↓(a) \ {b} ∪ ↓(b) if x = a
↓(x) otherwise

It is easy to show that C ∈ C(s′) if and only if C \ {b} ∈
C(s′′), since b does not occur in condition φ′, which is
used by both s′ and s′′. Below we show that tcC = tcC′

where C′ = C \ {b}.
• Suppose tcC(p) = v. Then, p , b since b is not an
xor-node, and v , b since b is not child of an xor-
node. Hence, p, v ∈ C′ and also v ∈ ↓′p. Accordingly,
tcC′ (p) = v.

• Suppose tcC′ (p) = v. Then, v ∈ ↓′p and p , a since
a is not an xor-node. Thus, v ∈ ↓p. Also, p, v ∈ C,
since v ∈ C′. Hence tcC(p) = v.

This concludes ~s′� = ~s′′�. �

Lemma 7. Let s = (N, r, ↓,@, φ) ∈ Tprop and t =

remove-xor-seq(N, r, ↓,@, φ; r). Then ~s� ' ~t�.

Proof. Algorithm 2 is an iteration of the procedure shown in
Fig. 8. Each time it is applied to an xor-sequence of a ∈
N and b ∈ ↓a in a tree s yielding s′, we can prove ~s� '
~s′� by regarding the identity par and the following valp in
Definition 5:

valp(v) =

{
b if p = a and v = b′

v otherwise �

Proof of Theorem 4 . From Lemmas 6, 7, and 4, each of the
three steps in the algorithm flatten preserves test cases up to
correspondence. �

10

